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Abstract: Three nitrogen-doped graphene samples were synthesized by the hydrothermal method
using urea as doping/reducing agent for graphene oxide (GO), previously dispersed in water. The
mixture was poured into an autoclave and placed in the oven at 160 ◦C for 3, 8 and 12 h. The
samples were correspondingly denoted NGr-1, NGr-2 and NGr-3. The effect of the reaction time on
the morphology, structure and electrochemical properties of the resulting materials was thoroughly
investigated using scanning electron microscopy (SEM) Raman spectroscopy, X-ray powder diffraction
(XRD), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS),
elemental analysis, Cyclic Voltammetry (CV) and electrochemical impedance spectroscopy (EIS). For
NGr-1 and NGr-2, the nitrogen concentration obtained from elemental analysis was around 6.36 wt%.
In the case of NGr-3, a slightly higher concentration of 6.85 wt% was obtained. The electrochemical
studies performed with NGr modified electrodes proved that the charge-transfer resistance (Rct) and
the apparent heterogeneous electron transfer rate constant (Kapp) depend not only on the nitrogen
doping level but also on the type of nitrogen atoms found at the surface (pyrrolic-N, pyridinic-N
or graphitic-N). In our case, the NGr-1 sample which has the lowest doping level and the highest
concentration of pyrrolic-N among all nitrogen-doped samples exhibits the best electrochemical
parameters: a very small Rct (38.3 Ω), a large Kapp (13.9 × 10−2 cm/s) and the best electrochemical
response towards 8-hydroxy-2′-deoxyguanosine detection (8-OHdG).

Keywords: nitrogen-doped graphene; charge-transfer resistance; apparent heterogeneous electron
transfer rate; modified electrodes; detection of 8-OHdG

1. Introduction

Graphene, a single layer of graphite, possesses various interesting properties such as large surface
area, high thermal and electrical conductivity and good optical transparency [1–3]. Currently, the
chemical doping of graphene is an active area of research which continues to grow very quickly. Doping
graphene with heteroatoms such as nitrogen [4,5], boron [6,7], sulfur [8,9] or halogens [10,11] can adjust
the electronic and electrochemical properties of the material leading to enhanced performances. Among
the heteroatoms, nitrogen has drawn a lot of attention due to the significantly improved properties of
the N-graphene as part of fuel cells [12], lithium ion batteries [13], supercapacitors [14] or advanced
catalyst support [15,16]. Nitrogen doping can be achieved using different approaches: mixing graphene
with nitrogen containing precursor and thermal annealing [17,18]; thermal exfoliation of graphite oxide
in ammonia atmosphere [19]; solvothermal or hydrothermal methods using graphene oxide and Shift
base precursors [20–22], chemical vapor deposition [23] or microwave plasma [24]. The hydrothermal
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method was employed for large-scale production of nitrogen-doped graphene [25,26]. The preparation
of nitrogen-doped graphene using hydrothermal methods was realized using different dopants such
as melamine [27,28], hydrazine and ammonia [29], ammonium carbonate [30], 1,4-butanediamine [31],
ethylenediamine [32], etc. As an example, Kamali and Golsheikh [33] synthesized well-dispersed,
nitrogen-doped graphene, through the hydrothermal reduction of graphene oxide in the presence of
ammonia. Nitrogen-doped graphene hydrogels were prepared using graphene oxide as raw material
and nine amino acids with different acidities as doping agents [34]. Xing et al. [35] have used a simple
one-step hydrothermal method by employing hexamethylenetetramine as single carbon and nitrogen
source. Depending on the synthesis method, the nitrogen doping level can reach 9–11 at.% [36].
Besides this, the performance of the material is strongly influenced by the number of layers present
within the graphene flakes. It has been demonstrated that the electronic structure of graphene changes
rapidly with the number of layers, reaching the 3D limit of graphite at 10 layers [37]. Nitrogen-doped
graphenes have been intensively investigated for their electrochemical behavior due to their capacity
to improve electrical conductivity [36]. N-graphene exhibited enhanced electro-catalytic activity and
showed potential applications in electrochemical sensors (8-hydroxy-2′-deoxyguanosine, adenine,
guanine, thymine and cytosine) [38,39] and energy devices [40,41].

In this paper, we present for the first time the influence of the reaction time on the morphology,
structure and electrochemical properties of nitrogen-doped graphenes. We show that the hydrothermal
reaction may produce high quality nitrogen -doped graphene with very low charge-transfer resistance
(Rct) and large apparent heterogeneous electron transfer rate constant (Kapp). In addition, we originally
proved the relationship between these two parameters and the electro-catalytic effect of N-doped
graphene towards the detection of cancer biomarker, 8-hydroxy-2’-deoxyguanosine (8-OHdG).

2. Materials and Methods

2.1. Chemicals and Materials

Potassium ferrocyanide-K4[Fe(CN)6] and potassium chloride (KCl) were purchased from
Merck (Germany). N,N-dimethylformamide (DMF) was bought from Sigma-Aldrich (Germany).
8-hydroxy-2’-deoxyguanosine (8-OHdG) was purchased from the Cayman Chemical Company. For the
synthesis of nitrogen-doped graphene the following chemicals were used: graphene oxide, prepared
using a modified Hummers method as previously reported [42], and urea (Alfa-Aesar, Germany).

2.2. Instruments

The morphological and structural characterization of the samples was performed with: scanning
electron microscope (SU-8230 STEM system, Hitachi, Japan); X-ray powder diffraction (Bruker
D8 Advance Diffractometer)(Germany); Fourier transform infrared spectroscopy (Bruker Tensor
II spectrometer) (Germany); Raman spectroscopy (JASCO (NRS 3300) spectrophotometer) (USA);
and X-ray photoelectron spectroscopy (SPECS spectrometer, equipped with a dual-anode X-ray
source Al/Mg, a PHOIBOS 150 2DCCD hemispherical energy analyzer and a multi-channeltron
detector) (Germany). Elemental analysis of the synthesized samples was performed with an elemental
analyzer—FLASH EA 1112 (Italy).

For electrochemical measurements (cyclic voltammetry—CV, linear sweep voltammetry—LSV, and
electrochemical impedance spectroscopy—EIS) a potentiostat/galvanostat instrument (PGSTAT-302N,
Metrohm-Autolab B.V., Utrecht, The Netherlands) connected to a three-electrode cell and controlled by
PC was employed. The counter electrode was a large area platinum foil (2 cm2), while the reference
was an Ag/AgCl electrode (3 M KCl). The CV and LSV measurements were generally run from −0.2
to + 0.8 V vs. Ag/AgCl, at various scan rates (2, 5, 10, 15, 20, 30, 40 and 50 mV·s−1). The EIS spectra
were recorded over 0.1–106 Hz range (10 mV amplitude excitation signal) at the peak potential of each
electrode, and the experimental data were fitted using Nova 1.11 software (Metrohm-Autolab B.V.,
Utrecht, The Netherlands).
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2.3. Synthesis of Nitrogen-Doped Graphene

Three nitrogen-doped graphene samples were synthesized by the hydrothermal method using
urea as doping and reducing agent for graphene oxide (GO), as reported before [43] (Scheme 1).
Typically, an appropriate amount of urea was added to 150 mL aqueous dispersion of GO, previously
sonicated for 25 min. The mixture was poured into a 250 mL autoclave and placed in the oven at
160 ◦C for different periods of time (3, 8 and 12 h). The samples were correspondingly denoted NGr-1,
NGr-2 and NGr-3. The reduction of GO was observed immediately after the reaction was finished:
the well-dispersed brown solution (GO in water) became a clear yellowish solution with a black solid
deposited at the bottom of the autoclave. After cooling to room temperature, each sample was filtered,
washed with distilled water and dried by lyophilization. Finally, all samples were thermally treated at
300 ◦C in Ar flow, for 15 min, to remove the excess urea and the residual oxygen-containing groups.
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2.4. Modification of Glassy-Carbon Electrodes with Graphene-Based Materials

The nitrogen-doped graphenes (NGr-1, NGr-2, NGr-3) and GO were individually dispersed
in N,N-dimethylformamide (1 mg/mL) for three minutes with an ultrasonic finger device (SONICS
Vibra-Cell). The obtained graphene suspensions were then used to modify four glassy carbon (GC)
electrodes. Before modification, the electrodes were polished on a felt cloth then washed with a large
quantity of double-distilled water (20 mL) and dried at room temperature. Next, a volume of 10 µL of
graphene suspension (1 mg/mL) was drop-casted onto each GC surface and used for electrochemical
investigation, after 24 h drying at room temperature. The modified electrodes were correspondingly
denoted as GC/NGr-1, GC/NGr-2, GC/NGr-3, and GC/GO. Before CV or EIS measurements, the bare GC
and graphene-modified electrodes were cycled in potassium ferrocyanide solution (10 cycles between
−0.2 to +0.65 V vs. Ag/AgCl, with 50 mV/s).

3. Results and Discussions

3.1. Morphological and Structural Characterization of the Nitrogen-Doped Graphene Samples

The scanning electron microscopy (SEM) technique was employed for the morphological
characterization of the nitrogen-doped graphene. Representative SEM images are presented in
Figure 1, where one can see that all the samples have highly wrinkled surfaces. Such disordered
morphologies imply weak π–π stacking interaction, originating from the doping with nitrogen atoms.
The samples are formed by large flakes with a linear size in the range of micrometers.

The elemental analysis of the nitrogen-doped samples gave further indication about the doping
level. For NGr-1 and NGr-2 samples where the synthesis time was 3 and 8 h respectively, the heteroatom
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concentration was around 6.36 wt% (see Table 1). In the case of the NGr-3 sample (12 h reaction time)a
higher concentration was obtained, of 6.85 wt%.Sensors 2020, 20, x FOR PEER REVIEW 4 of 24 
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Table 1. Elemental analysis of (graphene oxide) GO and nitrogen-doped graphene samples.

Sample Reaction Time
(Hours)

wt.%

C N H O

GO 2 52.84 - 1.53 5.63

NGr-1 3 80.57 6.36 1.39 11.68

NGr-2 8 80.27 6.37 1.09 12.27

NGr-3 12 80.45 6.85 1.34 11.36

Next, the characterization of the nitrogen-doped graphene samples (NGr-1, NGr-2 and NGr-3)
was performed using various techniques such as X-ray powder diffraction (XRD), Raman spectroscopy,
Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Each of
them gave valuable information regarding the size of the graphene crystallites, the number of layers
and the functionalities attached to the graphene surface.

The X-ray powder diffraction pattern of GO and of the subsequently doped materials NGr-1,
NGr-2 and NGr-3 are displayed in Figure 2. One can see that the sharp diffraction peak present at 2θ
~11◦ and indexed to (001) crystal plane of graphene oxide completely disappears after nitrogen doping
and reduction reaction, and a new peak at ~22◦, attributed to (002) crystal plane of reduced graphene
oxide, is visible. The new peak is broader and has lower intensity due to the disorder induced by the
nitrogen atoms into the graphene lattice.
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The XRD experimental data allowed the calculation of the number of layers (n) present within
graphene oxide and nitrogen-doped graphenes, the interlayer distance (d), and the mean crystallite
size (D) of graphene. For all nitrogen-doped samples, the asymmetric peak from 22◦ was deconvoluted
into three theoretical Gaussian peaks (Figure 3). For each peak, the D value was calculated from the
full width at half maximum (FWHM) using the Debye-Scherrer equation:

D =
0.9 ∗ λ
β ∗ cosθ

(1)

where λ is the X-ray wavelength, β is the FWHM expressed in radians, and θ is half the diffraction
angle of the peak (in degrees) corresponding to interlayer distance, d. The d value was found with the
Bragg equation (d = λ/2 sin θ), while the average number of layers, n, was calculated from the relation
n = D/d. Since the N-doped graphene samples are composed of crystallites having different sizes and
number of layers, their contribution (expressed in %) may be determined by dividing the area of each
deconvoluted peak to the total area of the diffractogram [44,45] (see Table 2).Sensors 2020, 20, x FOR PEER REVIEW 6 of 24 
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Figure 3. The XRD patterns of GO, NGr-1, NGr-2 and NGr-3 samples and the corresponding
deconvoluted peaks.

From Table 2 it can be seen that the interlayer distance of GO and N-doped graphenes is larger
than that of graphite (0.335 nm). The largest value (0.77 nm) is found in GO sample and is attributed to
the oxygen functional groups formed after the strong oxidation treatment of graphite. In this case, the
average number of layers is 9 (92%).

In order to evaluate the degree of structural disorder within graphene oxide and nitrogen-doped
graphene samples, Raman spectroscopy was carried out (Figure 4). The high fluorescence signal of
GO additionally confirms that the material is highly oxidized, being in good agreement with the XRD
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pattern. In the nitrogen-doped graphene samples, three important bands are evidenced: the defect
(D) band at ~1360 cm−1, the graphite (G) band located at ~1598 cm−1, and the 2D band at ~2710 cm−1

(Table 3).

Table 2. Structural parameters obtained from the corresponding XRD pattern of each sample: graphene
crystallite size (D), interlayer distance (d), average number of layers (n) and their proportion (%) in GO,
NGr-1, NGr-2 and NGr-3 samples.

Sample 2θ (deg) D (nm) d (nm) n %

GO
11.56 6.78 0.77 9 92
15.65 2.85 0.56 5 8

NGr-1
20.23 3.09 0.44 7 11
23.16 2.88 0.38 8 45
25.52 2.53 0.35 7 44

NGr-2
16.05 4.02 0.55 7 4
19.99 2.35 0.44 5 16
23.76 1.82 0.37 5 80

NGr-3
20.39 1.66 0.43 4 28
23.35 4.07 0.38 11 29
25.47 2.89 0.35 8 43
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Figure 4. Raman spectra of GO (a) and nitrogen-doped graphene samples (b): NGr-1 (red); NGr-2
(olive); NGr-3 (blue).

Table 3. Structural parameters obtained from the Raman bands of GO, NGr-1, NGr-2 and NGr-3 samples.

Sample G
(cm−1)

IG
(a.u.)

D
(cm−1)

ID
(a.u.)

2D
(cm−1)

I2D
(a.u.)

D+D’
(cm−1)

ID+D’
(a.u.) ID/IG I2D/IG

La
(nm)

GO 1599 1241 1355 1203 2805 600 2955 629 0.97 0.48 17.11

NGr-1 1600 1449 1356 1482 2714 635 2939 643 1.022 0.44 16.24

NGr-2 1606 1212 1362 1245 2708 594 2940 607 1.027 0.49 16.16

NGr-3 1600 1007 1356 1040 2702 548 2940 552 1.03 0.54 16.12

In addition, the D+D’ band is also present at around 2940–2944 cm−1 and appears in graphene-like
materials with structural defects, which explain its presence in the nitrogen doped samples [46]. The
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ID/IG ratio is related to the in-plane crystallite size (La), as shown by Equation (2), giving an indication
of the defect-free domains [47]:

La(nm) =
560

E4
l

(
ID

IG

)−1

(2)

where El represents the laser excitation energy (2.41 eV). The largest La value was obtained for GO
(17.11 nm) followed by NGr-1 (16.24 nm) and NGr-2 (16.16 nm) samples, which according to elemental
analysis had similar amounts of nitrogen (6.36 wt%). For the NGr-3 sample, the La value is slightly
lower (16.12 nm) being in good agreement with the higher doping level (6.85 wt%).

Additionally, FTIR spectroscopy was used to investigate the bonding changes within the carbon
atoms after graphene oxide was thermally reduced and doped with nitrogen. The corresponding
spectra of GO and of the nitrogen-doped samples NGr-1, NGr-2 and NGr-3 are presented in Figure 5.
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NGr-3 (blue).

In the FTIR spectrum of GO, due to the extensive oxidation, a strong and broad O-H stretching
vibration band appears at 3410 cm−1 along with the characteristic peak of the C=O stretching vibration
at 1727 cm−1, the O-H deformation at 1387 cm−1, the C-O (epoxy) stretching vibration at 1225 cm−1,
the C-O (alcoxy) stretching vibration at 1050 cm−1 and the epoxy or peroxide group peak at 976 cm−1.
After hydrothermal reaction, the intensity of the 3391 cm−1 peak significantly decreases, while the peak
at 1727 cm−1, attributed to the C=O groups, disappears almost completely. An important feature is the
shifting of the peak from 1622 cm−1, correlated to the in-plane vibration of C=C, to 1641-1645 cm−1 in
the nitrogen-doped samples. This is due to the overlapping of the C=C and C=N vibrations, which
gives further evidence of the insertion of nitrogen containing groups [48].

The amount of nitrogen and the nature of the functional groups present at the surface of the
obtained materials were determined using XPS. Figure 6 shows the N1s core-level spectra obtained for
the prepared samples.
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Each spectrum was deconvoluted into three components, approximately at 398.2 eV, 399.5 eV and
401.2 eV, which were attributed to pyridinic-N, pyrrolic-N and graphitic-N [49], respectively. Based on
the spectrum deconvolution, it results that the NGr-1 sample predominantly contains pyrrolic-N (55.4
at.%). This percentage decreases with the reaction time, therefore the NGr-2 and NGr-3 samples have
smaller amounts of 47.6 and 46.3 at.%, respectively. The NGr-2 sample contains the largest percentage
of pyridinic-N (38.6 at.%) as compared to the other investigated samples. The amount of graphitic-N
(quaternary) is comparatively lower in all three samples in relation to the other components identified
after the spectra deconvolution. This demonstrates that the hydrothermal treatment of GO with
urea results in preferential surface functionalization, depending on the reaction time (Table 4), with
significant influence on the electrochemical characteristics of N-graphene modified electrodes. The
total amounts of nitrogen with respect to that of carbon were determined to be 0.08 (NGr-1), 0.075
(NGr-2) and 0.074 (NGr-3) (estimated by calculating the ratio between C 1s and N 1s peak areas and
by considering the sensitivity factors, i.e., nitrogen atoms were supposed to be doped uniformly in
the graphitic layers). As can be seen in Table 4, by increasing the reaction time the percentage of
pyrrolic-N decreased, while pyridinic-N and graphite-N unevenly increased. Therefore, we suggest
that at longer reaction time, some pyrrolic-N is converted to pyridinic-N or graphitic-N. This is due to
the fact that during the hydrothermal reaction, urea releases carbimide and NH3. Carbimide reacts
with hydroxyl groups of GO to form intermediates after dehydration and rearrangement, resulting in
more pyrrolic-N. The possible reaction mechanism was published by Shang et al. [50].

Table 4. Elemental composition and relative atomic ratios of GO and identified N species as determined
from XPS survey and high resolution N1s spectra of the investigated samples.

Sample Reaction Time
(h)

XPS Survey (at.%) N 1s Core-Level (%)

C O N Pyridinic Pyrolic Graphitic

GO 2 70.7 29.3 - - - -

NGr-1 3 85.6 6.8 7.5 31.1 55.4 13.5

NGr-2 8 87.2 6.1 6.6 38.6 47.6 13.8

NGr-3 12 85.9 7.6 6.4 36 46.3 17.7

Measurements of the high-resolution XPS spectra of C1s and O1s were also achieved and the
results are shown in Table 5.
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Table 5. Assignment of each deconvoluted peak based on their binding energies (BE) and atomic
concentrations [AC, %] for GO, NGr-1, NGr-2 and NGr-3 samples.

Elements
Binding Energy (eV)/[at.%] Assignments

GO NGr-1 NGr-2 NGr-3

C1s

284.43
(31.2%) 284.5eV (39.6%) 284.4eV (44.4%) 284.4eV (41.8%) C=C

285.4
(11%) 285eV (38.9%) 285eV (25.6%) 285.2eV (31.4%) C-C

- 286.6eV (13.9%) 286.2eV (19.8%) 286.7eV (17.6%) C-N

287.75
(9%) 288.6eV (4.7%) 288.8eV (7%) 289.9eV (6%) C=O

289.3
(1.35%) 290.9eV (2.9%) 291.2eV (3.2%) 291.9eV (3%) O-C=O

O 1s

531.8
(4.87%) 530.6eV (42.3%) 530.4eV (33%) 530.4eV (32.9%) C=O

532.72
(22.45%) 532.1eV (31.7%) 531.9eV (37.3%) 531.9eV (43.3%) -OH

533.4
(0.89) 533.5% (25.9%) 533.1eV (24.8%) 533.1eV (23.7%) O-C=O

A comparison of synthetic details of previously reported similar nitrogen-doped graphene is
summarized in Table 6.

Table 6. Comparison of different nitrogen-doped graphene samples prepared from urea and graphene
oxide, using the hydrothermal method.

GO: Urea (Weight) Temperature (◦C) Reaction Time (h) Nitrogen Content (at.%) Ref.

1:3 190 12 - [51]

1:60 180 2–18 7.6 [52]

1:300 180 12 - [53]

1:300 180 12 11.36 [54]

1:390 180 12 6.05 [55]

1:30 160 3 6.61 [56]

1:30 160 3 5 [57]

1:10 160 3 7.5
This work1:10 160 8 6.6

1:10 160 12 6.4

It is clear that the nitrogen content at the graphene surface within our samples is close to that
reported by other groups (Table 6) or even better taking into account that the GO: urea ratio was
significantly lower.

3.2. Electrochemical Studies

Electrochemical studies regarding the reversibility of the redox process, the charge-transfer
resistance and the apparent heterogeneous electron transfer rate constant of bare and graphene-modified
electrodes are next presented and discussed. The first experiments were devoted to the calculation of
the active area of each electrode. In order to achieve that, CVs were recorded with different scanning
rates (from 2 to 50 mV/s) in the presence of a redox indicator, K4[Fe(CN)6] (10−3 M in 0.2 M KCl
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supporting electrolyte; Figure 7a–c). In the case of all NGr-modified electrodes (see for example
GC/NGr-1 in Figure 7a and Table 7) well-defined anodic and cathodic peaks were obtained with a small
peak potential separation (∆Ep = 76 mV). In contrast, for the bare GC electrode the two waves were
very broad and the peak potential separation large (400 mV) (Figure 7b). GO modified electrode was a
special case with a poorly defined electrochemical signal, confirming the GO insulating properties
(Figure 7c).
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Figure 7. Cyclic voltammograms recorded with different electrodes: GC/NGr-1 (a), GC (b) and GC/GO
(c) in 10−3 M K4[Fe(CN)6] (0.2 M KCl supporting electrolyte); scanning rate from 2 to 50 mV/s.

Table 7. The electrochemical parameters of bare, GO- and NGr-modified electrodes.

Electrode E0′

V
∆Ep
V

Ipa
µA

Ipc
µA Ipa/Ipc

Qa
µC

Qc
µC

A
cm2

Γa
pmol/cm2

GC/NGr-1 0.238 0.076 3.711 −3.554 1.04 0.755 0.648 0.05 156

GC/NGr-2 0.236 0.079 3.073 −3.090 0.99 0.656 0.613 0.043 157

GC/NGr-3 0.235 0.081 2.698 −2.714 0.99 0.609 0.562 0.036 175

GC 0.254 0.366 1.789 −1.493 1.19 0.394 0.536 0.02 204

GC/GO 0.318 0.232 0.131 −0.08 1.54 0.034 0.02 0.008 44

Qa = Anodic Peak area; Qc = Cathodic Peak area; A = active area; Eo’- formal potential; Γa – surface coverage
(pmol/cm2).
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The active area of the bare and NGr-modified electrodes was calculated using the slope of the
corresponding (Ipeak) vs. v1/2 plot [58], and the values can be found in Table 7, along with other
parameters derived from cyclic voltammetry (at a scan rate of 10 mV/s). The smallest area was that
corresponding to the GC/GO electrode (0.008 cm2), followed by bare GC (0.02 cm2). All NGr-modified
electrodes had larger surface areas, varying from 0.036 to 0.05 cm2. The best characteristics were those
of the GC/NGr-1 electrode (A = 0.05 cm2; Ipa/Ipc~1 and ∆Ep~76 mV/n), probably due to the highest
concentration of pyrrolic-N among all N-doped graphene. On the other hand, for GC and GC/GO
electrodes, the redox process can be considered as quasi-reversible (Ipa/Ipc > 1 and ∆Ep > 200 mV/n).

Another important parameter calculated from the recorded CVs was the surface coverage with
the redox species during the anodic oxidation (Γa) [59]:

Γa = Qa/nFA (3)

where Qa is the charge under the anodic peak (Coulomb), n is number of transferred electrons (n = 1),
F is the Faraday number (96485 C/mol) and A is the active area (cm2).

One can see that the largest surface coverage was obtained for bare GC electrode, followed by
N-doped graphene modified electrodes. This is an interesting result which may be explained by
the well-known hydrophobicity of nitrogen-doped graphene. In fact, for GC/NGr-1 and GC/NGr-2
electrodes the Γa values were similar and slightly lower than that corresponding to GC/NGr-3 (NGr-3
sample had the highest doping level, of 6.85 wt%).

As expected, GC/GO had the lowest surface coverage of 44 × 10−12 mol/cm2. One of the reasons
may be due to various oxygen-containing groups attached to the surface which hinder both the
adsorption of redox species and the transfer of electrons. The surface coverage is well correlated with
the current density (A/cm2) recorded with each electrode (Figure 8). The largest current density was
obtained with the bare GC electrode, followed by the NGr-modified electrodes and GC/GO electrode.
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Figure 8. Comparison between the current densities of GC, GC/NGr and GC/GO electrodes in solution
containing 10−3 M K4[Fe(CN)6]; 0.2 M KCl supporting electrolyte; 10 mV/s scan rate.

Next, the interfacial properties of bare and N-doped graphene modified electrodes were evaluated
using electrochemical impedance spectroscopy. The spectra were recorded in 10−3 M K4[Fe(CN)6]
(0.2 M KCl supporting electrolyte) at a bias corresponding to the peak potential of each electrode (+0.437
V for GC and GC/GO; +0.276 V for all NGr-modified electrodes) within 0.1–106 Hz frequency range.

In Figure 9 are presented the Nyquist plots obtained with GC, GC/NGr and GC/GO electrodes.
The bare GC electrode exhibits a semicircle in the high-medium frequencies, characteristic to the
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charge-transfer resistance (Rct), and a straight line at low frequencies, characteristic to the diffusion
of the electro-active species towards the electrode/solution interface (Warburg impedance). In the
case of the GC/GO electrode, the semicircle is highly extended due to the insulating properties of
graphene oxide. In contrast, for the electrodes modified with nitrogen-doped graphene the impedance
values decreased by one order of magnitude, both the semicircle and the diffusive line (see the inset in
Figure 9). The experimental EIS data were fitted with modified Randles electrical equivalent circuits,
presented in Figure 10.Sensors 2020, 20, x FOR PEER REVIEW 15 of 24 
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For the bare GC electrode, the best fit was obtained with a circuit containing the solution resistance
(Rs), the charge-transfer resistance at the electrode/solution interface (Rct), the Warburg impedance
due to the diffusion of ions in solution (ZW) and a constant phase element (CPE) that models a
non-ideal capacitor.

The CPE is expressed by:

CPE =
1

A(jω)n (4)

whereω is the frequency, j =
√
−1, while n and A are constant parameters that result after fitting the

experimental data with the proposed circuit. For n = 0, CPE behaves as a resistor, and for n = 1, CPE
behaves as a capacitor.

The Warburg impedance appears in the Nyquist plot as a 45
◦

straight line and is expressed by:

Zw =
σ
√
ω
−

jσ
√
ω

(5)

where σ depends on the concentrations of the ionic species, the electrode area and the reaction kinetics.
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For the electrode modified with graphene oxide (GC/GO), the surface is significantly different
from that of bare GC. The successive GO layers deposited on top of the substrate were forming a porous
structure where the insertion of ions from solution was hindered by the surface charges. Therefore,
the equivalent circuit was a more complex one and contained the solution resistance, two RC parallel
circuits (where the capacitances were replaced by CPEs) and the Warburg impedance (Figure 10). One
of the resistances was attributed to Rct, while the other resistance, Rp, was attributed to the resistance
of the porous structure to ions insertion.

In the case of electrodes modified with nitrogen-doped graphene, the surface is less hydrophilic
but still has increased roughness compared with bare GC, and therefore, the best fit was obtained
when the Warburg impedance was replaced with CPE, while the other circuit elements were preserved
(Rs, Rct and CPE1; Figure 10).

The differences between the three electrical equivalent circuits may be attributed to the characteristic
of each electrode/solution interface. Hence, graphene oxide has not only insulating properties but also
oxygen-containing groups that repel the negatively charged redox species [Fe(CN)6]3-/4-] and hinder
the transfer of electrons. Consequently, the GC/GO electrode had the largest Rct value of all electrodes
(145 × 103 Ohm, see Table 8).

Table 8. The values of Rct and Kapp for bare and GC modified electrodes.

Electrode GC/NGr-1 GC/NGr-2 GC/NGr-3 GC GC/GO

Rct(Ohm) 38.3 257 112 50.9 × 103 145 × 103

Kapp (cm/s) 13.9 × 10−2 2.39 × 10−2 6.55 × 10−2 2.6 × 10−4 2.1 × 10−4

A different situation can be found in the case of electrodes modified with nitrogen-doped graphene.
The chemical synthesis led to the formation of few-layer graphene containing 6.36–6.85 wt% of nitrogen,
with a different proportion of pyrrolic-N,pyridinic-N and graphitic-N (see the XPS results). According
to the literature [40,60], the incorporated nitrogen atoms induced changes at the Fermi level by opening
the band gap of graphene and enhancing the charge transfer. Moreover, the carbon atoms which are
in close vicinity to the heteroatom may be positively charged due to the higher electronic affinity
of nitrogen. As a consequence, the negatively charged species from the solution, [Fe(CN)6]3−, may
easily transfer the electrons. The determined Rct values are indeed significantly lower for all GC/NGr
electrodes, in comparison with the bare GC or GC/GO electrode. This is also in excellent agreement
with the previous electrochemical measurements, where the CVs recorded with the GC/NGr electrodes
exhibits the characteristics of a reversible redox process (see Figure 8).

The value of apparent heterogeneous electron transfer rate constant (Kapp) calculated for
each electrode (Equation (6)) [61] gives also valuable information about the charge-transfer at
electrode/solution interface (see Table 8).

Kapp =
RT

n2F2ARctC
(6)

where R is the ideal gas constant (8.314 Joule/(mol·K)); T is the temperature (298 K); F is the Faraday
constant (96485 C/mol); n is the number of electrons transferred during the redox reaction (n = 1); A
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is the active area of the electrode (cm2); Rct is the charge-transfer resistance obtained from the fitted
Nyquist plots (Ω); C is the concentration of the redox species (mol/cm3).

Its value has the same order of magnitude for GC/GO and bare GC (2.1−2.6 × 10−4 cm/s) but is
considerably higher for all NGr-modified electrodes (6.55−13.9 × 10−2 cm/s). The largest value was
that corresponding to NGr-1 material, which had the lowest doping level and the highest concentration
of pyrrolic-N, among all nitrogen-doped graphene.

3.3. Electrochemical Detection of 8-OHdG with Bare and Graphene-Modified Electrodes

In order to further investigate the electrocatalytic properties of nitrogen-doped graphene and
graphene oxide samples, the modified electrodes were tested towards the detection of a cancer
biomarker, 8-OHdG. For the beginning, cyclic voltammograms were recorded with each electrode in
pH6 PBS solution (scan rate 10 mV/s) and the results are shown in Figure S1 (Supplementary Material).
Important information can be obtained from these CVs related to the capacitive current (Ic), which
reflect the charge-storage capability of the synthesized materials. Hence, the graphene samples with
the lowest doping level (GC/NGr-1 and GC/NGr-2) have the largest capacitive current, of 1.15 × 10−7 A
and 1.01 × 10−7 A, respectively. In comparison, all the other samples have lower values, such as 5.58 ×
10−8 A (GC/NGr-3), 1.48 × 10−8 A (GC/GO) and 2.39 × 10−8 A (GC; see also Table S1). The rest potential
(or open-circuit potential) of each electrode was also determined before recording the corresponding
CV, and the values are listed in Table S1. The GC/NGr-1 and GC/NGr-2 electrodes have identical rest
potential (0.36 V) in good agreement with the doping level. A slightly higher value was obtained for
the GC/NGr-3 electrode (0.38 V), while for GC/GO and bare GC the values were lower (0.33 and 0.27 V,
respectively).

Next, linear sweep voltammograms were recorded with each electrode in solutions containing
various concentrations of 8-OHdG (10−7

−10−3 M) in pH6 PBS supporting electrolyte (scan rate 10
mV/s; see Figure S2a for electrode GC/NGr-1). The corresponding calibration plots are represented in
Figure S2b and c. One can observe that there is excellent agreement between the peak current of each
electrode and the corresponding Rct and Kapp values. Hence, among all nitrogen-doped materials,
the sample with the lowest Rct and highest Kapp has the best electrochemical response (GC/NGr-1). It
is followed by GC/NGr-3, GC/NGr-2 and bare GC. The poorest electrochemical signal was obtained
with the GC/GO electrode, due to the insulating properties of graphene oxide. The electrochemical
parameters obtained from the calibration plots (limit of detection, sensitivity and linear range) for bare
and graphene-modified electrodes are listed in Table S1, further indicating that the doping level may
critically influence the performances of the nitrogen-doped graphene.

4. Conclusions

Nitrogen-doped graphenes with various concentrations of heteroatom (6.36, 6.37 and 6.85 wt.%)
were prepared using the hydrothermal method with urea as reducing/doping source for graphene oxide.
The structural characterization of the synthesized materials revealed that after doping, significant
changes occurred in the XRD, Raman and XPS spectra, confirming the presence of heteroatom. For
exemplification, the largest value for the in-plane crystallite size (La) was obtained for GO (17.11 nm),
followed by the NGr-1 (16.24 nm) and NGr-2 (16.16 nm) samples, which according to elemental
analysis had similar amounts of nitrogen (6.36 wt%). For NGr-3 sample, the La value is slightly lower
(16.12 nm), being in good agreement with the higher doping level (6.85 wt%). In addition, the EIS
studies conducted with NGr-modified electrodes indicated that the sample with the lowest doping
level and the highest concentration of pyrrolic-N among all nitrogen-doped graphene (NGr-1) exhibits
the best electrochemical parameters: a very small Rct (38.3 Ω), a large Kapp (13.9 × 10−2 cm/s) and a
low detection limit (9 × 10−8 M) for 8-OHdG.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/7/1815/s1,
Figure S1: Cyclic voltammograms recorded with bare and graphene-modified electrodes in pH 6 PBS solution;
scan rate 10 mV/s, Figure S2: Linear sweep voltammograms recorded with GC/NGr-1 electrode in solutions

http://www.mdpi.com/1424-8220/20/7/1815/s1
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containing various concentrations of 8-OHdG, 10−7–10−3 M; pH6 PBS supporting electrolyte; scan rate 10 mV/s
(a); the corresponding calibration plots for 8-OHdG obtained with bare GC and nitrogen-doped graphene
modified electrodes (b); the calibration plot for 8-OHdG obtained with GC/GO electrode (c). Table S1:
Electrochemical parameters obtained from CVs (Figure S1) and calibration plots (Figure S2) for bare and
graphene-modified electrodes.
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