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Abstract: This paper faces the issue of changing the received signal strength (RSS) from an observed
access point (AP). Such a change can reduce the Quality of Service (QoS) of a Wi-Fi-based Indoor
Localisation System. We have proposed a dynamic system based on an estimator of RSS using the
readings from other APs. Using an optimal threshold, the algorithm recognises an AP that has
changed its characteristics. Next, the system rebuilds the localisation model excluding the changed
AP to keep QoS. For the tests, we simulated a change in the analysed Wi-Fi network by replacing
the measured RSS by an RSS obtained from the same AP model that lies in another place inside the
same multi-floor building. The algorithm was evaluated in simulations of an isolated single-floor
building, a single-floor building and a multi-floor building. The mean increase of the localisation
error obtained by the system varies from 0.25 to 0.61 m after the RSS changes, whereas the error
increase without using the system is between 1.21 and 1.98 m. The system can be applied to any
service based on a Wi-Fi network for various kinds of changes like a reconfiguration of the network,
a local malfunction or ageing of the infrastructure.

Keywords: Quality of Service; system deployment and maintenance; Wi-Fi network; indoor
localisation system; fingerprinting

1. Introduction

Localisation services–including indoor ones–are becoming more and more common. Because
of the business application of indoor localisation systems, the issue of providing an accurate indoor
position becomes critical and requires a specific level of accuracy from the localisation system. The most
popular indoor localisation system type is based on a vector of received signal strength (RSS) calculated
for access points (APs) from internal Wi-Fi infrastructure. The advantages of the system are low cost
and accessibility, as the measurements can be performed on almost every mobile device with a
Wi-Fi module.

Very often, such a system is trained using fingerprinting. In the localisation process, the current
position can be determined by comparing the RSS vector to a created map of fingerprints. Different
environments, test areas, and sensor technology have a significant impact on the Quality of Service
(QoS)–measured by the localisation error–of the indoor localisation system [1]. However, in the case of
a localisation system based on fingerprinting there is one important additional factor: The QoS can
drop if there are some changes in the characteristics of the RSS that were used to train the system.

There are various reasons for changes in system characteristics. One of them regards the model
readings from a mobile AP during the creation of learning set. A mobile AP can change its position.
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As a result, the broadcast signal can be significantly different or even not observed. In performed
experiments, Leca et al. [2,3] have estimated that approximately 3–4% of APs observed in an outdoor
environment are mobile APs. Their existence in the learning data can increase the log-Gaussian Mean
Error even by 37%, although the influence of mobile APs is not explicit for other error measures.
Another reason for the changes is a modification of the Wi-Fi infrastructure. According to current
needs, the network can be reconfigured to optimise the trade-off between the range and the latency [4].
The last reason is the ageing of AP devices. Górak et al. [5] have shown that the QoS of the localisation
system based on unmodified Wi-Fi infrastructure deceases from 4 to 5 m over two years.

In this work, we propose a detection algorithm that can detect changes in AP signal characteristics.
Using the Random Forest algorithm, we create an estimator that predicts the signal strength of the
AP, based on the readings from all the remaining APs. Next, for every AP, we calculate an optimal
threshold that will allow us to compare a predicted signal strength to the actual strength. If the
difference between the prediction and the recorded signal strength is above the threshold, we predict
that the AP has changed its characteristics for reasons other than typical environmental factors and
this may substantially influence the accuracy of the localisation. If this is the case, we rebuild the
localisation model, by excluding this AP from the learning data.

To evaluate our algorithm, we created a unique testbed. The change is simulated by replacing
AP signals by signals of an AP from a different location. Both APs are the same model (Cisco
AIR-LAP1142N-E-K9). Therefore, it is practically the same as physically moving one AP to a different
location. Moreover, our approach allows us to avoid modelling of the propagation of signal strength
in the dynamic environment of a public building, which is a very difficult task. Instead, we gather a
huge amount of fingerprinting data (millions of records), each record containing many features (RSS
readings from many APs). Next, we use machine learning methods to detect APs with substantially
changed characteristics. After the detection of changes, the algorithm starts the recalculation of the
localisation model.

Our algorithm was tested inside the big modern multi-floor building of the Faculty of Mathematics
and Information Science (MIS) of the Warsaw University of Technology. The algorithm automatically
detected simulated changes in the Wi-Fi infrastructure and triggered the recalculation of the localisation
model. As a result, our solution reduces localisation errors created by changes.

The remaining part of the paper is organised as follows. In Section 2, the related work is discussed.
Section 3 presents the proposed localisation model and describes how the system detects the changes.
The created simulations and data sets of fingerprints collected in the MIS building are described and
discussed in Section 4. The results obtained for three scenarios are described in Section 5. Section 6
presents our conclusions.

2. State-of-the-Art

Tuta et al. [6] stressed the issue of developing an indoor positioning system with the main aim of
making it useful for real-world deployments, including the creation of self-calibrating and self-adaptive
systems. Several such localisation systems were proposed.

Cai et al. [7] proposed an adaptive indoor localisation system—an integration of received signal
strength indication (RSSI)-based and inertial navigation system (INS)-based approaches—called
coupled RSSI and INS localisation (CRIL). The system used the results from RSS and INS and updated
the channel model in the RSSI in real-time. However, the adaptation is based on infrastructure of
anchors of known location. Tuta et al. [6] merged a free-space path loss model and a propagation model
to create a self-calibrating and self-adaptive model. This procedure infers parametres of the space and
simulates the propagation of the signal. The historical points are used for localisation improvement.

Several solutions use a specialised chipset. Nevat et al. [8] proposed two-way time-of-arrival
ranging devices to perform localisation. The approach was based on nonlinear regression analysis,
where the missing observations were treated as Missing Not at Random. A similar idea was proposed
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by Batstone et al. [9,10]. However, such solutions are hard for broad implementation on commonly
used mobile phones [11].

Several works aim to eliminate the missing signals. Lin et al. [12] recovered a fingerprinting map
created during the fingerprinting process in place of the missing signals. Chang et al. [13] proposed a
similar solution. Saleem et al. [14] discussed—on a laboratory testbed—how to recover missing APs’
RSS if the radio map covers all measurement points for all APs. Górak et al. [15] detected the missing
signals and eliminated their sources from the localisation model.

Designing our solution, we assumed that the system should work on commonly used devices.
Therefore, the solution cannot be based on a specialised chipset as in [8–10]. Our solution can
work using standard Wi-Fi APs and mobile devices. Also, the designed system should work with
unreliable infrastructure. Therefore, the concept of Wi-Fi anchors used in [7] cannot be applied.
The anchors can be a major source of system weakness in the case of changes in their RSS characteristics.
The central concept of our solution lies in the detection of such changes. The main works that
analyse the localisation QoS are focused on managing lack of data [12–15]. Although the detection of
missing signals is critical for QoS, we extend this idea to detect all significant changes in the observed
signals. Finally, to design a universal solution, we avoid signal propagation modelling [6] and the
necessity of a knowledge of the Wi-Fi infrastructure scheme [7] using by fingerprinting and machine
learning techniques.

The method proposed in this work could be extended using crowdsourcing [16], as we did
previously to detect a disabled AP [15]. The previously introduced methods allow the system to limit
rebuilding frequency by waiting for a significant number of raised alarms to recreate the localisation
model. Moreover, the proposed methods can extend a set of observed APs. However, the current
work introduces the new concept of RSS characteristics changes detection and we intentionally limited
additional factors during the experiments. This aspect could be an area of future work.

The tests in our work were performed on data collected in the multi-floor MIS building. Other
analyses for the building—multi-floor localisation and feature selection—can be found in [15,17–20].
Mostly, we cannot compare our results directly with the mentioned works. However, we performed a
comparison of the proposed system with the approaches presented in [14,15].

3. Methodology

3.1. Localisation Model

Following the work in [15], let us formally define the localisation problem which we deal with in
the following part of this work.

By SAP
L and SAP

T we denote the learning and testing data sets, respectively. They consist of
vectors (fingerprints) pr1, r2, . . . , rn, t, x, y, zq, where rp is the RSS reading from the pth AP, from a given
set of APs AP , at the time t, in the location px, y, zqwhere x, y are the horizontal coordinates, and z is
the vertical one.

For a subset AP 1 Ă AP , we consider new data sets SAP 1

L , SAP 1

T that are modified data sets SAP
L ,

SAP
T , respectively:

SAP 1

L “ tppriqiPAP 1 , t, x, y, zq : ppriqiPAP , t, x, y, zq P SAP
L u; (1)

SAP 1

T “ tppriqiPAP 1 , t, x, y, zq : ppriqiPAP , t, x, y, zq P SAP
T u (2)

In other words, we take in SAP
L , SAP

T only RSS readings from APs from AP 1.

Problem 1. Construct a localisation model based on a measurement series SAP
L (learning series).

The localisation model is a function pL : Rn ÞÑ R2 (2D case, z is constant) or pL : Rn ÞÑ R3 (3D case),
depending on the localisation area. For a given RSS vector r “ pr1, r2, . . . , rnq P Rn, pLprq estimates the location
where the measurement v was taken.
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The localisation issue formulated as Problem 1 is not a tracking problem and the historical
RSS readings are not taken into account. The localisation is based on a single RSS reading from
multiple APs.

To evaluate the model, we introduce the following standard measures of QoS.

Definition 1. Let SAP
T (testing series) be a measurement series and pL a localisation model. For an element

s “ pr1, r2, . . . , rn, t, x, y, zq P ST , we introduce the the following natural error measurement,

EppL, sq “
b

px̂´ xq2 ` pŷ´ yq2 ` pẑ´ zq2 (3)

where pLprq “ px̂, ŷ, ẑq. In other words, although px, y, zq is the true position of fingerprint s, px̂, ŷ, ẑq is its
predicted position based on RSS vector r.

Definition 2. For a testing series ST and the localisation model pL, let us define the following QoS measures,

Mean error: meantEppL, sq : s P STu; (4)

Median error: mediantEppL, sq : s P STu; (5)

Gross error: perc80tEppL, sq : s P STu. (6)

The goal of localisation is minimising these measures.
We construct the localisation model pL : Rn ÞÑ R3 using the Random Forest algorithm as presented

in [21]. This will be one of the main parts of the localisation solution. The main advantages of the
algorithm are speed and high quality. Alternatively, the AdaBoost algorithm can be used [22].

First, we create estimators pLx, pLy and pLz by applying the Random Forest algorithm where the
training set is SL, which predicts separately coordinates of x, y and z, respectively. For creating the
estimators, regression trees are grown. The selected number of grown trees is 100 as the analysis based
on SL (see, e.g., in [15]) suggests that growing more trees does not improve QoS.

3.2. Detection of Changes of AP Location

Let us describe the method of detecting that the RSS characteristics of AP p have
changed. The method presented in Figure 1 starts denoting for vector r P Rn a vector qrp “

pr1, r2, . . . , rp´1, rp`1, . . .q “ priqi‰p P Rn´1, which is vector r with the pth coordinate removed. For a
learning data set SAP

L we define a set of such vectors RSS p “ tqrp | Dpt, x, y, zq : pr, t, x, y, zq P SAP
L u.

Therefore, we have a function (possibly a multifunction) gp that for a given vector qrp P RSS p returns
a missing coordinate rp P R of RSS from the removed AP. Now, based on gp and using the Random
Forrest algorithm once again, we create an estimator, pgp : Rn´1 ÞÑ R, that predicts the RSS of the
removed AP p, based on the readings from all the remaining APs.

We define the estimation error of the RSS prediction as |ĝppqrpq ´ rp|, where pr, t, x, y, zq P SAP
L

and rp is the pth coordinate of r. Next, we calculate the threshold t that separates errors obtained
for valid characteristics from the rest. Regarding typical noises that can occur in a real environment,
the estimation errors for valid characteristics will be higher than zero. However, we assume that errors
introduced by a change (such as a change of AP location) will be significantly higher than typical
errors. If not, we can assume that the influence of the change on QoS will not be substantial.
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Figure 1. Localisation schema using the characteristics changes detection Indoor Positioning System.

The threshold belongs to a set of unique error values E calculated on the learning data set SAP
L .

For computational reasons, the size of the set E can be reduced, decreasing the precision of its elements.
The optimal threshold is calculated using the formula

tp “ perc80

$
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ÿ

pr,t,x,y,zqPSL

σt
`

|ĝppqrpq ´ rp|
˘

: t P E

,

.

-

, (7)

σtpxq “

#

0 if x ă t

1 if x ě t.
(8)

We classify an AP p as one that has changed its characteristics (possibly due to a change of its
location) if for an RSS vector r, |pgppqrpq ´ rp| ą tp. In such a case, a new localisation model pLp is created,

as described in Section 3.1. However, this time the learning data set is SAP´tpu
L . In other words, we

remove readings from AP p from the readings of the learning series SAP
L . Therefore, we can define the

modified localisation model m pL by

m pLpr, pq “

#

pLprq if the system does not detect that AP p has changed its characteristics,
pLpprq if the system detects the change.

(9)

To estimate the quality of the model m pL, it is compared with the system that ideally detects if AP
p changed its characteristics. Therefore, we introduce i pL, such that

i pLpr, pq “

#

pLprq if AP p did not change its characteristics (its location),
pLpprq if AP changed its characteristics (its location).

(10)

The proposed method is universal and works for various localisation models pL. However,
as mentioned before, we will work with pL “ pL, i.e., the model that was created using a Random Forest.
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4. Tests

4.1. Simulation of Moving APs

The idea of the tests is to simulate that one of the APs was moved to a new location. This is
done by a modification of the learning and testing data sets. First, we choose one AP p0 and remove
(put aside) its RSS readings from the learning and testing data sets (SAP

L , SAP
T ). Following the above

definition, we obtain SAPztp0u
L and SAPztp0u

T . Based on such a modified learning data set SAPztp0u
L ,

we create the localisation model pLp0 , as described in Section 3.1. Then, we choose another AP p1 and
we replace the readings from that AP in the testing data set SAPztp0u

T with the readings from p0. Such

a modified testing data set SAPztp0u
T is denoted by S p0Ñp1

T . Next, we calculate the mean, median and
gross error for the model pLp0 to assess how it works.

It should be stressed that in each case we replace RSS readings with readings received from the
same model of AP. Therefore, it is a good but discrete simulation of an actually moving AP. Moreover,
the simulation allows us to observe

`n
2

˘

“
npn´1q

2 unique movements of APs, where is n the number of
APs in the considered infrastructure.

We prepared several scenarios to illustrate how the changes influence localisation quality and
how our system deals with it. The scenarios are sketched in Figure 2.

Floor I

Floor II

(a) Scenario 1 (2D)

Floor I

Floor II

(b) Scenario 2 (2D)

Floor I

Floor II

(c) Scenario 3 (3D)

Figure 2. Testing scenarios. (a) Localisation using APs from the current floor, horizontal location of
APs is changed. (b) Localisation using APs from all floors, horizontal location of APs is changed.
(c) Localisation using APs from all floors, horizontal and vertical location of APs is changed. The green
arrows indicate the AP used for the localisation process, the dotted arrow shows an AP shift.

4.1.1. Scenario 1 (2D Case)

Let us pick a floor f P t0, 1, 2, 3, 4u and two APs p0 and p1 that are located on this floor. In the first
scenario, the 2D localisation model is trained using only APs from a given floor f P t0, 1, 2, 3, 4u, except
p1, which is put aside. For training, we choose only fingerprints from SL that are located on the floor f .
Then, in the testing data set ST , we choose only fingerprints from floor f , and modify the RSS vectors
by replacing the RSS reading from AP p0 by the readings from AP p1. The replacement simulates the
location change of one AP, as both p0 and p1 are the same device models. We do this for every pair
p0 and p1 of APs from floor f , obtaining the mean, median and gross errors. Then, to summarise the
results, we take the average of mean, median and gross error over all floors f P t0, 1, 2, 3, 4u and all
pairs p0 and p1 of APs from floor f . We do not consider the last floor f “ 5 as the number of APs on
this floor is too small (see Section 4.2 for details).

4.1.2. Scenario 2 (2D Case)

The second scenario is similar to Scenario 1, but although we consider only readings from a given
floor f , the sources of the signals are not limited to APs on this floor. We consider in the localisation
process—building the model and locating the terminal—APs from different floors that broadcast on
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a given floor f P t0, 1, 2, 3, 4, 5u. This time, we can include the last floor of the building. Once again,
for every floor, we obtain the mean, median and gross errors. Then, we take the average for all three
QoS (introduced in Definition 2) measures among all floors f , similarly to Scenario 1.

4.1.3. Scenario 3 (3D Case)

In the last scenario—similarly to the other two—we pick two APs, p0 and p1. However, while
training the system, we consider all fingerprints inside the building, without the RSS readings from
p1. Based on that, we create a 3D localisation model. We test the model on the fingerprints from the
testing series, which is modified by replacing the readings from p0 with the readings from p1. For such
a modified testing data set, we obtain the mean, median and gross errors. Finally, we take the average
for all three QoS measures among all pairs of p0 and p1.

4.2. Data

The simulations were conducted on data collected in the multi-floor MIS building. Data were
collected on six floors in public areas in two independent series. The learning set contains 43,680
fingerprints collected between 18 August 2014 and 22 August 2014. The testing set gathered between
25 August 2014 and 29 August 2014 consists of 46,760 fingerprints. The collected RSS come from a
network of 46 identical Cisco Aironet 1140 Series Access Points model AIR-LAP1142N-E-K9. Table 1
presents information about the numbers of APs, fingerprints used in the tests and the tests on each
floor. In Scenario 1, the test were not performed on the last floor because of the small number of APs.
The fingerprints were included in the tests if and only if they contained at least one AP from the group
of APs selected in the given Scenario.

Table 1. Information about floors. The number of the measurement points, the numbers of the present
and active APs, the number of the tests for each scenario

APs Fingerprints r106s Tests
Floor I II III I II III I II III

0 7 44 44 0.17 0.17 2.30 49 49 259
1 6 38 38 0.26 0.26 1.59 36 36 192
2 13 40 40 1.39 1.39 29.94 169 169 351
3 13 41 41 0.37 0.37 4.05 169 169 364
4 4 36 36 0.05 0.05 1.23 16 16 128
5 3 29 29 0.02 0.02 0.86 0 9 78
ř

46 228 228 2.25 2.25 39.97 439 448 1372

The data were collected using Android OS 2.1 running on mobile phones: HTC One, LG Nexus4
and Sony Xperia. The influence of the phone model on data is discussed in [15]. The location
fingerprints were collected in a 1.5 ˆ 1.5 m grid if it was possible, due to environmental limitations.
The learning and testing series are 0.75 m apart from each other in each direction. There were 40
fingerprints taken at every measurement point. The measurements were made in four directions
parallel to the building axes. We setH “ ´113 [dBm] to note a missing signal.

5. Results

This section aims to show the benefits we obtain by using the detection method described in
Section 3.2. Therefore, we compare three different systems with an AP p being put aside for testing
purposes. That is, for a given AP p, localisation model pL we denote by pLp a new model that was

created using the same method but using only SAP´tpu
L as a learning data set. Thus, we consider

three possible modifications. The first, which was already defined, pLp, later m pLp and i pLp. For a given
localisation model pL and two given APs p0 and p1, let us introduce the following QoS measure δ that
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measures, on set S p0Ñp1
T , how replacing readings from AP p1 with readings from AP p0 increases the

mean error.
δp0Ñp1ppLq “ EppL,S p0Ñp1

T q ´ EppL,STq. (11)

Based on the above, we can see the relation between δ and the distance d “ distpp, p1q, by looking
at the parametres that describe loss QoS caused by the movement of AP by distance d

δppL, dq “ tδp0Ñp1ppLp0q : distpp0, p1q P rd´
1
2

, d`
1
2
qu, (12)

where d is an integer.
The results of the proposed system detecting changes as presented in Formula (9)—labelled as

Proposed model—are described by the function δpm pL, dq. In the tests, we compare it with two reference
models. The first reference localisation model—labelled as Not modified model—is not modified despite
the change. The results are described by δp pL, dq. The second reference localisation model—labelled
as Ideally modified model—is modified assuming a perfect detection of the change, as presented in
Formula (10). The results are described by δpi pL, dq.

5.1. 2D Scenarios

Figure 3 shows the results for a two-dimensional localisation problem. The results were presented
as box plots calculated for sets δppL, dq, where d “ 1 and pL P t pL, i pL, m pLu. This allows the reader
to compare the error distribution for the proposed and reference models calculated for shifts with
one-metre resolution. Figure 3a shows the correlation between an AP shift and the localisation error
change that occurs in Scenario 1. Figure 3b shows the same for Scenario 2. We observe that changes
performed in a localisation model based on a small number of APs (Scenario 1) result in higher errors
than for a model with a larger number of APs (Scenario 2). The maximum error is 15 and 10 m,
respectively.

Comparing the results obtained by the proposed system and the ideally modified model—that
detects all the changes—we find them very similar. The main difference is the higher standard
deviation of errors obtained for very big AP displacements (about 50 m) by the proposed model in
Scenario 1. This effect does not occur in Scenario 2.

One can observe that the ideal model and proposed model obtain negative values for shifts
less than one metre. This is because the figures show the difference between the localisation error
obtained after and before the change. In this case, the elimination of some APs increases the QoS of the
localisation system by reducing the localisation error.

Observing the results for the not modified model, we see that the localisation error arises according
to the distance. Our system eliminates this tendency and the errors—especially in Scenario 2—are
on a similar level for all distances. Moreover, the results obtained by our system are visibly better
than for the localisation model without an update. In Scenario 1, the maximum error of the proposed
system does not exceed 10 m. The maximum error for the model without the update exceeds 15 m.
For Scenario 2, the maximum error is less than 6 m and over 10 m, respectively.

For all compared approaches, the obtained errors are smaller in Scenario 2. This is natural
because the number of APs used for localisation on each floor grows six times on average (see Table 1).
Therefore, the changes in RSS from a single AP are much less important.
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Figure 3. Comparison of error growth according to distance for the proposed model (m pL) and the
reference models without modification ( pL) and with ideally modified model (i pL) in Scenarios 1 and 2.

5.2. 3D Scenario

Figure 4 shows the results for the three-dimensional localisation case described in Scenario 3.
Figure 4a presents the results identically as for the two-dimensional localisation cases, showing
the error distribution for the proposed and reference models calculated for shifts with a one-metre
resolution. However, because of the discrete vertical shift that could be present in this scenario, we
introduced an additional presentation of the error distribution according to the change in the number
of floors (Figure 4b).

Analysing the errors according to the distance (Figure 4a) we obtain similar conclusions as for
the two-dimensional scenarios. The results obtained by the proposed method are very similar to the
ideal model. However, the improvement of QoS observed in the two-dimensional scenarios for a shift
smaller than one metre is absent in Scenario 3. The proposed solution improves the results obtained by
the not modified model. The maximum error is less than 8 m and over 15 m respectively.
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Figure 4. Comparison of error growth according to distance and floor difference for the proposed
model (m pL), and the reference models without modification ( pL) and with ideally modified model (i pL)
in Scenario 3.

Figure 4b shows that the localisation error grows according to the number of floors between the
swapped APs. Once again, the proposed system gives results that are closer to the ideal model than to
the model without the update.

For a more formal comparison of the results, statistics for the scenarios were calculated.
Table 2 presents statistics calculated for all scenarios. For comparison, the errors obtained in the
three-dimensional case are calculated only horizontally.

Table 2. Comparison of localisation errors before (B) and after (A) the RSS change as well as when the
localisation model was rebuilt by our system (S).

Mean Error [m] Median Error [m] Gross Error [m]
Sc. B A S B A S B A S

I 4.35 6.27 4.91 3.44 5.08 3.78 6.39 9.54 7.28
II 3.56 4.77 3.81 2.76 3.73 2.84 5.19 6.92 5.42
III 3.74 5.72 4.35 3.00 4.41 3.20 5.18 8.43 6.18
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The reference localisation errors, presented as (B), vary from 3.6 to 4.3 m for the mean. After the
change (A), the mean error rises by 1.2 to 2 m. However, the application of our system (S) reduces this
growth and the localisation error increases by 0.2 to 0.6 metres only. After the change, the median error
grows by 1–1.6 m. Using our system, the QoS drops only by 0.1 to 0.3 m. The main change is visible
for gross errors (the 80th percentile). The QoS after the change plunged by 1.7 to 3.2 m. By using our
system, the decrease can be reduced to 0.2 to 1 m.

5.3. Comparison with other Solutions

We have shown in the previous tests the correlation between error and distance between a
previous and future location of an AP. The location change causes a change in RSS. Analysing the
collected data, we can say that the RRS change varies between ´1 and ´73 [dBm]. However, the
change can mute the signal entirely and then it is noticed as a missing signalH “ ´113 [dBm]. In such
a case, the difference varies between ´13 and ´86 [dBm].

Therefore, an approach that focuses on missing RSS values to improve localisation results is
legitimate. There are two approaches to the missing RSS values: The missing values can be eliminated
at the beginning when the radio map is created [12–14] or detected dynamically [15].

To compare the two approaches, we created a testbed based on Scenario 1. Because of the
limitations of the compared methods, we eliminated from the tests all RSS vectors withoutH values
and consisting of H values only. It was necessary because the method proposed in [15] detects if a
terminal should receive a signal from the AP using information from the other APs. For this, the
learning set must contain cases describing RSSs from the other APs when the observer AP is turned
on as well as when it is turned off. The second method [14] replacesH values with the mean of RSS
values from a given AP over the whole learning set. Therefore, vectors consisting ofH values only are
not allowed.

Using the created testbed, we performed 386 tests. Figure 5 compares the results obtained by the
discussed methods using the empirical distribution function. For all methods, δ error was compared.
The comparison includes a situation without any preventing methods (No Action), recovering the
missing values with the mean (Mean Imputation), detection of missing signals to eliminate their source
from the model (List-Wise Deletion) and our changes detection system (Our Solution).
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0.50

0.75

1.00

0 2 4 6
δ error [m]

F
(x

)

Solutions

No Action

Mean Imputation

List−Wise Deletion
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Figure 5. The comparison of the δ errors obtained for various preventing methods.
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All methods are successful and obtain a better result than ignoring the changes. However,
the mean imputation of the missing AP signals has a much higher gross error that the other methods
working with the updated model. Among them, the best results are obtained by the system proposed
in this work. For our solution and the list-wise deletion model, we observe some negative values.
This means, that the updated system gives better results than the system before the change in some
cases and the δ error is negative.

Our method obtained a mean error smaller by 1 and 0.5 m in comparison to [14] and [15],
respectively. Similarly, the median error is less by 1 and 0.4 m. The difference is the highest for the
gross error, where the results obtained by our method are better by 1.8 and 0.8 m. The detailed statistics
for all models are given in Table 3.

Table 3. Comparison of localisation errors for various preventing methods

Solution Mean Error [m] Median Error [m] Gross Error [m]

No Action 2.07 1.79 3.39
Mean Imputation [14] 1.57 1.40 2.74

List-Wise Deletion [15] 1.05 0.77 1.74
Our solution 0.59 0.38 0.93

6. Conclusions

We have proposed a dynamic system that detects changes in RSS. The system is based on an
estimator that predicts the signal strength of an AP using the readings from all the remaining APs.
Using an optimal threshold, the algorithm recognises an AP that has changed its characteristics. Next,
the system can rebuild the localisation model excluding the changed AP to keep localisation quality
(see Section 3 for details).

We have shown through simulations that the system reduces the error created by a change of AP
location by 1 to 1.4 m (see Table 2). Moreover, the system works better than the solutions presented in
previous works [14,15] (see Table 3).

The presented system can be used to improve existing localisation systems based on multi-source
signals and detect various changes in RSS characteristics. In particular, it can support rank-based
fingerprinting and other methods based on infrastructure stability [7,23].
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