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Abstract: Wearable systems constitute a promising solution to the emerging challenges of healthcare
provision, feeding machine learning frameworks with necessary data. In practice, however, raw
data collection is expensive in terms of energy, and therefore imposes a significant maintenance
burden to the user, which in turn results in poor user experience, as well as significant data loss
due to improper battery maintenance. In this paper, we propose a framework for on-board activity
classification targeting severely energy-constrained wearable systems. The proposed framework
leverages embedded classifiers to activate power-hungry sensing elements only when they are useful,
and to distil the raw data into knowledge that is eventually transmitted over the air. We implement
the proposed framework on a prototype wearable system and demonstrate that it can decrease the
energy requirements by one order of magnitude, yielding high classification accuracy that is reduced
by approximately 5%, as compared to a cloud-based reference system.

Keywords: wearable systems; embedded machine learning; embedded classifiers; intelligent
duty-cycling; health IoT

1. Introduction

By 2050, more than a quarter of the world’s population will consist of the elderly [1]. As a result,
healthcare systems will struggle to meet an ever-increasing demand worldwide. This challenge can
be addressed by automating some of the health assessment tasks, which in turn would reduce the
strain on the healthcare systems and allow them to use their resources more efficiently [2]. In this
context, Health IoT (Internet of Things) technology, such as wearable sensors, provides the foundation
for long-term behavioural monitoring, enabling data scientists to mine the data, and use classification
algorithms to extract knowledge that could be later analysed by qualified medical experts [3].

Traditional approaches to residential monitoring and behavioural analytics are based on raw
data collection from one or more sensing elements, followed by cloud-based post-collection analysis
(e.g., Reference [3]). For example, many activity recognition frameworks are designed and evaluated
on carefully collected and annotated public datasets [4]. However, in practice, data loss due to poor
device maintenance is a possibility; if the patient forgets to charge the battery then there might be days
or even weeks of no data output from the wearable device. For real-world examples, see Reference [5],
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which discusses experiences from deployments of more than 100 wearable devices that demonstrate
that a large number of participants fail to comply with simple recharging instructions.

Abundant data collection is expensive in terms of energy as the on-board radio is heavily used.
The situation is most severe when using wearable sensors that employ particularly energy-consuming
sensing elements. In activity-focused wearable sensors, for instance, accelerometers and gyroscopes
are typically used. A general observation is that, whilst the former can be ultra-low power, the energy
the latter require to operate is comparable to processors and wireless radios.

We argue that, in these contexts, the accuracy and the energy requirements of the knowledge
extraction process should be jointly considered. Optimising for short-term accuracy may easily result
to short battery lifetime, thus to data loss due to poor device maintenance, and, in turn, to poor
long-term performance. Instead, it may be preferable to accept a small reduction of the short-term
accuracy to save energy, and sustain higher performance in the long run.

In this spirit, this paper proposes a framework for on-board classification of activities of daily life
using wearable sensing devices, as summarised in Figure 1. The proposed framework decreases the
energy requirements of a wearable sensing device in two ways. Firstly, on-board classification naturally
decreases the amount of data transmitted over the air, and hence the radio duty cycle; effectively, the
device communicates few bits of knowledge instead of streams of raw data. We demonstrate in this
paper that the benefits from reducing the radio duty cycle vastly outweigh the cost of increasing the
processor duty cycle. Secondly, the proposed framework is organised in an hierarchy of classifiers. This
allows us to intelligently duty-cycle any power-hungry sensors, such as a gyroscope, in a context-aware
manner. Initially, a first classifier identifies the activity group, using solely data from the ultra-low
power accelerometer, which operates at 100% duty cycle. Based on this initial decision, a second
classifier is selected for the activity recognition task, and the gyroscope is enabled only when the user
is engaged in activities whose classification could benefit from it.
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Figure 1. The proposed framework for on-board activity classification with wearable sensing systems.
The framework is composed of an series of Random Forest classifiers that are structured hierarchically
in two tiers. In the top tier (Tier 1), the Stage 1 classifier identifies the activity group (Sedentary,
Moderate and Rigorous activity groups) and selects the corresponding Tier 2 classifier, which performs
the activity classification. Only one of the Tier 2 classifiers and its corresponding feature extraction
block is activated at a time depending on the output of the Stage 1 classifier. This approach allows
us to keep the energy-hungry gyroscope powered-off, and activate it only when the user engages in
activities whose classification can benefit from it. It is also noted that every feature extraction block
extracts the features that are most informative for the respective classification task.

The proposed on-board classification framework is fully implemented on a wearable prototype.
In turn, we profile its energy requirements and we benchmark it against the conventional cloud-based
approach. The results demonstrate an improvement in the device lifetime by one order of magnitude.
In addition, the proposed framework sustains high classification accuracy, yet the energy improvements
come at the cost of approximately 5% accuracy, as compared to the reference cloud-based system.

The remainder of this paper is structured as follows. Section 2 briefly summarises the related
work. Section 3 focuses on the design of the proposed framework. Section 4 offers details on the
implementation and evaluation of the proposed framework. Finally, Section 5 concludes this paper.

2. Related Work

The proposed framework combines concepts, such as intelligent sensor duty cycling, hierarchical
classification, feature engineering, and embedded machine learning, among others. These concepts
have previously appeared in the literature in different contexts. Indeed, the framework’s novelty
lies not on its parts, but in their unique combination into a system that trades a little short-term
accuracy for a massive reduction of the energy consumption. We are particularly interested in
quantifying this trade-off and we argue that this trade is, in several use cases, beneficial for severely
resource-constrained devices, as it has the potential to lead to sustainable accuracy in the long
run, through a massive reduction of the maintenance overhead, and thus the data loss due to poor
device maintenance.

Embedded machine learning is casually adopted in smartphones ([6,7]), CCTV cameras (e.g.,
Reference [8]) and robots (e.g., Reference [9]). The concept of hierarchical classification itself has
been proposed for sound classification in the context of smartphones [10] and smart vehicles [11]. In



Sensors 2020, 20, 1655 4 of 18

turn, intelligent duty cycling of high-power sensing elements, such as gyroscopes, GPS receivers and
cameras, has been proposed as a means to extend the battery lifetime of smartphones [12,13] and
mobile robots [14]. Different to these works, we target severely resource-constrained devices [15] (20kB
RAM, 128kB Flash, and energy budgets of approximately 100 mAh).

Severely constrained devices are characterised by the cost-accuracy conflict. The trade-off between
accuracy and cost was analysed in Reference [16], whereby several models were compared and the
cost of model implementations was assessed in clock ticks. More recently, Reference [17] studied this
trade-off from the perspective of feature engineering, providing measurements on the energy cost and
value of various accelerometer features for activity recognition. Our system builds on these findings.
In the same spirit, Reference [18] investigates the cost-accuracy trade-off by dynamically adapting the
sampling frequency.

In the context of resource-constrained environments, embedded machine learning has been
adopted in a variety of applications. Suresh et al. [19] employ a simplified kNN classifier for on-board
classification in animal farming. Ravi et al. [20] employ kNN and a Bayesian classifier for detection of
mosquito populations. Embedded machine learning has been used for the improvement of protocols,
such as classification of wireless interference [21] and self-adapting MAC protocols [22]. On-board
classification was also used to extend the lifetime of a wearable sensor that tracks physical activity
levels [23]. Different to these works, our focus in not on the application itself; but rather on investigating
and quantifying the trade-off between short-term accuracy and device lifetime.

Pedram et al. [24,25] employ embedded cascaded binary SVN classifiers for activity recognition,
demonstrating that an hierarchical architecture is more efficient than multi-class classification. Our
work employs a similar architecture of hierarchical classifiers; yet, different to References [24,25]
we use the hierarchical architecture to intelligently duty cycle the gyroscope to save energy. These
works do not duty cycle the gyroscope. In addition, we are interested in reducing the overall energy
consumption of the system using a combination of techniques (i.e., feature engineering, intelligent
sensor duty cycling, reduction of radio duty cycle, model reduction, and hierarchical classification)
and investigating the cost-accuracy trade-off. Moreover, these works do not take into account the
energy consumption of the radio and the communication-computation trade-off.

Finally, a recent trend in embedded machine learning for IoT devices includes the use of hardware
accelerators for neural networks. Examples can be found in academic research [26–28] and off-the-shelf
industrial solutions [29]. Although leveraging such hardware is important whenever available, our
work targets wearable systems with no special hardware capabilities; hence, the proposed framework
operates on general-purpose microcontrollers and is backwards-compatible to legacy IoT systems.

3. Framework Design

This section describes the design of the on-board classification framework. Initially, we provide
details on data collection (Section 3.1). In turn, we discuss the classifier (Section 3.2) and feature
extraction (Section 3.3). Next, Section 3.4 provides reference models assuming a cloud-based
post-collection approach (off-board classification). Lastly, Section 3.5 provides reduced models suitable
for on-board implementation (on-board classification).

3.1. Input Dataset

The models are trained and tested on a dataset collected with a custom prototype wearable sensor.
The proposed on-board classification framework is also implemented on the same device. The system
is based on the CC2640R2 (ARM Cortex-M3) and incorporates two inertial sensors: the triaxial MC3672
accelerometer [30] and the ICM20948 Inertial Monitoring Unit (IMU) [31], which is used as triaxial
gyroscope. The two sensors have their axes co-aligned. The MC3672 accelerometer is connected with
the MCU over Serial Peripheral Interface (SPI) at 4 MHz, and it is configured to work in the ±8 g
amplitude range at 12 bits per sample. The sampling frequency is 14 Hz. The ICM20948 gyroscope is
interfaced with the MCU via an SPI bus at 7 MHz. It is configured to operate at 17 Hz with 16 bits of
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resolution. It is noted that the sensors cannot be configured at the same sampling frequency due to
hardware limitations. Instead, the samples are collected at 17 Hz and padding with data repetition is
used when necessary. The chosen sampling rate is sufficient for human activity recognition as shown in
Reference [32]. It is also highlighted that the gyroscope requires three orders of magnitude more power
than the accelerometer according to their datasheets. This is a typical observation in activity-based
wearable sensors [32].

The collected data include samples of 3 sedentary (i.e., sitting, lying, standing), 3 moderate (i.e.,
walking, turning leftwards, turning rightwards), and 3 rigorous (i.e., jumping, running, exercising)
activities. These are representative activities of daily life that are commonly selected in the literature
(e.g., References [6,7,33,34]). Aiming to use this dataset to evaluate the proposed on-board classification
framework, we have included activities that have a strong rotational component. It is noted
that an accelerometer-only framework would be more suitable for activities that do not exhibit
rotational components.

Data was collected from seven volunteers, aged between 23 and 36 years, 3 females and 4 males.
The wearable sensor was attached to their wrist; the participants were free to choose which arm to use
during the experimentation process. The participants were asked to perform one activity at a time in a
loop for 2.5 minutes, which results to 17.5 minutes of data per activity for each sensor. To maximise
the variance in the data, no particular instructions were given to the subjects as to where or how to
execute the activities.

We highlight that the problem of recognition of these nine activities represents a use case that we
adopt to evaluate the proposed framework. Indeed, the framework can be easily adapted to different
activities, different classification tasks, as well as different sensing modalities.

It is also noted that recent literature in activity recognition is looking into more realistic in-the-wild
data collection to improve the generalisation power of the classification process [3]. While we
appreciate their aspirations, we opted for a dataset of loosely scripted activities, considering it sufficient
for the objectives of this work. Indeed, our objective is not to provide a solution that outperforms
the activity recognition state-of-the-art in absolute terms, but rather to quantify and demonstrate the
benefits of our on-board classification framework, as opposed to traditional cloud-based approaches.

3.2. Classification

The classification process is conducted in two steps, as introduced in Figure 1. The first step,
namely Stage 1, is the classification according to the energy band of the physical activity, namely
Sedentary, Moderate, and Rigorous. The second step depends on the result of the first step, and
aims to classify the activities within the particular energy band. The primary motivation behind this
hierarchical approach is to activate the expensive gyroscope only when needed. Moreover, doing so
allowed us to work on four simpler models instead of one complex model, but this entails that the
Stage 1 classifier must be very accurate as any errors will be propagated further to the classifiers that
are at the second level.

The proposed framework is based on Random Forest: a probabilistic classifier that is composed
of an ensemble of decision tree classifiers [35]. For the purposes of this work, we also considered
the k-Nearest Neighbours (kNN), Support Vector Machine (SVM), and Deep Neural Network (DNN)
classifiers. All four classifiers yield comparable results in terms of accuracy (see Reference [36] for
detailed results). Ultimately, we selected Random Forest. The main reason is feasibility for efficient
on-board implementation for general-purpose micro-controllers, similar to Reference [21]. It is noted
that DNN models can be efficiently executed in low-power platforms, but this requires specialised
hardware that may not be available on all wearable platforms.

3.3. Feature Extraction

As the ultimate goal of this work is to implement the process on a resource-constrained embedded
system, the full feature space is based on features that are cheap in terms of computational requirements.
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In particular, good balance between accuracy and extraction cost is provided by basic time-domain
features [17,37], which include: (i) maximum; (ii) median; (iii) minimum; (iv) mean; (v) and variance
of the data sequence along the x, y and z axes. Such features, indeed, provide a characterisation of
the central tendency of the data distribution (e.g., mean, median), as well as of its dispersion (e.g.,
maximum, minimum). These time domain features are calculated over a window w for each of the
three axes, resulting to 15 features per sensor. In addition to the above, we also employ the Integral of
the Modulus of Acceleration (IMA), calculated as in Reference [23].

We use a window size of 1.6 s. This is selected to match the memory buffer of the accelerometer
for energy-efficient design. Nevertheless, this window size is in accordance with References [32,38],
which advocate for a window of 1–2 s. Moreover, the features are computed over a 50% overlapping
window, capturing the temporal nature of the activities [17]. The selected window size results to a
total of 9000 samples, 1000 samples in each class.

3.4. Full Models for Off-Board Classification

In this section, we provide reference models that are trained for cloud-based off-board
classification. This step provides a point of reference of the maximum possible accuracy.

3.4.1. Accelerometer Only

We first investigate the performance of a Random Forest classifier of 100 trees using the data
from the accelerometer and all 16 features. The input feature vectors (i.e., statistics over the specified
windows) are randomly divided into training and test sets (50%–50%), keeping a balanced class
representation. The process is repeated 1000 times on different random training and test sets. Table 1
shows the accuracy of each stage. The results demonstrate high accuracy in all tasks apart from the
Moderate stage.

Table 1. Off-Board Classification (accelerometer only).

Classifier Accuracy, µ σ

Stage 1 96.5% 0.2%
Sedentary 99.0% 0.1%
Moderate 81.4% 1%
Rigorous 93.2% 0.6%

3.4.2. Engaging the Gyroscope

Next, the classifiers are retrained using features from both the accelerometer (16 features) and
the gyroscope (15 features). The results (Table 2) show that enabling the gyroscope yields marginal
improvements in all cases but the Moderate stage, in which the gyroscope improves the mean accuracy
by 15.3%.

Table 2. Off-Board Classification. The classification accuracy when using both the accelerometer and
the gyroscope.

Classifier Accuracy, µ σ Difference, ∆µ

Stage 1 97.5% 0.2% +1%
Sedentary 99.3% 0.3% +0.3%
Moderate 96.7% 0.5% +15.3%
Rigorous 94.9% 0.5% +1.7%

3.5. Reduced Models for On-Board Classification

An on-board implementation of the full models would be impractical due to memory
and energy constraints. In this section, we provide classification models that are suitable for



Sensors 2020, 20, 1655 7 of 18

implementation on wearable devices. This is achieved by reducing the number of features, the
number of trees, and the maximum number of splits (i.e., the maximum tree depth). Our goal is
to decrease the requirements of the classifiers in terms of resources without introducing significant
performance loss in terms classification accuracy. For the remainder of this paper, we will refer to them
as reduced models.

3.5.1. Reducing the Number of Features

Focusing on the accelerometer-only case, we investigate the impact of reducing the number of
features, with the goal to reduce the energy cost of feature extraction. The Random Forest classifier
provides a means to rank the features, also known as predictors, in terms of their importance. For
example, Figure 2 plots the predictor importance for Stage 1, and demonstrates that most information
is contained in three features: the maximum value of the X axis, the IMA, and the minimum of the
Y axis.
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Figure 2. Feature importance in Stage 1, for features mean (mu), variance (va), maximum (ma),
minimum (mi), and median (me). X,Y,Z correspond to the respective axis.

We reduce the number of features of each classifier, based on the information gain ranking table
provided by the Random Forest. In particular, to allow for an energy-efficient on-board implementation,
we limit the maximum number of features to N = 8. Otherwise, we use the first n < N features
that provide an accuracy that is less than 2% of the accuracy achieved with the full feature set. It is
highlighted that any feature that is extracted during Stage 1 can be used in the second stage without
any additional energy costs.

Table 3 provides the classification accuracy assuming the reduced feature space. The results show
that the reduced features space yields to an insignificant gain in Stage 1, minor losses in the Sedentary
and Moderate cases, and a more considerable loss of 5.1% in the Rigorous case.
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Table 3. On-Board Classification (effect of feature reduction).

Classifier Accuracy µ σ Difference, ∆µ

Stage 1 96.6% 0.2% +0.1%
Sedentary 98.7% 0.2% −0.3%
Moderate 80% 1% −1.4%
Rigorous 88.1% 0.7% −5.1%

3.5.2. Reducing the Number of Trees

Next, we investigate the effect of number of trees on the accuracy. To this end, we repeat the
process considering 1 to 100 trees. The results for the Stage 1 classifier are shown in Figure 3 (left).
The results suggest diminishing returns with marginal benefits in growing more than 15 trees for the
collected data and, indeed, 10 trees is satisfactory relative to the performance of the unconstrained
model. The same pattern is observed in the case of the Tier 2 classifiers, shown in Figure 3 (right) and
Figure 4, yet the Moderate classifier can benefit from up to 30 trees. Interested in an energy-conscious
implementation, for the remainder of this paper, we fix the number of trees at 10 for all four
on-board classifiers.
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Figure 3. The effect of decreasing the number of trees on the accuracy of the Stage 1 classifier (left) and
Sedentary classifier (right). 10 trees is a reasonable compromise between accuracy and feasibility for
on-board implementation.
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Figure 4. The effect of decreasing the number of trees on the accuracy of the Moderate classifier (left)
and Rigorous classifier (right). 10 trees is a reasonable compromise between accuracy and feasibility
for on-board implementation.
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3.5.3. Reducing the Number of Splits

The next step is to reduce the number of splits (nodes) in each tree. As shown in Table 4, with 50
iterations, the classifiers reach high accuracy at approximately 20 splits with marginal improvements
beyond this. Yet, a large number of splits it is not practical for an embedded implementation, due
to the increased number of nodes. Therefore, in the reduced models for on-board implementation,
the number of splits was constrained to maximum 5. In addition, each classifier is trained with the
reduced feature space and with the number of trees limited to 10. As we also discuss in Section 4,
the full system implementation uses 98% of the available memory, highlighting that the memory
imposes a constraint on the number and size of the trees. The results of this process are summarised in
Table 5. The last column shows the performance degradation compared to 100 trees, also trained on the
reduced feature space. It can be seen that the performance is reduced most severely in the Moderate
and Rigorous stages.

Table 4. On-Board Classification (effect of reduction of splits).

Stage 1 Classifier

Max. Splits Accuracy, µ σ Nodes Edges Leaves

5 95.6% 0.3% 11 10 6
10 96.3% 0.3% 21 20 11
20 96.6% 0.2% 41 40 21
30 96.8% 0.2% 61 60 31
40 96.9% 0.2% 81 80 41
50 96.9% 0.2% 101 100 51

Sedentary Classifier

Max. Splits Accuracy, µ σ Nodes Edges Leaves

5 97% 0.4% 11 10 6
10 99.2% 0.3% 21 20 11
20 99.6% 0.2% 41 40 21
30 99.7% 0.2% 57 56 29
40 99.7% 0.2% 59 58 30
50 99.7% 0.2% 59 58 30

Moderate Classifier

Max. Splits Accuracy, µ σ Nodes Edges Leaves

5 67.6% 1.2% 11 10 6
10 70.7% 1.4% 21 20 11
20 75.1% 1.3% 41 40 21
30 77% 1.1% 61 60 31
40 78.1% 1 % 81 80 41
50 78.7% 1.1% 101 100 51

Rigorous Classifier

Max. Splits Accuracy, µ σ Nodes Edges Leaves

5 81.5% 1 % 11 10 6

10 84.6% 0.7% 21 20 11

20 88.6% 0.8% 41 40 21

30 91.2% 0.9% 61 60 31

40 92.4% 0.7% 81 80 41

50 93.2% 0.6% 101 100 51
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Table 5. On-Board Classification (effect of tree and split reduction).

Classifier Accuracy µ σ Difference, ∆µ

Stage 1 95.6% 0.5% −1.0%
Sedentary 96.3% 0.5% −2.4%
Moderate 66.7% 1.4% −13.3%
Rigorous 80.0% 2.0% −8.1%

3.5.4. Engaging the Gyroscope

Next, we investigate the influence of the gyroscope on the accuracy of the on-board classification
task. The following classifiers were trained using the reduced feature set from the acceleration sensor
and the full feature set from the gyroscope. The classification results are presented in Table 6.

Table 6. On-board Classification (engaging the gyroscope).

Classifier Accuracy µ σ Difference, ∆µ

Stage 1 97.4% 0.2% +1.8%
Sedentary 99.2% 0.3% +3.1%
Moderate 95.9% 0.7% +29.2%
Rigorous 84.6% 2.0% +4.6%

The gains of employing both peripherals are quite limited apart from the case of distinguishing
turning leftwards from turning rightwards. Indeed, there are no substantial gains for Stage 1, only
3.1% for Sedentary, and 4.5% for Rigorous; yet a great gain of 29.2% for the Moderate case. Considering
that a gyroscope is much more energy-consuming than ultra-low power accelerometers (by up to
three orders of magnitude), these results suggest that we can activate the gyroscope only when Stage 1
identifies that the user engages in an activity that would significantly benefit it (i.e., Moderate in our
use case).

To further reduce the energy consumption, we next reduce the feature set of the gyroscope. The
results indicate that most of the information is contained in the mean of the X axis, and in fact adding
this single feature into the reduce acceleration feature set yields an accuracy of 93.5% in the Moderate
case. It is worth mentioning that this reduced model of the Moderate classifier is still performing better
than the full model derived solely from accelerometer data by 22.1%.

3.5.5. Summary

This section has described how a complex and accurate model can be downsized to a functional
bare-bones version by feature engineering, tuning of the hyper-parameters and trading off some of
the algorithm’s accuracy for plainness. To provide further insight on the performance of the reduced
classifier intended for on-board implementation, we provide confusion matrices for the four stages in
Table 7. The matrices contrast the predictions (output) against the ground truth (target). The diagonals
denote the percentage of correct predictions in each case. It is noted that, based on the presented
results, the gyroscope is used only when Stage 1 predicts that the user engages in a Moderate activity.
As a result, the confusion matrices of the Stage 1, Sedentary, and Rigorous classifiers correspond to the
case of using the acceleration sensor only. The matrix of the Moderate classifier, instead, corresponds
to the case of using both sensors.
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Table 7. Confusion matrices of the on-board classification framework.

Stage 1
F-score 95.6%

Target
Sedentary Moderate Rigorous

O
ut

pu
t Sedentary 93.9% 3.0% 0.1%

Moderate 5.3% 95.0% 2.1%
Rigorous 0.8% 2.0% 97.9%

Sedentary
F-score: 96.3%

Target
Standing Lying Sitting

O
ut

pu
t Standing 100% 0% 0%

Lying 0% 96.9% 8.0%
Sitting 0% 3.1% 92.0%

Moderate
F-score: 92.8%

Target
Walking Turning L Turning R

O
ut

pu
t Walking 94.0% 4.5% 4.9%

Turning L 3.1% 91.4% 2.2%
Turning R 2.8% 4.1% 92.9%

Rigorous
F-score: 78.6%

Target
Exercise Jumping Running

O
ut

pu
t Exercise 78.9% 6.3% 14.6%

Jumping 14.2% 81.0% 9.4%
Running 6.8% 12.7% 76.0%

4. Implementation and Evaluation

4.1. Implementation

We next implement the proposed on-board classification framework for the CC2640R2 (ARM
Cortex M3 processor), incorporating the four reduced classifiers, as shown in Figure 1.

The implementation fully exploits the FIFO (First In First Out) memory that is embedded with the
MC3672 accelerometer. This allows us to store 32 samples at 12-bit resolution. This approach reduces
the wake-up events of the processor, which are costly for the power budget of the system as the chip
is woken up from 1.1 µA standby mode into 3 mA active mode. In addition, the data collection was
implemented with a 16-sample overlap between adjacent windows. Each 32-sample window of raw
data is, in turn, passed for feature extraction, and then to the Stage 1 classifier. The data is, in turn,
passed to the respective second stage classifier, upon any additional feature extraction if necessary.
The gyroscope is activated only in the Moderate case. This implies that the device is enabled after the
Stage 1 classifier has detected that the system is in the Moderate state. Hence, the samples it provides
are not available until the next sampling window. As a result, we implemented two versions of the
Moderate model: one that works only with the accelerometer data (accuracy of 66.7%), and one that
works with both sensors (accuracy of 93.3%). The effect of this solution is incorporated on the final
results. Once activated, the gyroscope is operating in the exact same manner as the accelerometer.
Finally, the output is transmitted over BLE advertisements.

A 32-sample window of raw data is 192 bytes. At the end of the processing chain, this value is
reduced to 4 bytes: 1 byte to encode the state of the energy class (output of Stage 1) and the most
likely class within each band (output of respective Stage 2); 3 bytes contain information regarding the
posterior probability that the sample belongs to each activity class. The framework is compressing the
data with a ratio of 1:48.

The full system implementation uses 98% of the available flash memory (124.46 kB). This
highlights the existence of severe memory constraints, which pose a natural limit on reduction
parameters, such as the number of trees.
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4.2. Energy Consumption

For evaluating the energy consumption of the proposed on-board classification framework
we adopt the methodology presented in Reference [39]. In particular, the energy consumption is
approximated by combining energy measurements of isolated events with timing measurements on
the frequency and duration of these events. The timings are measured using the on-board 48 MHz
clock. We highlight that uncontrolled energy measurements are impractical, because the users would
need to wear the device and engage in potentially rigorous activities, whilst the device is wired to a
power analyser.

4.2.1. Feature Extraction

Table 8 represents the costs associated with transferring data within the wearable system, which
includes reading 192 bytes form the FIFO, reading a single sample, converting the 192 bytes data
into 32 triaxial samples, and all operations required for copying the data to radio transmission buffer.
The device drains approximately 3.5 mA when in active mode and accounting all the peripherals,
which translates to 12.95 mW of power consumption. Additionally, when the gyroscope is enabled
the current usage is 4.57 mA and the power consumption is increased to 16.9 mW. The read cost
from the gyroscope is lower than the accelerometer, due to the SPI bus, which runs at 7 MHz and
4 MHz respectively.

Table 8. Peripheral operations cost.

Operation Time [µs] Energy [µJ]

MC3672 32-sample FIFO read 567.9 7.35
ICM20948 32-sample FIFO read 323.5 5.47

MC3672 single sample 38.4 0.50
ICM20948 single sample 22.0 0.37
Convert fifo to 16-bit int 36.9 0.48

Data preparation for the radio 927.6 12.01

Table 9 summarises the computation costs for feature extraction. The most expensive feature is
the IMA, which operates on data from all three axes.

Table 9. Feature computation cost over 32 samples.

Feature Time [µs] Energy [µJ]

IMA 628.3 8.14
Median 316.6 4.10
Variance 93.4 1.21

Mean 66.9 0.87
Maximum 12.6 0.16
Minimum 12.6 0.16

4.2.2. Classification

The Random Forest models were implemented on the CC2640R2, each consisting of 10 trees
and 5 splits per tree (250 if statements in total). The classifiers were trained using Gini impurity as
splitting criterion and sampling is carried out with replacement. The minimum split sample size is
10 and the minimum leaf size of the four classifiers is 71, 143, 47 and 74 respectively. Due to the 50%
window overlap, the classification process is executed at twice the frequency of a FIFO update. Thus,
the hierarchical classifiers are executed every 1.15 s. Table 10 characterises the computation cost for
executing each classifier.
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Table 10. Classifier computation cost.

Classifier Time [µs] Energy [µJ]

Stage 1 67.6 0.88
Sedentary 69.3 0.90

Moderate Acc 61.2 0.79
Moderate Acc + Gyr 108.3 1.41

Rigorous 71.0 0.92

4.2.3. Radio

The BLE radio is using 6.1 mA when transmitting at 0 dBm, which entails 22.57 µW of power
usage for the system. The power profile of transmitting an advertisement, measured on the high side
of the power supply, indicates that the energy cost of a BLE advertisement is 73.16 µJ.

4.3. Latency

One of the advantages of edge computing is low latency via the elimination of the communication
delays. In practice, the end-to-end latency of an embedded application depends on three components:
the sensing delay, the communication delay and the processing delay. In the proposed on-board
classification framework, the collection of one window of 32 samples in the FIFO requires
approximately 2.3 seconds. Reading the FIFO requires less than 1 ms (see Table 8) and, thus, is
considered negligible. The communication delay is zero as the classification is performed locally.
Finally, the processing delay for feature extraction and classification is less than 2 ms (see Table 9 and
Table 10). As a result, the end-to-end delay from the sensing the first sample of the window until
classification is roughly 2.3 seconds. For comparison, a reference off-board architecture would transfer
the data, one by one, to a central server for classification. In this case, the samples are collected one
by one at 17 Hz, thus the process gets completed in approximately 1.9 seconds. The communication
delay depends on the network topology (e.g., multi-hop vs single-hop) and the delay introduced by
the employed wireless technologies. As an indicative example, let us assume the SPHERE smart home
architecture [40], which is our application of interest. In this architecture, each data packet is first
sent to a receiver node over BLE (roughly 2 ms). In turn, the packet is queued and transmitted over a
TSCH (Time-Slotted Channel Hopping) mesh network of one or two hops. Assuming the packet is
transmitted on the next slot frame, this step takes up to 1 second, that is, the duration of the slot frame
of 100 slots (10 ms per slot), assuming no communication errors that would require re-transmissions in
the next frame. The processing delay can be considered negligible as the processing power of a typical
IoT gateway is much higher than a wearable sensor. In total, the end-to-end delay is approximately 2.9
seconds or more in case of re-transmission delays.

4.4. Device Lifetime

Research has shown that estimating the battery lifetime of a device from its energy consumption
profile is not trivial, given the non-linear properties of the batteries [5,41]. In this section, we provide
indicative battery lifetime estimations that are based on the methodology presented in Reference [39].

As a benchmark, we compare the implemented classifiers against the conventional way of raw
data collection (off-board classification). In particular, we consider two cases: accelerometer only, and
accelerometer and gyroscope. We assume a EBAT = 1332 J energy budget. This roughly corresponds to
a wearable-sized Lithium-Polymer (Li-Po) battery.

The estimated device lifetime (T) can be approximated by:

T =
EBAT

PI + PA + PG + PMCU
, (1)
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where PI is the system’s idle power consumption, PA and PG is the average power consumed by the
accelerometer and the gyroscope, and PMCU is the average power consumed by the CC2640R2. The
power associated with the gyroscope is zero, PG = 0, when the gyroscope is powered off.

In the raw data case, the latter is given by:

PMCU = (ESPIA + ESPIG + EDATA + ERF)× f IRQ , (2)

where ESPIA and ESPIG are the energies consumed for transferring a single sample via the respective
SPI bus, EDATA is the energy associated with copying the data to the radio buffer, ERF is the energy
used by the BLE radio, and finally f IRQ is the frequency of collecting the samples and sending the
advertisement over the air. The rate is f IRQ = 17 Hz, i.e., the sampling rate of the gyroscope.

For our framework, PMCU takes the following form:

PMCU = (ET +
n

∑
i=0

EFi + ES1 + ES2)× f IRQ , (3)

where ET =
ESPIA + ESPIG

2
+ EBLE + EDATA . (4)

Different from above, ESPIA and ESPIG are the energies consumed for transferring a full FIFO via the
respective SPI bus, and f IRQ is the classification frequency, f IRQ = 0.87 Hz. The SPI terms are halved as
they occur at half of the classification frequency f IRQ. The summation over EFi terms is representing the
energy consumed for extracting the n features associated with each random forest algorithm. Finally,
the ES1 corresponds to the energy consumed for executing the Stage 1 classifier and ES2 corresponds to
the energy consumed for executing the respective Stage 2 classifier.

The overall energy consumption of the system depends on how often each Stage 2 classifier is
engaged. We thus attempt to estimate it proportionally to how often an average person spends their
day in each of the energy bands. To that end, we employ a dataset from the Avon Longitudinal Study of
Parents and Children (ALSPAC) that is collected from approximately 50 individuals who each wore an
acceleration-based wearable sensor for 10 days [42]. The dataset was assessed using the classification
method described in Reference [23] and the results have shown that an average person spends 80.8%
of the day engaging in Sedentary activities, 18.8% of the day engaging in the Moderate activities, and
0.4% of the day engaging in Rigorous activities. Using these statistics as weights (w), ES2 can estimated
as the weighted sum of the Stage 2 classifiers:

ES2 =
3

∑
i=0

wiE
(i)
S2

. (5)

The energy consumption of the gyroscope and feature extraction is estimated similarly.

4.5. Results and Discussion

The final results are summarised in Table 11, where the proposed framework is labelled as EML
(Embedded Machine Learning), and the benchmark is labelled as RAW (Raw data collection). For
completeness, two on-board classification cases are considered: accelerometer only, and accelerometer
and gyroscope. The results show that, in a practical environment, our framework increases the lifetime
by one order of magnitude compared to the benchmark (RAW): the accelerometer-based system has
increased its lifetime from 12 to 111 days and the configuration that duty-cycles the gyroscope increases
the device lifetime from 3 to 17 days. Likewise, the power usage was reduced from 1.2 mW to 136 µW
and from 5.4 mW to 884 µW respectively.
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Table 11. The Trade-off between Accuracy and Lifetime.

Configuration Accuracy, µ Power [µW] Life [d]

RAW Acc 92.3% 1200 12
RAW Acc + Gyr 96.3% 5400 3

EML Acc 86.7% 136 111
EML Acc + Gyr 91.9% 884 17

The results obtained in this work confirm the trade-off between the short-term accuracy and
the energy usage – the greatest accuracy is obtained when using the raw data, full sized models and
all the features, whilst the most energy is saved when the models are reduced and only the most
important features are exploited. In addition, the results quantify the trade-off, demonstrating that it is
asymmetric. Table 11 also compares the accuracy of the full and reduced models. The overall weighted
accuracy per model (A) reflects the fact that Stage 1 is always engaged first and that effectively the
second stage is conditioned on the first stage, which can be represented using the equation:

A = αs1

3

∑
i=1

wiα
(i)
s2 . (6)

where αs1 is the accuracy of the Stage 1 classifier; α
(i)
s2 is the accuracy of the i-th second stage classifier,

namely Sedentary, Moderate, and Rigorous respectively; and wi is a ALSPAC weight that reflects the
time each i-th second-stage classifier is engaged. The results demonstrate that the proposed framework
improves the lifetime by an order of magnitude, sacrificing approximately 5% in classification accuracy.
Finally, the data is plotted in Figure 5, which further illustrates the trade-off.
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Figure 5. The trade-off between the model accuracy and lifetime. Legend: Raw
Data—Accelerometer Only (RAW A); Raw Data—Accelerometer and Gyroscope (RAW AG); On-Board
Classification—Accelerometer Only (EML A); On-Board Classification—Accelerometer and Gyroscope
(EML AG).



Sensors 2020, 20, 1655 16 of 18

5. Conclusions

In Health IoT applications, the requirement to recharge wearable devices frequently is not only
cumbersome, but may be downright unethical when monitoring ill or elderly people. Therefore it
is vital to make the wearables as energy-efficient as possible to deliver the best user experience, to
increase patient acceptance, and to avoid losing experimental data. We argue that obtaining lossless
raw data from constrained devices in the wild is very expensive and, sometimes, impractical. Data
loss due to poor device maintenance is inevitable, and therefore it is worth considering trading some
short-term accuracy for a massive reduction of the maintenance overhead, aiming at sustaining high
accuracy over time.

With this in mind, we propose an on-board classification framework for energy-efficient activity
recognition using wearable sensors. The proposed framework increases the device lifetime by reducing
the duty-cycle of the radio and the gyroscope. On one hand, the presented framework extracts
knowledge from the raw data on the board, thus the information that needs to be transmitted over
the air is significantly reduced. In parallel, our proposed solution is organised as a tiered ensemble of
on-board classifiers, allowing the wearable to dynamically duty-cycle the energy-consuming gyroscope
and use it only when it can provide significant contributions to the activity classification problem.

The proposed framework is fully implemented for a prototype wearable device that employs the
ARM Cortex M3 processor, and compared against the conventional cloud-based classification approach.
The comparison indicates that our solution has the potential to increase the lifetime of the wearable
device by one order of magnitude, at only the cost of approximately 5% classification accuracy.
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