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Abstract: Lane changes are complex safety- and throughput-critical driver actions. Most lane-changing
models deal with lane-changing maneuvers solely from the merging driver’s standpoint and thus ignore
driver interaction. To overcome this shortcoming, we develop a game-theoretical decision-making model
and validate the model using empirical merging maneuver data at a freeway on-ramp. Specifically, this
paper advances our repeated game model by using updated payoff functions. Validation results using
the Next Generation SIMulation (NGSIM) empirical data show that the developed game-theoretical
model provides better prediction accuracy compared to previous work, giving correct predictions
approximately 86% of the time. In addition, a sensitivity analysis demonstrates the rationality of the
model and its sensitivity to variations in various factors. To provide evidence of the benefits of the
repeated game approach, which takes into account previous decision-making results, a case study is
conducted using an agent-based simulation model. The proposed repeated game model produces
superior performance to a one-shot game model when simulating actual freeway merging behaviors.
Finally, this lane change model, which captures the collective decision-making between human drivers,
can be used to develop automated vehicle driving strategies.
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1. Introduction

Driving behavior strongly affects the safety and throughput of the transportation system [1],
Due to its interference with surrounding vehicles, lane-changing significantly affects traffic stream flow.
Several studies have concluded that lane-changing produces a capacity drop, forming a bottleneck [2–4].
The impacts of lane-changing maneuvers have been modeled in several studies [5–8]. In particular, Liu
et al. [9] argued that traffic conflicts between merging and through vehicles, which are common near
freeway on-ramps, are notable for inducing shockwaves, resulting in congestion. In order to analyze
traffic flow, therefore, the development of a state-of-the-art lane-changing model is important.

The applications of lane-changing models can be broadly classified into two groups: adaptive
cruise control and microscopic traffic simulation [1]. Driving assistance models for adaptive cruise
control consist of collision prevention models and automation models [10]. In addition, driving
decision models focus on drivers’ lane-changing decisions for different traffic conditions and for
different situational and environmental characteristics [10]. Lane-changing models were proposed
based on various methodologies, which are reviewed in the next section, and calibrated based on
field data collected on freeways. These models are an important component of microscopic traffic
simulation [11]. Most models, however, focus on only the lane-changing vehicle in decision-making
and vehicle control, which could be detrimental in microscopic traffic simulation, as interaction with
surrounding vehicles is also critical in lane-changing. Specifically, drivers of vehicles surrounding the
lane-changing vehicle, especially the closest following vehicle in the target lane, react after recognizing
a lane-changing vehicle’s intention to change lanes. For example, a human driver will sometimes not
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allow a lane change. Even though this type of competitive lane-changing behavior is rarely observed,
decision-making considering drivers’ interaction when changing lanes should be studied in order to
develop a precise lane-changing model.

In addition, modeling a driving strategy for automated vehicles (AVs) gives rise to a new
application for lane-changing models. The introduction of AVs onto the roadway means that reasonable
lane-changing decision-making can be conducted by an intelligent robot or a well-programmed machine.
During the transition to fully autonomous transportation systems, harmonization with human drivers
will be necessary for the operation of AVs. Therefore, the development of a realistic lane-changing model
that can depict human drivers’ decision-making is also required to enhance AVs’ driving performance.

To model lane-changing behaviors considering realistic decision-making, we developed a game-
theoretical decision-making model for merging maneuvers at a freeway on-ramp [12], and then
proposed a repeated game model [13]. This paper enhances our repeated game lane-changing model
proposed in [13] and evaluates the proposed model’s performance. The paper begins by introducing
the lane-changing models based on various methodologies, including a game theoretical approach.
To enhance model efficiency and complement the multivariate function in the previous model, the payoff

functions for a stage game are reformulated in Section 3. This study also applies the repeated game
approach, which uses cumulative payoffs, in order to capture realistic human driver behavior at
a freeway merging section. Both the repeated game model and the one-shot game model based on
the reformed stage game are calibrated and validated using empirical data extracted from the Next
Generation SIMulation (NGSIM) dataset [14,15] to demonstrate the prediction ability. In the rest of this
paper, we present a sensitivity analysis to describe the stage game’s efficiency. The simulation case
study using an agent-based model (ABM) follows. Finally, we draw concluding remarks on this work,
and point out areas of potential future research.

2. Literature Review

A comprehensive literature review is required to introduce previous research efforts and present
the motivations for this study. This section begins with a review of lane-changing models, focusing on
methodologies. Then, game theory-based models are introduced in detail. Based upon the literature
review, the motivations for the study are presented.

2.1. Lane-Changing Decision-Making Models

In general, the lane-changing process can be categorized as a sequence of four steps: (1) checking
for lane-change necessity, (2) lane selection to decide on a target lane, (3) gap choice in the target
lane, and (4) lane-changing execution through gap acceptance. To model lane-changing behaviors,
lane-changing models have been developed using various methodologies that can be grouped into
four types: (1) rule-based models, (2) discrete-choice-based models, (3) artificial intelligence models,
and (4) incentive-based models [1].

The first model type, the rule-based model, is one of the most popular driver-perspective-based
methodologies [1]. Drivers’ decisions in the lane-changing process are simply defined as the independent
variable. Gipps [16] initially introduced a lane-changing model covering various urban driving
situations, which was intended for microscopic traffic simulation tools [17]. Gipps’ model represented
the lane-changing process as a decision tree with a series of fixed conditions, where the final output
of this rule-based triggered event is a binary choice (i.e., change or no change) [1]. The CORridor
SIMulation (CORSIM) model classified lane changes into two types: (1) discretionary lane-changing
(DLC), which occurs when a driver is unsatisfied with the driving situation in their current lane, while
the target lane shows better driving conditions; (2) mandatory lane-changing (MLC), which is coercively
required according to the route choice (i.e., lane change toward on-ramp or off-ramp) [18,19]. Rahman
et al. [1] categorized the game theory-based model, which explains lane-changing when a traffic conflict
arises between the merging vehicle and the closest following vehicle in the target lane, as a rule-based
model. Game theory, which is used in this paper, is the study of mathematical models of conflict
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and cooperation between decision-makers [20]. It focuses on decision-making in consideration of the
interaction between intelligent drivers. Using a game theoretical approach is advantageous in that
it takes into account the behaviors of the following vehicle driver in the target lane, while the other
approaches introduced above focus only on the lane-changing vehicle driver’s decision.

The second model type, the discrete-choice model, relies on a logit or probit model to describe
lane-changing maneuvers. Lane-changing is decided based on probabilistic results instead of binary
answers. Ahmed [21] modeled lane-changing motivation (i.e., trigger to change a lane), target lane choice,
and gap acceptance, presenting three categories of lane-changing: DLC, MLC, and forced merging (FM),
in which a gap is not sufficient but a driver nonetheless executes a lane-changing maneuver in heavily
congested traffic conditions. Ahmed [21] assumed that critical gaps follow a lognormal distribution to
guarantee that they are nonnegative. Toledo et al. [22] developed a probabilistic lane-changing decision
model by combining MLC and DLC through a single utility function. Both models developed by
Ahmed [21] and Toledo et al. [22] considered drivers’ heterogeneity, such as aggressiveness and driving
skill level, using a random term as one of the explanatory variables.

The third model type, which includes fuzzy models and artificial neural network (ANN) models,
is artificial intelligence models. The fuzzy model considers humans’ imprecise perception and decision
biases, and incorporates more variables than the common mathematical models [23]. However,
the fuzzy model has disadvantages, such as unexpected difficulties and complexity in the fuzzy
rules [23]. The ANN model processes information using functional architecture and mathematical
models that are similar to the neuron structure of the human brain [1]. Hunt and Lyons [24] modeled
the lane-changing decisions of drivers on dual carriageways. Since the neural network model is
completely data-driven and requires field-collected traffic data, Hunt and Lyons used interactive
driving simulation to train the model. As this example shows, one major disadvantage of the ANN
model is that it requires a huge amount of data to be optimized and also requires a training period.

The last type of model, the incentive-based model, models lane-changing desire utilizing the
defined incentive. In other words, this model assumes that a driver chooses to change lanes in order to
maximize their benefits [1]. The minimizing overall braking induced by lane change (MOBIL) model,
which was developed in Kesting et al. [11], is based on measuring both the attractiveness and the risk
associated with lane changes in terms of acceleration. Therefore, both the incentive criterion and the
safety constraint are formed using the acceleration function of the underlying car-following model.
In addition, the model attempts to capture the degree of passive cooperation among drivers, using the
politeness factor as a weight on the term for total advantage of the surrounding vehicles.

2.2. Game Theory-Based Lane-Changing Decision-Making Model

It is clear that lane-changing involves not only a driver of the subject vehicle (SV), who is motivated
to change lanes, but also a driver of the lag vehicle (LV) in the target lane, who controls their own vehicle
(i.e., the LV) after perceiving the lane-changing vehicle in the adjacent lane. Specifically, the driver
of the SV controls their longitudinal and lateral movements to safely change lane in consideration of
surrounding vehicles, and the driver of the LV responds by showing acceptance or non-acceptance
of an SV’s lane-changing intention. This decision-making process involving both drivers motivated
previous studies to use a game theoretical approach. Game-theory-based models, therefore, were
modeled as a two-player non-cooperative game.

Kita [25] modeled merging-giveway interaction between vehicles in a merging section based on
a game theoretical approach. The action strategies of the driver of SV are merging or maintaining
the current lane, while the strategies of the driver of LV in the target lane are giving way (i.e.,
yielding) or not. Kita [25] modeled interaction between drivers as a game under perfect information
conditions. However, perfect information in game theory indicates that all players have perfect
and instantaneous knowledge of their own utility and the events that have previously occurred.
In a traditional transportation environment, in which a driver becomes aware of their surroundings
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through sight only, this assumption is irrational. Additionally, Kita’s model assumed that vehicle
speeds were constant during the merging process, which is likewise unrealistic [9].

Liu et al. [9] modeled merging and yielding behavior using modeled payoff functions about
the drivers’ objectives. In Liu et al. [9], the objective of the driver of SV is to minimize the time
spent in an acceleration lane subject to safety constraints, while the objective of the driver of LV
is to minimize speed variation. The payoffs of drivers of the SV and LV were formulated using
acceleration level and time that the merging vehicle spends in the acceleration lane for each action
strategy, respectively. However, the driver of SV occasionally showed different behaviors, which were
assumed to be based on the objective of the driver of SV. Kondyli and Elefteriadou [26] found that
all drivers want to reach a speed close to the freeway speed or the speed limit, if there is no lead
vehicle. This speed synchronization process that causes drivers to accelerate when arriving at the
beginning of an acceleration lane was observed at a merging section on a freeway [27]. To solve the
game, Liu et al. [9] proposed a bi-level calibration framework, in which the upper level programming
is an ordinary least square problem and the lower level programming is a linear complementarity
problem, for finding the Nash equilibrium.

In [12], we modeled a decision-making game model for merging maneuvers using five decision
factors and evaluated the proposed model using NGSIM data. In addition, we introduced a repeated
game approach in order to avoid an instantaneous fluctuation in decisions in microscopic simulation [13].
Even though these models showed high prediction accuracy, there were limitations, namely that the
number of data showing all action strategies sets was unbalanced due to data collection during the
morning peak time, and the model validation results were unable to show the distinct performance of
the repeated game approach in microscopic simulation.

The development of advanced vehicle technologies (e.g., vehicle-to-vehicle communication) and
AVs, has led recent research efforts to focus on the cooperative interaction between vehicles [28,29].
Talebpour et al. [29], for instance, modeled both mandatory and discretionary lane-changing by
applying the Harsanyi transformation [30] within a connected environment. Yu et al. [31] designed
a human-like, game theory-based controller for AVs in consideration of mixed traffic.

2.3. Motivation and Contribution of the Paper

The following are the contributions of this paper. First, we enhance the payoff functions that were
previously developed in [12,13] by taking into consideration multiple decision factors and normalizing
the decision variables. Multivariate functions using variables, which have different units, may induce
a trivial equilibrium solution when variables are correlated. To solve this issue, we reformulated
the payoff function by considering dimensionless variables. Second, we validate and compare the
previous and proposed models. Third, we conduct a sensitivity analysis of the proposed model
performance. Fourth, we demonstrate the benefits of a repeated-game approach using a simulation tool.
The repeated game model first introduced in [13], in which a stage game is repeatedly played taking
into consideration previous game results, showed no evidence of benefits compared to a one-shot
game model, played independently based on instantaneous data at every decision point. If there is
competition between drivers due to an ambiguous merging situation—for example, not only small lag
spacings but also similar vehicle speeds—the one-shot game model may be sensitive to instantaneous
data, causing fluctuations in driver decisions during the decision-making process. On the other hand,
the repeated game model’s initial cooperative decision can be expected to remain the same when
there is only a slight variation in payoffs. Furthermore, the game model can produce a change from
a non-cooperative to a cooperative game. Even though this type of driver competition in merging
seldom occurs, the robust game model can be integrated into a microscopic traffic simulation software
in order to simulate stereotypical vehicle movement patterns. Consequently, in this study we adopt
the previous repeated game approach with enhancements in the payoff function and then provide
evidence of the repeated game model’s benefits through a case study.
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Lastly, a desired acceleration level, which is calculated to achieve the action set chosen by both
players, should be an additional component of a vehicle acceleration model. A lane-changing model
based on a game theoretical approach captures the decision-making process between two intelligent
decision-makers. The model output is an action that will be conducted by two players at future time
steps, rather than a decision to start lane-changing. To depict practical lane-changing behaviors in
a microscopic traffic simulator, therefore, the game model should be integrated with other models,
such as car-following, lane selection, and gap acceptance models. This study develops an A simulation
model based on ABM, including a vehicle acceleration controller based on the game model and
a car-following model, then conducts a simulation study to evaluate the performance of the repeated
game model.

3. Merging Decision-Making Model Using a Repeated Game Concept

As previously noted, this study aims at developing a decision-making game for merging maneuvers
on a freeway based on the repeated game concept. The following subsections describe, in detail, a stage
game for merging decision-making and repeated game design and the development of the player
payoff functions.

3.1. Stage Game Design

The game model defines the number of players, action strategies of each player, and corresponding
payoff functions to describe the outcome for each player throughout the game [32]. This study adopts
the decision-making game model structure for merging maneuvers proposed by the authors in 2017,
which consists of two players: the drivers of the SV and the LV. The driver of SV, who wants to make
a lane change, has three action strategies (see Figure 1a): (1) change lane (s1), (2) wait for the LV’s
overtaking maneuver (s2), or (3) overtake the LV and use a forward gap to merge (s3). The opposite
player, the driver of LV, has two action strategies (see Figure 1b): (1) yield to allow the lane change
maneuver of the driver of SV (l1) or (2) block the SV’s merging maneuver by decreasing the spacing
available for the SV (l2) [12]. In real life situations, the driver of LV can choose lane-changing to the left
lane to avoid potential collision or considerable deceleration [33], and this lane-changing behavior was
considered as an action strategy of the driver of LV in [29]. Freeway vehicles on the rightmost lane
generally change lanes from the rightmost lane upstream of the merging section after perceiving the
approach of the merging vehicle in order to maintain their speed. Since this mainline vehicle’s lane
change is conducted earlier and thus does not involve interaction with the merging vehicle, this study
does not include a lane-changing action as one of the actions of the driver of the LV in the proposed
merging game.

Let S = {s1, s2, s3} and L = {l1, l2} denote the set of pure strategies for the drivers of the SV and LV,
respectively. In addition, a =

(
si, l j

)
denotes a set of actions (a ∈ S× L) where i and j indicate the index

of action strategies of the drivers of the SV and LV (i.e., i = 1, 2, 3 and j = 1, 2). As such, a total of six
sets of action strategies were defined for the non-cooperative decision-making stage game. In these
action strategies, (s1, l1), (s2, l2), and (s3, l1) are cooperative action strategies, whereas both (s1, l2)
and (s2, l1) are non-cooperative strategies in which both players compete to achieve their objectives.
The action strategy (s3, l2) is neither cooperative nor competitive. The proposed stage game with
imperfect information, which captures the fact that players are simply unaware of the actions chosen
by other players, is represented in Figure 2. In the figure, a dashed line uniting three nodes, which
implies imperfect information, indicates that the players do not know which node they are in. This
means that there is no sequence in making a decision, and thus the driver of LV does not know the
SV’s movement. Moreover, Pi j and Qi j denote the payoff for the drivers of the SV and LV for each
action strategy ai j, respectively.

The drivers initially play the stage game to decide on an individual action at the moment when
an SV, an LV, and a preceding (lead) vehicle (PV) are identified ([12]). It was assumed that the initial
game is played when the driver of the SV reaches the start of an acceleration lane. Additional stage
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games are formed by overtaking the PV or waiting to be overtaken by the LV. In other words, the stage
game is re-built when a change in surrounding vehicles occurs, i.e., PV or LV, in the target lane.
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Figure 1. Players’ strategies for merging maneuver: (a) the driver of subject vehicle (SV); (b) the driver
of lag vehicle (LV).
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3.2. Repeated Game Design

In the game model, one of the characteristics to be specified is the number of games to be
repeated [25]. In the authors’ previous study, a repeated game approach was used in order to depict
a practical decision-making process for merging maneuvers [13]. In real life, at a freeway merging
section in a traditional transportation environment, a driver continuously makes a decision using the
data taken in by sight and controls the vehicle to fulfill their decision. When the merging vehicle enters
the acceleration lane, the driver of the SV selects a gap type to change a lane and then directs their
vehicle accordingly. The driver controls the acceleration level to synchronize the vehicle speed with
the freeway vehicles and ensure a safe gap distance [27,33]. During this lane-changing preparation
process, the driver of SV repeatedly checks surroundings to judge if their decision can be fulfilled
and tries to follow-up on their decision. In this study, therefore, this repetition in decision-making for
merging maneuvers prior to lane-changing execution was regarded as playing the game repeatedly.

The repeated game concept implies that a stage game with identical structure is repeatedly played
until termination of the game, which is divided into two classes, finite or infinite, depending on the
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players’ beliefs about the number of repetitions. In this study, the decision-making game for merging
was regarded as an infinitely repeated game because the players in the game do not know how many
times the game will be repeated. Note that, for an infinitely repeated game, the stage game will not
necessarily be repeated an infinite number of times.

Drivers (i.e., players) interact by playing a stage game multiple times. As a summary explanation
about the game model type, the one-shot game model implies that previous game results do not
affect the present game, while the decision-makers take previous game results into account in the
repeated game model, as illustrated in Figure 3. This study adopts the repeated decision-making
game approach using the cumulative payoffs to prevent repeated fluctuations in payoffs, as proposed
in [13]. The stage decision-making game is conducted periodically and repeatedly over discrete time
periods T ∈ [t1, tn]. Time preference is considered by assuming that future payoffs are weighted
proportionately at a constant rate δ, called the rate factor. Cumulative payoffs of the driver d for action
strategy ai j, i.e., Ud

ij = Pi j or Qi j, are presented in Equation (1).

Ud
ij(T) =

tn∑
t1

δt−1ud
ij(t). (1)

Here, ud
ij(t) is a utility of a driver d for an action strategy set (si, l j) at time step t; T is the number

of decision-making time steps; and d denotes a driver, i.e., a player in a game, the driver of SV or
DL. If δ > 1, it implies that the current payoffs are more important than the past payoffs. Otherwise,
the previous game results could significantly affect the decision-making in a future game.
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3.3. Reformulated Payoff Functions

In previous game theory-based-models, the payoff functions for two players were formulated using
the significant decision factors, such as safety, spacing (or gap), relative speed, travel time, expected
acceleration level, and remaining distance to reach the end of acceleration lane [11–13,25,29,31]. In [12],
we initially proposed the payoffs using five decision factors: minimization of travel time, avoidance of
collisions (i.e., safety), travel efficiency, the LV’s expected acceleration, and the remaining distance
to execute the maneuver. In a following study [13], the payoffs of the driver of SV were formulated
as the expected gap and remaining distance, and the expected relative speed was considered as the
other driver’s main decision variable. Both previous studies used multiple dimensioned variables,
meaning the payoffs are only interpreted as a qualitative outcome to represent the player’s preference.
In addition, an error term was considered to capture unobserved variables, assumed to be a constant,
resulting in minimal consideration of a driver’s randomness. As described previously, therefore, this
study updates the payoff functions to use efficient decision variables including a random error term
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and proposes monotone (dimensionless) functions by the transformation of quantitative variables.
This section introduces the decision variables, and then presents the reformulated payoff functions for
each driver.

3.3.1. Safety Payoff

Among various decision factors, safety is a key factor for human drivers’ decision to avoid
a potential collision or not induce a dangerous situation. Yu et al. [31] used the time headway as a
safety payoff, as presented in Equation (2).

hPV, SV(t) =
xPV(t) − xSV(t)

vSV(t)
, (2)

Here, xPV(t) and xSV(t) are the positions of the (potential) PV and SV at instant time t, respectively; and
vSV(t) is speed of the SV at time t. However, they did not take the speed of a PV into account. In [13],
the expected spacing between vehicles, indicating the possibility of ensuring a safe distance with
consideration of vehicles’ speed and acceleration levels, was used. Additionally, Wang et al. [34] used
a penalty formulated using relative speed and the gap distance. Kita [25] used the Time-To-Collision
(TTC) between vehicles as the main payoff, as defined in Equation (3).

TTCPV,SV(t) =
xPV(t) − xSV(t) − lPV

vSV(t) − vPV(t)
if vSV(t) > vPV(t), (3)

Here, lPV denotes the length of the PV; and vPV(t) is the speed of the PV at instant time t.
The interactive effects of relative speed and gap distance are contained in the single measure

TTC [35]. Brackstone et al. [36] collected realistic data using an instrumented vehicle equipped
with relative distance- and speed-measuring sensors. Observations of vehicle trajectories from five
participants showed that TTC is a major factor in lane-changing decisions. Most collision avoidance
systems (or pre-crash safety systems) applied in a vehicle use the instantaneous TTC to evaluate
collision risk [37]. Moreover, Vogel [38] recommended the use of TTC for the evaluation of safety
because it indicates the actual occurrence of dangerous situations. Vogel also noted that a situation
with a small TTC is imminently dangerous and that a situation with a small headway and relatively
large TTC is a potentially dangerous situation. Therefore, this study proposes the integrated safety
payoff function AS with consideration of not only TTC but also headway, which was formulated using
the hyperbolic tangent function, as presented in Equations (4) and (5).

AS
PV,SV =


(
tanh

(
TTCPV,SV(t)

tS − 1
)
+ tanh

(
hPV,SV(t)

tS − 1
))
× 0.5, if vSV(t) > vPV(t)(

1 + tanh
(

hPV,SV(t)
tS − 1

))
× 0.5, o.w.

(4)

AS
SV,LV =


(
tanh

(
TTCSV,LV(t)

tS − 1
)
+ tanh

(
hSV,LV(t)

tS − 1
))
× 0.5, if vLV(t) > vSV(t)(

1 + tanh
(

hSV,LV(t)
tS − 1

))
× 0.5, o.w.

(5)

Here, tS = min
(

RDSV
vSV(t)

, 3
)

denotes the minimum safe time headway between the 3-second rule

recommended by the National Safety Council [39] and the time headway to reach the end of the
acceleration lane.

The safety payoffs of both drivers for the action strategies were formulated to satisfy US
∈ [−1, 1],

as shown in Equations (6) to (9).

US
SV(s1) = 0.5

(
AS

PV,SV + AS
SV,LV

)
, (6)

US
SV(s2) = − AS

SV,LV, (7)
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US
SV(s3) = − AS

PV,SV, (8)

US
LV(l1) = AS

SV,LV = −US
LV(l2). (9)

For the ‘change (s1)’ action of the driver of SV, US
SV(s1) was formulated as the average of safety

payoffs, taking both the PV and LV in the target lane into account. For the ‘wait (s2)’ and ‘overtake (s3)’
action of the driver of SV, on the other hand, the driver’s safety payoffs were formulated to consider
only the corresponding vehicle related to each action strategy. Likewise, it was assumed that the driver
of LV also evaluates their safety in consideration of the SV only.

As shown in the safety payoff formulation, the safety payoffs vary by the spacing between vehicles
and each vehicle’s speed. Figure 4 shows the prospective safety payoffs of the driver of SV at the
various speeds of the three vehicles (i.e., PV, SV, and LV), with the SV in different positions between the
PV and LV. In this example, spacing between the PV and LV is constant at 77 m. Figure 4a presents
a case in which the SV is located close to the PV. In other words, the lead gap ∆xPV,SV is small and the
lag gap ∆xSV,LV is large. If vPV > vSV, US

SV(s1) is greater than US
SV(s3). Otherwise, the driver of SV is

attracted to choosing the ‘overtake (s3)’ action in consideration of safety. In the second case, described
in Figure 4b, the SV is located at the middle position between the PV and LV. Therefore, the ‘change
(s1)’ action is relatively attractive, i.e., US

SV(s1) > US
SV(s2) and, US

SV(s1) > US
SV(s3) even if vSV is slightly

less than vPV and vLV . The ‘overtake (s3)’ action is attractive when vSV � vPV , and US
SV(s2) are greater

than US
SV(s1) when vSV � vLV. The last case, in which the SV is close to the LV, represents the case

where the driver of SV is drawn to choosing the ‘wait (s2)’ action if vLV > vSV . If vSV > vLV , the ‘change
(s1)’ action is more attractive. From these cases, transformed safety payoffs are reasonable to represent
the general decision-making results of the driver of SV.
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38 m, ∆xPV,SV = 39 m); (c) close to the LV (∆xSV,LV = 10 m, ∆xPV, SV = 67 m).
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Figure 5 presents the safety payoffs for the driver of LV in the three cases described above.
In Figure 5a, which shows that ∆xSV,LV is considerably large, the driver of LV desires to choose the
‘yield (l1)’ action, except in the case where vn � vn+1. These payoffs seem to be reasonable because
the LV is far away from the SV. In the second case, the ‘yield (l1)’ action is attractive as well. This
case is similar to a real field situation, where the lane-changing action of the following vehicle in the
target lane mostly shows cooperation in order to accept the merging vehicle’s lane change. In the third
case, the huge deceleration is expected to provide a gap to the SV because the LV is close to the SV.
Therefore, the safety payoffs of the driver of LV for the ‘block (l2)’ action are higher than for the l1
action if vSV < vLV . Otherwise, the safety payoff of the driver of LV for the ‘yield (l1)’ action is slightly
higher, except in a freeway congested traffic condition (i.e., vSV � vLV).
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Figure 5. Safety payoffs of the driver of LV for the l1 and l2 action: (a) close to the PV (∆xSV,LV =

67 m, ∆xPV,SV = 10 m); (b) middle position between PV and LV (∆xSV,LV = 38 m, ∆xPV,SV = 39 m);
(c) close to the LV (∆xSV,LV = 10 m, ∆xPV,SV = 67 m).

3.3.2. Forced Merging Payoff for the Driver of SV

According to the empirical field data collected at a freeway merging section, the driver of a vehicle
entering through an on-ramp usually accelerates for speed-harmonization with freeway vehicles.
The driver of SV then selects a gap to merge onto the freeway. In congested traffic conditions, however,
the merging vehicles travel at a higher speed than the surrounding vehicles on the freeway. Thus,
the driver occasionally rejects the initial gap and then uses a farther forward gap, close to the end of
the acceleration lane. Wan et al. found that merging vehicles pass freeway vehicles and try to find
an acceptable gap to merge onto the freeway after traveling longer than the normal merging cases
in congested traffic conditions [27]. Marczak et al. [40] analyzed data collected at two sites to find
variables related to gap acceptance, concluding that the distance to the end of the acceleration lane is
a significant variable. Hwang and Park [41] also concluded that the remaining distance is the most
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important factor for determining gap acceptance; the driver will most likely accept a smaller gap if the
remaining distance to the end of the acceleration lane is smaller. In order to consider the case in which
a vehicle merges close to the end of the acceleration lane, the payoff function of the driver of SV should
include a term called the forced merging payoff, which relates the remaining distance to the end of the
acceleration lane. This affects cases where the driver decides the ‘change (s1)’ action at the decision
point where the remaining distance is considerably short.

This study formulated the forced merging payoff as a function of the remaining distance and
vSV(t). There is an assumption that the end of the acceleration lane is an imaginary preceding vehicle
that is stopped. The presence of this imaginary vehicle, which is also considered as a hard wall,
means the driver of SV cannot drive further, due to the restricted length of the acceleration lane.
Thus, the expected safety distance to maintain the instant speed of the SV, vSV(t), was estimated by
a car-following model. This study used the Rakha-Pasumarthy-Adjerid (RPA) car-following model,
which was first developed by Rakha et al. [42]. The performance of the RPA car-following model has
been validated against naturalistic driving data [43]. This study estimated the safety distance for the
SV, xCF

SV(t) using the RPA model’s two components: steady-state traffic stream behavior and collision
avoidance. The steady-state modeling applies the Van Aerde’s steady state car-following model [44,45],
which is a non-linear single regime function of vehicle speed and spacing. The first safe spacing (i.e.,
safety distance) provided by the steady-state model is

xCF1
SV (t) = c1 + c3·vSV(t) +

c2

v f − vSV(t)
. (10)

Here, v f indicates the free-flow speed. The model coefficients can be computed as

c1 =
v f

k jvc2

(
2vc − v f

)
, (11)

c2 =
v f

k jvc2

(
v f − vc

)2
, (12)

c3 =
1
qc
−

v f

k jvc2 . (13)

Here, k j, vc, and qc indicate the jam density, speed-at-capacity, and saturation flow rate, respectively.
The detailed definition of these coefficients is described in [44].

As the second component of the RPA model, collision avoidance was modeled to avoid incidents
at non-steady-state conditions [43]. The second safe spacing estimated by collision avoidance is
defined as

xCF_2
SV (t) =

vSV(t)
2

2·amin
+ x j. (14)

Here, amin and x j denote the minimum acceleration (i.e., maximum deceleration) and the jam
spacing, respectively.

The maximum value of two safe spacings, xCF_1
SV (t) and xCF_2

SV (t), is considered as the expected
safe spacing to maintain current speed.

xCF
SV(t) = max

(
xCF_1

n (t), xCF_2
n (t), xRD

max

)
. (15)

Here, xRD
max is the maximum of the remaining distance, i.e., the longitudinal length of the

acceleration lane.
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To balance each payoff, this study re-formulated the forced merging payoff of the driver of SV,
UFM

SV .

UFM
SV =

max
(
xCF

SV(t) − xRD
SV (t), 0

)
xCF

SV(t)


2

. (16)

Here, xRD
SV (t) indicates the remaining distance for the SV in the acceleration lane at time t. This

formulation satisfies UFM
SV ∈ [0, 1] as shown in Figure 6. If the remaining distance is shorter than xCF

SV(t),
UFM

SV begins to have positive payoffs, inducing a preference for the ‘change (s1)’ action. This term
presents greater payoffs when vSV(t) is faster.Sensors 2020, 20, x FOR PEER REVIEW 12 of 34 

 

 
Figure 6. Forced merging payoff by the remaining distance at various speeds. 

3.3.3. Payoff Functions for the Drivers of the SV and LV 

Table 1 represents the updated merging decision-making model in normal form. The payoff 
functions of the driver of SV consist of both the safety and forced merging payoffs, and those of the 
driver of LV include the safety payoffs only. In order to capture unobserved utility, both players’ 
payoff functions also have an error term, which was assumed to be normally distributed as 	 	 	~	 (0, 1). The parameters in the payoff functions, i.e., set of  and  (  = 1,2,3 and  = 1, 
2), are parameters to be estimated. 

Table 1. Game Structure and Payoff Functions of the Merging Decision-Making Game in Normal 
Form. 

Player & Actions 
Driver of LV 

Yield [ ( )] 2 Block [ ( )] 

D
ri

ve
r o

f S
V

 

Change 
[ ( )] 1 

= + ( ) + +  = + ( ) +  
= + ( ) + +  = + ( ) +  

Wait 
[ ( )] = + ( ) +  = + ( ) +  

= + ( ) +  = + ( ) +  

Overtake 
[ ( )] = + ( ) +  = + ( ) +  

= + ( ) +  = + ( ) +  
1  in parentheses denotes the probability assigned to the pure strategy of the driver of SV, ; ∑ = 1. 
2  in parentheses denotes the probability assigned to the pure strategy of the driver of LV, ; ∑ = 1. 

4. Model Calibration and Validation 

Model evaluation was conducted to prove the efficiency of the game models using the stage 
game based on the newly formulated payoff functions. This section introduces the observation 
dataset for model evaluation and calibration methodology. In addition, the calibration and validation 
results of our previous model and the updated repeated game models are presented.  

Figure 6. Forced merging payoff by the remaining distance at various speeds.

3.3.3. Payoff Functions for the Drivers of the SV and LV

Table 1 represents the updated merging decision-making model in normal form. The payoff

functions of the driver of SV consist of both the safety and forced merging payoffs, and those
of the driver of LV include the safety payoffs only. In order to capture unobserved utility, both
players’ payoff functions also have an error term, which was assumed to be normally distributed as
εSV or LV

ij ∼ N(0, 1). The parameters in the payoff functions, i.e., set of αi j and βi j (i = 1,2,3 and j = 1,
2), are parameters to be estimated.

Table 1. Game Structure and Payoff Functions of the Merging Decision-Making Game in Normal Form.

Player & Actions
Driver of LV

Yield [l1(q1)] 2 Block [l2(q2)]

Driver of SV

Change
[s1(p1)] 1

P11 = α1
11 + α2

11US
SV(s1) + α3

11UFM
SV + εSV

11
Q11 = β1

11 + β2
11US

LV(l1) + εLV
11

P12 = α1
12 + α2

12US
SV(s1) + α3

12UFM
SV + εSV

12
Q12 = β1

12 + β2
12US

LV(l2) + εLV
12

Wait
[s2(p2)]

P21 = α1
21 + α2

21US
SV(s2) + εSV

21
Q21 = β1

21 + β2
21US

LV(l1) + εLV
21

P22 = α1
22 + α2

22US
SV(s2) + εSV

22
Q22 = β1

22 + β2
22US

LV(l2) + εLV
22

Overtake
[s3(p3)]

P31 = α1
31 + α2

31US
SV(s3) + εSV

31
Q31 = β1

31 + β2
31US

LV(l1) + εLV
31

P32 = α1
32 + α2

32US
SV(s3) + εSV

32
Q32 = β1

32 + β2
32US

LV(l2) + εLV
32

1 pi in parentheses denotes the probability assigned to the pure strategy of the driver of SV, si;
∑3

i=1 pi = 1. 2 q j in
parentheses denotes the probability assigned to the pure strategy of the driver of LV, l j;

∑2
j=1 q j = 1.
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4. Model Calibration and Validation

Model evaluation was conducted to prove the efficiency of the game models using the stage game
based on the newly formulated payoff functions. This section introduces the observation dataset for
model evaluation and calibration methodology. In addition, the calibration and validation results of
our previous model and the updated repeated game models are presented.

4.1. Preparation of Observation Dataset

This study used NGSIM vehicle trajectory data from a segment of U.S. Highway 101 (Hollywood
Freeway) in Los Angeles, California, collected between 7:50 and 8:35 a.m. on June 15, 2005 [14,15].
Reasonable classification of the action strategies chosen by the drivers of the SV and LV is a critical issue,
as it is directly related to the results of the game model [13]. There is a limitation on the classification
of drivers’ decisions based on trajectories and speed profile data. This study used a total of 1504
observations extracted from NGSIM data in [13]. For classification of the SV’s maneuvers observed in
the field, this study used the types of gap that were selected at game-playing moments among the three
following gap types (as illustrated in Figure 1a): (1) forward (lead) gap, (2) adjacent (current) gap, or
(3) backward (lag) gap. In addition, the spacing between the SV and LV was used for the classification
of the LV’s maneuvers. A detailed classification methodology is described in [13]. Next, all data were
reviewed to judge whether the classification results were reasonable to show drivers’ intentions. If the
specific data were regarded as improper classification, these data were modified. Decisions made by
drivers in all observations were classified using this process.

4.2. Model Calibration

4.2.1. Calibration Approach

In the game model, each player chooses an action to achieve the goal of the game. In game theory,
the Nash equilibrium is a solution to find the optimal set of strategies for both drivers where they have
no incentive to deviate from their initial strategy. If the Nash equilibrium exists, it implies that each
player will choose the strategy that maximizes their own payoff while considering an opponent who
also wants to maximize their payoff. The Nash equilibrium defines pure strategy as P(s∗, l∗) ≥ P(si, l∗), ∀ si ∈ S, i = 1, 2, 3

Q(s∗, l∗) ≥ Q
(
s∗, l j

)
, ∀ l j ∈ L, j = 1, 2

, (17)

where s* and l* indicate the equilibrium action strategy of the drivers of the SV and LV, respectively.
In this study, if a pure strategy Nash equilibrium does not exist, a mixed strategy Nash equilibrium
involves at least one player playing a randomized strategy and no player being able to increase their
expected payoff by playing an alternate strategy. A probability for each player’s strategy is assigned
with consideration of each player’s expected payoff from the different strategies [28]. This paper used
the MATLAB function N-Person Game (NPG), developed by Chatterjee [46], to solve a two-player,
finite, non-cooperative game. Chatterjee’s algorithm [46] solves the game by computing the Nash
equilibrium in mixed strategies based on the estimated parameters and expected payoffs (i.e., Pi j and
Qi j). The algorithm provides the probabilities of the choice of pure action strategies for each driver
(i.e., pi and q j) in each observation.

In order to calibrate the merging decision-making model, this study followed the calibration
method developed by Liu et al. [9], who proposed a parameter estimation method by solving a bi-level
programming problem. As illustrated in Figure 7, the lower-level programming is to find the Nash
equilibrium using Chatterjee’s function [46]. The upper level is a non-linear programming problem
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that minimizes the total deviation in probabilities in the system in order to choose actual observed
actions using the following function

min
n∑

k=1

(
1− pak ·qak

)
, (18)

where k denotes the index of observations; ak is the observed action strategy set (si
k, l j

k) in observation
k; and pak and qak are the probabilities that drivers of the SV and LV, respectively, choose the observed
action in ak. Here, Ak and Bk denote all parameters to be estimated for each driver’s payoff functions.Sensors 2020, 20, x FOR PEER REVIEW 14 of 34 
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4.2.2. Calibration Results

As mentioned earlier, this study calibrated a total of two types of game model: (1) the one-shot
game model, in which the developed stage game is played independently at every game point based
on instantaneous status only; (2) the repeated game model using the cumulative payoffs with factor δ
of various rates conducted every 0.5s. To verify the performance of the updated payoff functions in
predicting human drivers’ decisions in merging situations, the first type of model was subdivided into
two models according to the payoff functions used in model calibration, as below.

• One-shot game model based on the stage game using the payoff functions developed in [13];
• One-shot game model based on the stage game using the reformulated payoff functions in

Section 3.3

Here, the former and latter models were called the ‘previous one-shot game model’ and the ‘one-shot
game model’, respectively. For model calibration, an NGSIM dataset observed between 7:50 and
8:20 a.m. was used. The number of observations used in model calibration was 685 (out of 1504).
Table 2 shows the estimated parameters of the payoff functions of the drivers of the SV and LV.
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Table 2. Estimated Parameters of the Payoff Functions for Game Models.

Payoff
Function

Parameters One-Shot
Game Model

Repeated Game Models

Model 1
(δ = 0.6)

Model 2
(δ = 0.8)

Model 3
(δ = 1.0)

Model 4
(δ = 1.2)

Model 5
(δ = 1.4)

Model 6
(δ = 1.6)

P11

α1
11 9.64 5.10 2.88 6.69 −1.77 7.08 7.11

α2
11 23.51 74.83 48.38 96.45 9.20 27.34 8.38

α3
11 32.69 59.51 69.45 1.00 5.16 97.08 2.75

P12

α1
12 9.43 8.83 3.58 7.87 8.64 7.27 −6.26

α2
12 87.57 77.60 44.40 86.30 3.11 50.13 4.25

α3
12 10.98 43.84 1.80 71.19 5.73 84.75 7.34

P21
α1

21 0.63 −9.78 −7.49 −6.91 −8.88 −6.65 −8.13

α2
21 3.35 26.60 10.68 62.49 3.18 31.94 1.75

P22
α1

22 −7.88 −8.50 −3.42 −6.19 9.73 −8.98 5.56

α2
22 42.64 20.75 5.21 65.72 6.22 19.43 7.16

P31
α1

31 −0.66 6.07 −9.38 −6.21 −2.84 −5.18 6.41

α2
31 67.24 48.05 78.92 94.59 11.19 25.08 7.53

P32
α1

32 −0.53 -3.10 −5.39 −0.44 2.75 −3.69 8.35

α2
32 16.91 52.79 95.22 59.86 2.21 30.06 4.79

Q11
β1

11 9.93 3.78 6.96 9.80 −1.99 7.97 −3.75

β2
11 13.30 17.29 6.64 25.06 6.88 5.86 10.22

Q12
β1

12 −1.26 −8.39 -6.24 −5.83 −7.03 −8.90 −8.36

β2
12 3.70 0.29 19.40 23.84 10.20 18.49 1.89

Q21
β1

21 5.78 7.64 8.05 8.74 5.52 8.25 0.27

β2
21 89.18 57.76 58.65 78.06 2.76 82.45 4.12

Q22
β1

22 7.73 −4.36 −4.36 0.63 0.34 −8.66 −5.95

β2
22 57.97 6.64 55.26 14.12 7.43 38.74 7.61

Q31
β1

31 3.88 −4.02 -6.99 6.38 9.39 −0.82 3.68

β2
31 55.87 96.95 98.01 1.12 4.35 46.49 9.22

Q32
β1

32 4.26 −9.75 1.08 −8.01 6.78 1.53 −4.85

β2
32 27.87 26.74 22.93 74.89 2.20 86.19 7.83

Note that the previous one-shot game model using the payoff functions in [13] was calibrated using the same
calibration methodology, but the estimated parameters are not shown in the table because of the different formulation
for payoff functions.

In order to compare the models’ prediction accuracy, the mean absolute error (MAE) was calculated
using Equation (19)

MAE =
1
N

N∑
k=1

∣∣∣1− 1(x̂k − xk)
∣∣∣, (19)

where N, x̂k, and xk denote the number of observations, model prediction, and actual observations,
respectively. Note that 1(x̂k − xk) is equal to one if x̂k = xk, and is zero otherwise. The model prediction
x̂k was estimated by probabilities calculated using Chatterjee’s algorithm [46]. Table 3 shows the
calibration results for the MAEs of the three types of models. In comparison with our previous model,
the one-shot game model using the updated payoff functions shows a higher prediction capacity in
merging decision-making. In the repeated game models, the models with δ > 1.0 were calibrated with
lower MAEs than those with δ ≤ 1.0.
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Table 3. Calibration Results.

Models
Previous One-Shot
Game Model (2018)

One-Shot
Game Model

Repeated Game Models

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Rate
factor, δ na 1 na 0.6 0.8 1.0 1.2 1.4 1.6

MAE 2 0.2555
(74.45 %)

0.1241
(87.59 %)

0.1708
(82.92 %)

0.1606
(83.94 %)

0.1606
(83.94 %)

0.1372
(86.28 %)

0.1358
(86.42 %)

0.1460
(85.40 %)

1 Not applicable. 2 The number in parentheses indicates prediction accuracy.

4.3. Model Validation

The rest of the data, 819 observations out of 1504, collected between 8:20 and 8:35 a.m., were
used for validating the model, and the validation results are shown in Table 4. Model validation
results, which show the same trends as the calibration results, are summarized as follows. First,
when comparing the results of the stage game developed in the previous study [13] and this study,
the prediction accuracy increases by about 12% when the third stage game is used. Thus, this study
enhances the decision-making game model’s performance by using the reformulated payoff functions
to represent merging maneuvers. Next, in the validation results, the repeated game models with
δ ≥ 1.0 show a prediction accuracy of higher than 85%. In particular, the repeated game model shows
the highest prediction accuracy when δ = 1.4. Both the one-shot game and repeated game model
with δ = 1.4 show a considerably high prediction accuracy of more than 86%. Due to the limitations
of unbalanced observation data [12], nevertheless, model validation using field data cannot provide
evidence that is beneficial using the repeated game. It is also hard to show the apparent difference
between the one-shot game and the repeated game model. In the following sections, therefore, the game
models are additionally evaluated through sensitivity analysis and simulation study.

Table 4. Validation results.

Models
Previous One-Shot
Game Model (2018)

One-Shot
Game Model

Repeated Game Models

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Rate
factor, δ na na 0.6 0.8 1.0 1.2 1.4 1.6

MAE 1 0.2418
(75.82%)

0.1197
(88.03%)

0.1954
(80.46%)

0.1758
(82.42%)

0.1465
(85.35%)

0.1368
(86.32%)

0.1307
(86.94%)

0.1355
(86.45%)

1 The number in parentheses indicates prediction accuracy.

5. Sensitivity Analysis of the Calibrated Stage Game

In this section, this study describes the sensitivity analysis conducted to observe how factor
changes related to the proposed payoffs impact the stage game results. In reality, drivers’ merging
behavior to select an acceptable gap size and speed difference between the freeway mainline vehicles
and the merging vehicle is different depending on the merging point [27,40]. Hence, this sensitivity
analysis is required to demonstrate whether the developed stage game model represents merging
behaviors observed in the field in various conditions. To show the decision-making model’s sensitivity,
the stage game is independently played in diverse scenarios varied by three input factors: game
location, relative speed, and spacing. Preparation for the sensitivity analysis is presented first in the
following sections, then results and corresponding discussions are provided.

5.1. Sensitivity Analysis Setting

As shown in Figure 8, a freeway segment that included an on-ramp was used for the analysis,
with locations to play a game classified into two areas: the beginning of the acceleration lane and the
end of the acceleration lane. For the spacing factor test, the SV changed its position between the PV
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and LV. For the speed profile test, the freeway mainline vehicles’ speed was basically categorized into
five scenarios: 60 km/h, 70 km/h, 80 km/h, 90 km/h, and 100 km/h. In each speed scenario, the SV’s
speed varied from 60 km/h to 100 km/h. The freeway testbed and calibrated stage game were modeled
on MATLAB, and other simulation settings are described below.

1. The length of the acceleration lane was 250 m;
2. Based on initial longitudinal coordination, n−1, n, and n+ 1 denote the PV, SV, and LV, respectively;
3. It was assumed that spacing between the PV and LV, ∆xn−1,n+1, was constant as 40 m: in the

game played at the beginning of the acceleration lane, the PV and LV were located at 70 m and
30 m from the beginning of the acceleration lane, respectively. In the game played at the end of
the acceleration lane, the longitudinal position of the PV and LV were 230 m and 190 m from the
beginning point, respectively;

4. The length of all vehicles was assumed as constant at 4.8 m;
5. Link properties for the freeway are as follows. Saturation flow rate was 2400 veh/h/lane. Jam

density was 160 veh/km/lane. Free-flow speed and speed-at-capacity were 100 km/h and
80 km/h, respectively;

6. Calibrated parameters of payoff functions for the repeated game model with δ = 1.4 were used.
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5.2. Sensitivity Analysis Results

Based on the results of the stage game played at two locations in various lag spacing and relative
speed scenarios, the impact of input factors and other findings revealed by the sensitivity analysis are
provided. Figure 9a–e show the results after playing games near the beginning of the acceleration lane,
and Figure 9f–j reveal the game results after playing the game near the end of the acceleration lane.
The Chatterjee function for finding the Nash equilibrium was used to decide these game results [46].
If the game result in each case is a pure strategy Nash equilibrium, the corresponding action set is
a dominant decision made by two drivers, i.e., the probability of one of six action strategies (pi j × qi j) is
one. Otherwise, when a mixed strategy Nash equilibrium exists, the game result is randomly chosen
by probabilities.

Differences in drivers’ behaviors based on the merging point are distinct in merging maneuver
decisions. Near the beginning of the acceleration lane, a merging vehicle driver usually passes a lead
vehicle when vn > vn−1 and when lead spacing (∆xn−1,n) is quite small [27]. The higher psychological
pressure related to merging makes drivers accept smaller gaps as they arrive nearer to the end of
the auxiliary lane compared to cases where they can take an original gap near the beginning of the
acceleration lane [27]. In other words, field data show that the driver of SV tried a forced merging
maneuver at close to the end of the acceleration lane [27,33]. When vn < vn+1 and the lag spacing
(∆xn,n+1) is quite small, the driver of SV waits until the LV passes the SV and then may merge using
a backward gap. In Figure 8, the calibrated stage game results show these behaviors in choosing an
‘overtake (s3)’ and ‘wait (s2)’ action according to the game location.
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Figure 9. Graphical representation of the one-shot game results depending on game locations, spacing
between vehicles (∆xn,n+1), and speed of the SV (vn): (a–e) game played at the beginning of the
acceleration lane with mainline vehicles driving at 60 km/h to 100 km/h, respectively; (f–j) game played
at the end of the acceleration lane with mainline vehicles driving at 60 km/h to 100 km/h, respectively.
Note that a red line parallel to the x-axis on each graph indicates the speed of the freeway mainline
vehicles (vn−1, vn+1).

Near the beginning of the lane, as illustrated in Figure 9a–d, the game results show that the
driver of SV chooses the ‘overtake (s3)’ action in conditions indicative of higher relative speed and
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short lead spacing. In contrast, the game results (as illustrated in Figure 9f–i) show that the driver
of SV intentionally changes a lane due to a short remaining distance in the acceleration lane. For the
‘wait (s2)’ action, differences in the results of the stage game for merging decision-making are revealed
according to game location. These results prove that the forced merging utility works correctly when
the SV is close to the end of the acceleration lane. Consequently, the stage game developed in this
study accurately depicts realistic decisions made by human drivers according to game location.

As discussed in Section 3.3.3, TTC is critical in making lane-changing decisions. Since TTC is
comprised of spacing (i.e., space headway) and relative speed, both are important in human drivers’
decision-making for merging maneuvers at freeway merging sections. Hence, this study also analyzed
the impacts of these factors. In Figure 9c, blue lines parallel to the y-axis (as marked with 1O to 3O) and
green lines parallel to the x-axis (as marked with A and B) denote test cases for sensitivity analysis on
relative speed and spacing, respectively.

In the sensitivity analysis on relative speed, the PV and LV are supposed to drive at 80 km/h, and
the SV’s speed varies from 60 km/h to 100 km/h. Scenarios were prepared with three lag spacings:
10 m, 20 m, and 30 m, and the game results of all scenarios are shown in Figure 10. Game results
clearly show that the relative speed affects decision-making. When lag spacing (∆xn,n+1) is 10 m
(as shown in Figure 10a), the drivers of the SV and LV decide on a ‘wait (s2) and block (l2)’ action set if
∆vn,n+1 ≤ −10 km/h. In addition, both drivers are willing to choose a ‘change (s1) and yield (l1)’ action
set through the stage game if ∆vn,n+1 ≥ −7 km/h. These cooperative action strategy sets are results of
both drivers’ common consent subject to safety. In a certain range, i.e., −10 km/h < ∆vn,n+1 < −7 km/h,
drivers’ desired actions are competitive; in these conditions, the non-cooperative behaviors, ‘change
(s1) and a block (l2)’ action, will be carried out.
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When ∆xn,n+1 = 20 m, in Figure 10b, the driver of the SV and LV choose a cooperative action
strategy (s1, l1) even if ∆vn,n+1 = −20 km/h. This means that the relative speed is largely irrelevant in
influencing the driver of SV to choose a lane-changing action if there is sufficient spacing between
vehicles. If there is enough space headway, real-life experience generally shows that a driver of a merging
vehicle will change lane upon reaching an acceleration lane even though a speed harmonization process
is required. In response to the merging vehicle’s lane change, the driver of LV decreases speed to adjust
to the new preceding vehicle (i.e., the SV) or changes a lane to the left to maintain its speed. When
∆xn,n+1 = 30 m (i.e., ∆xn−1,n = 10 m), moreover, the game results show a distinct feature depending
on the relative speed. The cooperative action strategy (s1, l1) is chosen by the stage game until vn is
slightly higher than vn−1. If ∆vn,n−1 ≥ 8 km/h, the driver of SV chooses an ‘overtake (s3)’ action due to
a relatively small TTC in order to avoid harsh braking. Of the overtaking vehicles, 97.7% were found
to have a speed higher than the freeway mainline vehicles [27]. Thus, this game model can reasonably
represent decision-making results according to relative speed.
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For the sensitivity analysis of spacing, the stage game was played with various lag spacing from
0 m to 40 m. The PV and LV are supposed to drive at 80 km/h, and the SV’s speed is 70 km/h and
90 km/h. Game results of all scenarios are shown in Figure 11. In the figure, the x-axis indicates the lag
spacing (∆xn,n+1), and hence an increase in ∆xn,n+1 means a decrease in lead spacing (∆xn−1,n).
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When vn < vn−1, as shown in Figure 11a, the stage game results show that the driver of SV decides
on a ‘wait (s2)’ action in cases in which lag spacing is less than 10 m. In other words, results indicate
that a slower SV requires spacing of more than 10 m to choose a ‘change (s1)’ action. Depending on the
spacing, competitive decision-making is also expected. This trend is also found in choosing an ‘overtake
(s3)’ action when vn > vn−1. In Figure 11b, the driver of SV decides to overtake at ∆xn−1,n ≤ 12 m.
Therefore, the sensitivity results indicate that the stage game reasonably explains the difference in
drivers’ choices according to spacing.

In the results, decisions included in a non-cooperative action strategy set, i.e., (s1, l2), are found in
a specific decision-making region, as colored black in Figure 9. This region implies that this strategy
set, which is decided simultaneously by drivers, puts them into competition. This result means that
the driver of SV wants to change a lane after trying to ensure a safe lead and lag gap and the driver of
LV does not allow the SV to merge. During the game period, one driver should change their initial
decision to avoid a potential collision, and the final decision set would be a cooperative set. In addition,
due to an unbalance in the number of observations indicating each action strategy, the (s2 , l1) action
cannot be determined in this sensitivity analysis. From field data, including NGSIM data, it is clear
that merging maneuvers are usually cooperative, as the driver of LV perceives the SV’s lane-changing
intention. Compared to cooperative merging, non-cooperative cases are only occasionally observed.
The stage game results describe cooperative behaviors, and competition between drivers can be found
at certain relative speed and spacing profiles. Consequently, the stage game model proposed in this
study successfully explains rational human drivers’ decision-making results.

6. Simulation Case Study

In this chapter, a simulation study is presented to demonstrate the performance of the game model
based on the developed stage game for merging. For this case study, a microscopic simulation model
based on an ABM method that included a vehicle acceleration controller was developed. To verify
the performance of the ABM, a comparison between NGSIM data and simulation results is provided.
The simulation setting is defined, and then various merging scenarios representing both cooperative
and non-cooperative cases are explained. Next, simulation results for each scenario are presented.

6.1. Simulation Model Development

To investigate whether the repeated game model is efficient to use in microscopic traffic simulation,
we used an ABM approach. ABM is a powerful method for making simulations that is widely applied
across real-life problems [47–49]. This study developed a simulation model that was built on MATALB
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using the ABM method combined with the game model. ABM is a suitable approach for simulating
the actions and interactions of intelligent entities, which includes individual people. Collaboration and
competition, in particular, are major concerns in game theory; these are two typical types of human
interactions addressed in several ABM methods [50]. One of the applicable situations for using ABM is
when interactions among agents are heterogeneous and can lead to network effects [48,51]. Thus, this
study develops a simulation model to explain merging interactions.

According to Zheng et al. [49], the ABMs explored for the existing transportation system in today’s
literature, in general, have the distinguishing feature of integration, combining three components:
drivers’ action decisions, drivers’ route decisions, and microsimulation. As a microsimulation
component, the simulation model developed in this study basically simulates vehicle movements
based on position and by speed profile, as determined by an acceleration controller at each time
step. As shown in Figure 12, the controller consists of a game module and a car-following module.
According to the game model for the drivers’ action decision component, a driver of SV plays a stage
game with a driver of LV in the target lane. Depending on the action strategies at each game time,
both drivers determine the acceleration level to accomplish their own strategy. In the car-following
module, in addition, the desired acceleration level is decided by the RPA car-following model. In this
acceleration controller, neither the individual demographic nor the travel characteristics of either agent
are considered.
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As the game results show, when the driver of SV chooses a ‘change (s1)’ action, they evaluate lead
and lag spacing for gap acceptance to satisfy sufficient spacing and avoid collision. If the instantaneous
gap is enough to change lane, the SV begins merging onto the freeway, and the driver of LV determines
the acceleration level to follow the SV in the car-following model in response to recognition of the SV’s
lane-change. In addition, a route decision module is not required because merging scenarios are tested
on the one-lane freeway network, which includes a merging ramp.

The car-following module estimates a desired acceleration level based on instantaneous spacing
between vehicles and speed at each time step t. This study used two components, i.e., steady-state and
collision avoidance, of the RPA car-following model for the module [43]. The detailed definition and
formulas of the components in the RPA model are described in [43]. Figure 13 shows the performance of
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car-following module in a case in which five vehicles formed a platoon. Vehicles decide an acceleration
level to follow the preceding vehicle by the RPA car-following model. Here, it was assumed that
vehicles were located with shorter spacing than the steady-state spacing of Van Aerde’s car-following
model [44] at simulation time 0. As illustrated in Figure 13, therefore, following vehicles initially
decreased speed to ensure proper spacing between vehicles. Then, they began to accelerate after
ensuring the sufficient spacing by sequence in the platoon. In conclusion, acceleration level and speed
oscillated for a while, and then they were stabilized.
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The game module begins operating as soon as the SV enters the acceleration lane. The nearest
following vehicle in the target lane becomes the opposite player. In this module, there are two types
of merging game: (1) the one-shot game; (2) the repeated game. In detail, the one-shot game uses
instantaneous payoffs, which are computed based on spacing and speed profile at time t, for each
action strategy set, i.e., Pi j(t), Qi j(t). In the repeated game, on the other hand, the cumulated payoffs
are utilized. Regardless of the game type, two players decide an action strategy set subject to the Nash
equilibrium. Based upon the action chosen at time t, the desired acceleration level for each vehicle is
calculated to execute that vehicle’s individual action strategy. For the SV, the desired acceleration level
is determined as stated below:

• For ‘change (s1)’ action, the driver of SV determines acceleration level in consideration of not only
speed synchronization but also gap acceptance. If vn(t)� vn+1(t), an acceleration level for speed
harmonization is additionally calculated. By gap acceptance rule, another acceleration level is
calculated to ensure a sufficient gap for lead and lag spacing;

• For ‘wait (s2)’ action, a required acceleration level to wait in acceleration lane until the lag
vehicle passes the SV is computed. Generally, waiting cases are observed when vn(t) � vn+1(t)
and ∆xn,n+1 is not sufficient. If vn(t) � vn+1(t) and the remaining distance to the end of the
acceleration lane at time t, RDn(t), is sufficient to not require deceleration, the SV slightly
accelerates to harmonize the speed with freeway vehicles during waiting time;

• Lastly, it needs to calculate the required acceleration level to use the forward gap for ‘overtake (s3)’
action. This case is observed when vn(t)� vn+1(t) and ∆xn−1,n is not sufficient. For this strategy,
therefore, speed harmonization is excluded as an acceleration component.

In addition, the driver of LV decides the acceleration level for a ‘yield (l1)’ action by accepting the
SV’s merging intention. To provide safe spacing for merging, the LV’s acceleration level was calculated
based on the car-following model with an assumption that the SV became a potential lead vehicle.
For a ‘block (l2)’ action, on the other hand, the driver of SV shows an acceleration to pass the SV by
decreasing spacing. This decrease in spacing is regarded as blocking intention.
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6.2. Simulation Model Validation

Prior to conducting a case study, validation of the simulation model developed in this study
was required to determine whether the conceptual model is a reasonably accurate representation of
the real world [52] and whether the output of simulations is consistent with real-world output [53].
To validate the simulation model, this study used the graphical comparison technique, in which the
graphs of values derived from the simulation model over time are compared with the graphs of
values collected in a real system. It is a subjective, yet practical approach, and is especially useful
as a preliminary approach [54]. Since the objective of the case study was to verify the repeated
game’s efficiency, the simulation focuses on presenting microscopic vehicle movements based on
rational drivers’ decision-making without consideration of individual characteristics. Considering this
objective, a mathematical approach, such as statistical testing of simulation results, was not selected
for model validation. Therefore, this study provides a graphical comparison between NGSIM data and
the results derived from the simulation model to investigate similarity of trend in vehicle position and
corresponding spacing.

This study extracted game cases from NGSIM data in which there was no interference by other
surrounding vehicles except for the three main vehicles (i.e., the SV, PV, and LV). Next, instantaneous
vehicles’ location and speed prior to 1.0 seconds in each case were prepared as input data for simulation.
The graphical comparison results showing longitudinal vehicle position and spacing are shown
in Figure 14. In an example, to show changing situation (see Figure 14a), vehicle position and
corresponding lead and lag spacing are almost identical. In an example showing an overtaking
situation (see Figure 14b), considerable similarity is observed. The results show that the simulation
model based on the ABM represents values similar to those found in the NGSIM data in longitudinal
vehicle position and spacing. Consequently, it was possible to conclude that the developed simulation
model could be utilized in the case study.
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situation (SV ID: 268, PV ID: 258, and LV ID: 269 in the US101 data collected from 8:05 to 8:20 a.m.) and
(b) overtaking situation (SV ID: 1108, PV ID: 1112, and LV ID: 1118 in the US101 data collected from
8:20 to 8:35 a.m.).
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6.3. Simulation Setting and Cases

This study conducted case studies in various merging scenarios simulated for a total of five
vehicles, including a merging vehicle. Simulation experiments were executed using both the one-shot
game model and the repeated game model. As described above, the one-shot game herein is played
independently without consideration of previous results at every decision-making point. The repeated
game is played based on the cumulative payoffs proposed in Section 3.2. In addition, a freeway segment,
including one merging section, was modeled on MATLAB, as illustrated in Figure 15. The length of
the freeway mainline was 1.0 km and the 250 m acceleration lane was located 80 m downstream of the
beginning of the network. The details of the simulation settings are defined as follows.

1. Link properties for the freeway are as follows. Saturation flow rate was 2400 veh/h/lane. Jam
density was 160 veh/km/lane. Free-flow speed and speed-at-capacity were 100 km/h and
80 km/h, respectively;

2. Based on initial longitudinal coordination, vehicles on the network were designated as n− 2, n− 1,
n, n + 1, and n + 2, respectively. Here, the vehicle n denotes the SV;

3. It was assumed that the average initial speed of freeway vehicles was v f wy. The initial speeds of
four vehicles on the freeway mainline (i.e., n− 2, n− 1, n + 1, n + 2) were randomly determined
using the normal distribution with a mean of v f wy and standard deviation of 0.2 at simulation
start time;

4. The initial spacing between freeway vehicles, i.e., ∆xn−2,n−1, ∆xn−1,n+1, ∆xn+1,n+2, was determined
using the Van Aerde’s steady-state model according to instantaneous speed of corresponding
following vehicle at time-step 0;

5. With regard to the game, the time interval for playing the game was 0.5 s. The stage game would
be newly formed if the LV or PV changed;

6. The rate factor (δ) of 1.4 and corresponding calibrated parameters of payoff functions, as shown
in Table 2, were used for the repeated game model;

7. Maximum and minimum accelerations are 3.4 m/s2 and −3.4 m/s2, respectively, as determined
with reference to the NGSIM data. The length of all vehicles was assumed as constant as 4.8 m;

8. In this simulation model, the freeway mainline vehicles’ behaviors to avoid a potential collision
with the merging vehicle, i.e., lane change to left or deceleration before arriving at the merging
section, were excluded. These behaviors could not be modeled for an individual vehicle’s driving
maneuvers in traffic simulator because they are a result of vehicles’ independent decisions rather
than any interaction with the merging vehicle after recognizing the merging vehicle.
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Figure 15. Simulation network configurations.

A total of five simulation cases were prepared, as summarized in Table 5, to represent plausible
merging cases as defined by the diverse input values of three factors: freeway mainline vehicles’
average speed (v f wy), initial SV’s speed (vn), and initial lag spacing (∆xn,n+1). There are two main
categories in merging: cooperative and competitive merging. Cooperative merging cases, in which the
drivers’ decision set would be collaborative by the common consent of both drivers, indicate typical
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cases to select a gap type among three types: a forward gap, an adjacent gap, and a backward gap.
In contrast, a competitive merging case represents an example showing a conflict in both drivers’
behavior. For example, the driver of SV who wants to use an adjacent gap is willing to prepare to
merge onto the freeway by turning a signal on, and then executing a lane change. In that time, the
driver of LV decides not to allow the cut-in to avoid the expected considerable deceleration. One of the
drivers should change their initial decision in order to avoid a potential collision. This competitive
situation is not common, but many drivers may have had an experience of this type. Thus, we picked
two cases in order to show not only the game model’s performance in non-cooperative cases but also
differences between the two game models in competitive scenarios.

Table 5. Initial Conditions of Merging Scenarios for Case Study.

Index Scenarios Gap Type Used for Merging vfwy vn ∆xn,n+1

1

Cooperative

Adjacent gap 90 km/h 75 km/h 20.0 m

2 Backward (lag) gap 90 km/h 65 km/h 15.0 m

3 Forward (lead) gap 50 km/h 65 km/h 15.0 m

4

Competitive

Adjacent gap or backward gap
(Initial decision: non-cooperative) 85 km/h 72 km/h 14.0 m

5 Adjacent gap or backward gap
(Initial decision: cooperative) 90 km/h 75 km/h 7.5 m

6.4. Case Study Results

Cooperative and competitive cases were tested using the developed simulation model. In order
to validate the repeated game model’s performance, the simulation results using the repeated model
are compared with results using the calibrated stage game model played independently, i.e., one-shot
game model at every decision-making point.

In cooperative scenarios, a dominant action strategy is found in rational decision-making due
to the apparent situation. The simulation model using the repeated game model shows a very close
performance with the model using the one-shot game as the game results are same in each game point.
Since there is a mixed strategy Nash equilibrium in the competitive cases, both drivers decide an action
strategy depending on the probability of actions. For case study results, this study provides the typical
outcome of each scenario if there is no distinct difference in decision-making using the two game
models. Otherwise, especially in the competitive scenario, the decision-making output simulation
results of each game model are individually presented.

6.4.1. Case 1: Cooperative Merging Scenario Using an Adjacent Gap

In simulation results for the first case, Figure 16 presents that the SV smoothly merged onto the
freeway. As described in the sensitivity analysis, the developed game model has the ability to represent
drivers’ decisions in normal cooperative merging cases. According to the game results, as shown in
Figure 17, drivers chose a ‘change (s1) and yield (l1)’ action set during the game period. The SV slightly
accelerated by speed harmonization rules in preparation for merging while the LV decelerated in order
to accept the SV’s lane change. When a lead and lag gap was acceptable, the SV merged onto the
freeway mainline. In simulation, the driver of SV controlled the vehicle’s speed via the car-following
rule as soon as it executed the lane change and its following vehicles also showed oscillation in their
speed profiles to ensure a safe gap.
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in simulation time except game period.
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6.4.2. Case 2: Cooperative Merging Scenario Using a Backward Gap

Simulation results for the second case, as shown in Figure 18, indicate that the driver of SV used
the backward gap after the initial LV to overtake the SV. In Figure 19a, the drivers decided on a ‘wait
(s2) and block (l2)’ action strategy, respectively. The LV accelerated to block merging, and the SV also
accelerated for speed synchronization even though the driver of SV decided to take a ‘wait (s2)’ action.
As soon as the initial LV overtook the SV, a new merging decision-making game was identified in
which the vehicle n + 2 became the new LV. The results of the second game are shown in Figure 19b.
The SV continuously chose a ‘change (s1)‘ action until the gap acceptance rule was satisfied, then
moved to the freeway mainline in consideration of gap size and relative speed. The LV, i.e., the vehicle
n + 2, in the second game decelerated in a yielding action in response to the SV’s intention to merge.
In conclusion, the merging decision-making model was shown to depict a typical waiting scenario for
both game models.
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6.4.3. Case 3: Cooperative Merging Scenario Using a Forward Gap

In overtaking scenario, the time–space diagram in Figure 20 shows that the SV took the forward
gap and then merged onto the freeway. When the SV entered the acceleration lane, as presented in
Figure 21a, the SV and LV chose the ‘overtake (s3) and yield (l1)’ action set. Although the LV decided
the yielding action, it was observed that the LV maintained its speed during the first game period
due to observing the SV’s passing. After overtaking the lead vehicle, the SV began to decrease speed
to harmonize with that of freeway vehicles. As shown in Figure 21b, a new LV, i.e., one which had
been the lead vehicle in the first game period, selected the yielding action in interaction with the SV.
It therefore showed a deep deceleration during the second game period. The SV maintained on the
acceleration lane, then changed lane as soon as the gap acceptance rule was satisfied. As described in
the simulation setting, the overtaking scenario is usually observed in congested traffic conditions. Thus,
this lane-changing by overtaking action caused a huge oscillation in speed profile because, generally,
spacing between vehicles is small under congested traffic conditions. It is concluded that this simulation
model based on the proposed game model well represents the induction of a backward-forming
shockwave by merging traffic in congested conditions.
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Figure 21. Decision-making game results in case 3: (a) Initial game with n + 1; (b) additional game
with n− 1.

6.4.4. Case 4: Competitive Merging Scenario Choosing an Adjacent Gap or a Backward Gap (1)

In the fourth competitive merging case, as presented in Figure 22, the SV spent relatively longer
time in playing decision-making game than previous three cases. The initial game result of (s1, l2) is
observed in Figure 23a. As a non-cooperative action strategy set, both drivers are in competition to
achieve their own objective. At the third decision-making point, a decision they make becomes (s2, l2)
as a cooperative action strategy set. Although the driver of SV initially wanted to change a lane using
an adjacent gap as soon as entering an acceleration lane, they change the initial decision in order to
avoid collision after recognizing the opposite driver’s aggressive behavior. Thus, the driver finally uses
the backward gap for merging onto the freeway. From this case, this study concludes that the repeated
game model can depict practical changes in drivers’ decisions in competitive decision-making, even
using the cumulative function.
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6.4.5. Case 5: Competitive Merging Scenario Choosing an Adjacent Gap or a Backward Gap (2)

In Case 5, the simulation results show the SV used the backward gap for merging onto the freeway
whichever game model is used, as illustrated in Figures 24 and 25. This example shows a competition
to choose an adjacent gap or a backward gap, as in Case 4. However, there is a difference in that the
initial decision is a cooperative action strategy in Case 5.
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In Figure 26a, when the repeated game model was used, the driver of SV chose a ‘wait (s2)’
action during the first game period and then decided to change lane in the second game period.
While decision-making results were maintained using the repeated game model, an oscillation in
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decision-making is revealed when the one-shot game is used, as shown in Figure 27a. One reason the
one-shot game model causes unstable decision results is that the stage game decides a driver’s action
in a merging situation based on instantaneous vehicle location, speed, and acceleration data without
consideration of previous game results (i.e., decisions made at previous game points). Considering
the goal of each action, a change from a non-cooperative strategy set to a cooperative strategy is
required in order to avoid a collision (if (s1, l2) is chosen) or unnecessary deceleration (if (s2, l1) is
selected). However, changes between cooperative action strategy sets (i.e., (s1, l1) and (s2, l2)) are not
realistic except when there is a surrounding vehicle intervention. This case shows a distinct difference
observed in simulation results depending on which type of the two game models is used. Oscillation
in decision-making may reduce the performance of microscopic traffic simulation models even though
it is only observed in specific competitive merging situations.
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7. Conclusions

Drivers’ behavior has a big impact on the safety and throughput of the transportation system.
This is especially true for traffic conflicts between merging and through vehicles, in that merging
vehicles induce shockwaves, which result in a reduction in the roadway capacity resulting in traffic
congestion. Consequently, modeling driving behavior thoroughly and accurately is critical when
analyzing traffic flow in microscopic traffic simulation and in taking advantage of the advanced
vehicle-driving technologies and strategies in AVs. The purpose of this study is to update the
repeated game lane-changing model proposed in [13]. This game model has a feature that interprets
interaction between drivers, as compared to most lane-changing models, which are focused on the
lane-changing vehicle only. In this study, the payoff functions were newly formulated, focusing
on not only improvements in prediction performance but also use in microscopic traffic simulators.
In the model evaluation, the developed model captured drivers’ merging behaviors with a prediction
accuracy of about 86%, showing an improvement of about 12% compared to [13]. This study also
presented a sensitivity analysis to indicate that the developed model can depict rational merging
decision-making according to variations in the related factors: game location, relative speed, and gap
size. In order to demonstrate why the repeated game is required in microscopic traffic simulation,
moreover, a case study was conducted using the ABM developed to simulate merging situations. Using
the repeated game model showed that it had a superior performance compared to a one-shot game
model, in which the stage game is independently played, in terms of representing practical merging
behaviors in cooperative and competitive merging scenarios.

In order to elaborate on this study as a state-of-the-art lane-changing model, the decision-making
model based on the game theoretical approach needs to be expanded as a decision-making model
for both mandatory and discretionary lane changing. Since lane-changing-related decision making
can be affected by several factors (e.g., road design, traffic stream condition, driving skill, driver’s
aggressiveness), the model should be calibrated based on the field data collected in various conditions.
Lastly, the game model can be applied to advanced vehicle systems, such as AVs, which coexist
with human-operated vehicles on the roadway. The model based on the game theoretical approach
is anticipated to become an appropriate model to decide lane-changing maneuvers and predict
surrounding vehicle drivers’ behaviors.
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