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Abstract: Underground space engineering structures are generally subject to extensive damages and
significant deformation. Given that composite rocks are prone to shear failure, which cannot be
accurately monitored, the piezoelectric active sensing method and wavelet packet analysis method
were employed to conduct a shear failure monitoring test on composite rocks in this study. For the
experiment, specimens were prepared for the simulation of the composite rocks using cement. Two
pairs of piezoelectric smart aggregates (SAs) were embedded in the composite specimens. When the
specimens were tested using the direct shear apparatus, an active sensing-based monitoring test was
conducted using the embedded SAs. Moreover, a wavelet packet analysis was conducted to compute
the energy of the monitoring signal; thus allowing for the determination of the shear damage index
of the composite specimens and the quantitative characterization of the shear failure process. The
results indicated that upon the shear failure of the composite specimens, the amplitudes and peak
values of the monitoring signals decreased significantly, and the shear failure and damage indices
of the composite specimens increased abruptly and approached a value of 1. The feasibility and
reliability of the piezoelectric active sensing method, with respect to the monitoring of the shear
failure of composite rocks, was therefore experimentally demonstrated in this study.

Keywords: piezoelectric active sensing; composite rocks; shear failure; damage detection; damage
index

1. Introduction

There have been significant recent developments in underground space engineering. Accordingly,
the highly complex conditions of geological bodies have been reported, especially at the interfaces where
different rock masses are in contact and are widely distributed in the crust of the Earth. In general, two
or more rock masses are mutually embedded, which is referred to as a composite rocks formation [1,2].
There are significant differences between the physical and mechanical properties of different rock
masses. When a tunnel or a roadway intersects a contact zone, the rock masses in contact undergo
uncoordinated deformation, which generates shear stress, thus resulting in the shear failure of the
rock masses [3–5]. Moreover, the findings of previous researches revealed that the roadway of a
contact zone is subject to extensive shear failure due to uncoordinated deformation, which is a major
safety hazard with respect to the normal operation of underground space engineering structures. The
existing monitoring methods for the measurement of the macroscopic displacement changes cannot be
employed to determine the shear failure process of composite rocks masses, characterize the extent of
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the damage, and issue timely warnings [6,7]. It is therefore necessary to conduct further research on
the shear failure monitoring of composite rocks.

At present, studies have been conducted with respect to the stability evaluation of rocks [8,9] and
rock failure monitoring [10–12]. With respect to rock failure monitoring, there are four main methods:
(1) the monitoring of micro-seismic signals to conduct a preliminary analysis of the rock failure
characteristics [13,14]; (2) the monitoring of acoustic emission signals to investigate the characteristics
and surface degradation of soft rock, in addition to the development of a roughness damage model
based on the acoustic emission time characteristics [15]; (3) the use of acoustic waves for the evaluation
of the rock mass characteristics in the damaged area of the rock slope excavation [16]; and (4) the use of
fiber Bragg grating (FBG) sensors for the monitoring of the surrounding rock stability of tunnels [17].
The above methods allow for the accurate monitoring of rock mass failure in various applications;
however, dynamic monitoring methods with respect to the rock mass failure process require further
investigation, especially the monitoring of the interfacial damage of composite rocks masses.

With similar properties to those of rocks, concrete materials, which are widely used in civil
infrastructure as substitutes, are subject to significant deterioration due to adverse service conditions
such as corrosion [18–20] and vibration [21,22]. To mitigate the deterioration of infrastructure, there
have been significant developments with respect to structural health monitoring (SHM) [23–28] in recent
decades, and piezoceramic materials have been widely applied for the SHM of concrete structures [29–31]
due to their low cost, high sensitivity [32], rapid response [33,34], wide frequency range [35,36], and
energy harvesting capacity [37–39], in addition to actuating and sensing capacities [40–42]. Song et al.
developed a smart aggregate (SA), which was fabricated by the embedment of waterproof piezoceramic
patches in small concrete or marble blocks [43,44], for the SHM of concrete structures. Smart aggregates
can significantly increase the applicability of piezoceramic transducers to concrete structures [45–48].
Moreover, SAs can transmit and detect stress wave signals, and they have received extensive research
attention for concrete structure applications with respect to early age hydration monitoring, impact
detection, and crack monitoring [49,50]. Piezoceramic transducers can realize active sensing and
electromechanical impedance (EMI) monitoring based on SHM [51–54]. Wu et al. successfully applied
the EMI method and wave analysis method to the monitoring of soft interlayer landslides, and obtained
reliable experimental results [55,56]. Based on the wavelet packet analysis method, Xu et al. conducted a
study on piezoelectric active sensing for the detection of the interfacial de-bonding of concrete-filled steel
tubes, and obtained reliable experimental results [57]. In general, piezoelectric active sensing is suitable
for the monitoring of interfacial damage and bond slips [31,45,58].

In this study, the piezoelectric active sensing and wavelet packet analysis methods were used to
conduct the interfacial shear failure monitoring of composite rock specimens, which were fabricated
using two types of concrete materials with different strengths. In the fabricated composite specimens,
two pairs of SAs were mounted symmetrically on both sides of the interface. An SA in each pair was
used as a driver for the transmission of a frequency sweep signal through the interfaces between the
different rocks. During the shear test, upon interfacial damage, signal attenuation occurred. The other
SA was used as a sensor for the reception of signals. Wavelet packet analysis was then conducted for
the computation of the received signal energy, and the failure process of the composite rocks were
analyzed in accordance with a decrease in energy.

This manuscript is organized as follows. Section 1 introduces the research background. Section 2
presents the monitoring principle of the piezoceramic active sensing method, followed by a description
of the experimental setup and procedures in Section 3. In Section 4, an analysis of the test results is
presented; followed by the conclusions in Section 5, in addition to the scope of future research.

2. Aims of Research and Principle of Detection

2.1. Aims of Research

There are three aims of this study. Firstly, in view of the lack of monitoring methods for composite
rocks failure, the feasibility of piezoelectric active sensing method applied to composite rocks failure
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monitoring is studied. Secondly, the damage index of composite rocks are quantitatively characterized
by wavelet packet energy method. Finally, the feasibility and reliability of the method are further
verified by repeated tests.

2.2. The Piezoceramic Transducers

As a unique type of piezoelectric ceramic material, lead zirconate titanate (PZT) is widely
employed in the SMH field due to its significant piezoelectric effect. The fragility of PZT materials is
usually encapsulated without changing its function in engineering testing to meet different operating
conditions. Song et al. proposed an SA that was packaged by embedding PZT patches into marble
or concrete blocks; and can be further embedded into a concrete structure for multiple-purpose
monitoring [43,44,58]. Given that the piezoceramic patch demonstrates direct and inverse piezoelectric
effects, the packaged SA can realize dual functions of the transmission and reception of stress wave
signals. The SA used in this study was a multifunctional sensor based on piezoceramics, which
is shown in Figure 1. The SA was packaged by sandwiching two PZT patches between a pair of
cylindrical marble blocks with epoxy resin. Moreover, it had a diameter of 25 mm and height of 20 mm,
as shown in Figure 2. The diameter and thickness of the PZT disk are 15 mm, and 0.3 mm, respectively,
while the elastic modulus and density are 56 Gpa and 7500 kg/m3, respectively. A BNC connector with
a cable provides the electric connection to the smart aggregate.
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Figure 2. Structure of an SA.

2.3. Principle of Piezoelectric Active Sensing Method

In this study, an active sensing method based on piezoelectric SAs was employed for the monitoring
of the shear failure of composite rocks. Figure 3 presents the schematic for the monitoring of the
shear failure of the composite rock based on the active sensing method. In this method, two pairs of
piezoelectric SAs are installed on both sides of the interface of the composite rocks. One SA is used as
an actuator under a swept sine wave excitation, and the induced stress wave is propagated through
the interface. Moreover, the other SA serves as a sensor for the detection of the stress wave signals.
Upon the occurrence of shear failure, the propagation medium of the wave is discontinuous due to
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the unevenness of the interface. Thereafter, the amplitude, peak value, and energy of the received
signal are attenuated. The energy of the monitoring signal is then computed according to the wavelet
packet analysis method, and the shear failure of the composite rocks are determined in accordance
with a decrease in energy. The amplitude, peak value, and energy of the monitoring signal, among
other characteristics, are analyzed to monitor the failure of the composite rocks.
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2.4. The Shear Failure Damage Index of Rock

The wavelet packet analysis method, as a signal processing tool, was employed in this study to
process and analyze the detected signal. The wavelet packet analysis facilitates the decomposition of
the signal into different frequency bands with respect to the any time-frequency resolution, which has
the characteristics of accurate subdivision and strong time-frequency localization [57]. Based on the
wavelet packet analysis, an equation was established for the computation of the shear failure damage
index of rock, to quantitatively represent the relative loss value of the transmitted signal energy during
the shear failure development of the rock.

Under the assumption that the signal detected by the sensor is denoted by V; the n-level
wavelet decomposition is used to decompose the signal into a 2n signal, which can be denoted as
v1, v2, . . . , v j, . . . , vn

2 . Moreover, v j represents the monitoring signals after decomposition, which can be
expressed as follows:

v j =
[
v j,1, v j,2, . . . , v j,m

]
(1)

In this equation, m is the number of the specimen data-points, and j is the number of frequency
bands ( j = 1, 2, . . . , 2n).

The energy of each decomposition signal M j is defined as:

M j = v j,12 + v j,22 + · · ·+ v j,m2 (2)

The energy vector of the signal vi during the i-th monitoring is obtained by the following equation:

Mi,i = [Mi,1, Mi,2, . . . , Mi,2n ] (3)

The root mean square deviation (RMSD) is used to compute the shear damage index of rock, i.e.,
the degree of rock shear damage at different instances in time. The indicator is defined by computing
the RMSD between the initial state during the test and the energy vector of the signal detected during
the subsequent state during the test. Based on the wavelet packet analysis method, the shear failure
damage index of rock is computed at the i-th instance as follows:



Sensors 2020, 20, 1376 5 of 17

Y =

√√√√√√√∑ 2n

j=1

(
Mi, j −Mh, j

)2

∑ 2n

j=1

(
Mh, j

)2 (4)

In the equation, Mh, j is the energy value of the j-th frequency band in the initial state or the healthy
state ( j = 1, 2, . . . , 2n), and Mi, j is energy value of the monitoring signal at the i-th instance.

The shear damage index of rock can be used to characterize the degree of rock shear failure
development and determine whether the rock is completely damaged based on the energy loss trend,
thus providing a timely warning.

3. Experimental Setup and Methodology

3.1. Specimen Preparation and SA Installation

Given the difficulty of obtaining composite specimens in the contact zone, in addition to the
good repeatability and mechanical stability of physically similar specimens; P325 Portland cement,
river sand, gypsum powder with particle sizes of 0.9–1.2 mm, and water were selected to produce the
similar composite specimens [59,60]. Given that the proportions of the materials were different, the
physical and mechanical parameters of the specimens were different; thus, different proportions of
cement mortar can be used to produce different composite specimens. The dimensions of the designed
composite rock specimens were 100 mm × 100 mm × 100 mm, as shown in Figure 4. Composite
specimens were poured into the upper and lower layers with two different proportions of single
materials. The proportions of the two materials accounted for 50% of the volume, and the contact
angle was 0◦. The proportions of the two materials and corresponding mechanical parameters are
shown in Table 1. Three composite specimens were poured into a mold with dimensions of 100 mm
× 100 mm × 100 mm. The mold was fixed on the vibration table, and the specimens were cured for
28 days, as shown in Figure 5.

Table 1. Material ratio and mechanical parameters.

No. Elastic
Modulus

Cohesive
Forces/MPa

The Angle
of Internal
Friction/θ

Tensile
Strength
/MPa

Plaster-
Gray
Ratio

Sand-
Rubber
Ratio

Water-
Cement

Ratio

a 3.62 4.36 45.65 1.80 0.30 0.65 0.39
b 4.58 5.40 49.85 2.79 0.15 0.50 0.36
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Based on the schematic diagram and drawings (see Figure 4), the three specimens were processed
with two pairs of symmetrical holes for each specimen. The diameters and depths of the holes were
26 mm and 22 mm, respectively, as shown in Figure 6. Thereafter, SAs were installed symmetrically in
the holes of the three specimens, and cement was used as binder for curing for 7 days, as shown in
Figure 7.
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3.2. Test Device and Parameter Setting

The test device consisted of a direct shear apparatus, a control system, a direct shear box,
piezoelectric monitoring equipment, a control system for the monitoring equipment, and composite
specimens with SAs, as shown in Figure 8. We used the SC-HY-PZT-2.0 multifunction piezoelectric
signal monitoring equipment, manufactured by Jiang Susan Chuan Intelligent Technology Co., Ltd.,
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China, that includes a host and piezoelectric signal measurement and control software. The control
software controls the host for signal excitation and acquisition. It should be noted that the direct shear
apparatus control system and monitoring equipment control system can collect corresponding data
independently. During the test, the piezoelectric monitoring equipment emitted a sweep sine wave
through the transmitting channel. The frequency range of the sweep sine wave was 0.1–150 kHz. The
frequency increment was 10 KHZ, and the step time was 0.2 ms. The amplitude and period of the
signal were 10 V and 3.2 ms, respectively. The sampling frequency, sampling length, and sampling
time of the data acquisition system were 2 MHZ, 16 K, and 8.192 ms, respectively. During the test,
Actuators SA 1 and SA 2 transmit their signals to Sensors SA 3, and SA 4, respectively. No interference
was observed between the two signals.
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3.3. Test Steps

As shown in Figure 8, a YAW-1000A microcomputer-controlled electro-hydraulic servo shear
apparatus was used to conduct the shear test on the composite specimens. The normal load was 25 KN,
and the specimens were sheared at a rate of 0.002 mm/s. In intervals of 2 min, each driver successively
generated sweep sine waves. Moreover, the corresponding sensor monitored the propagation of waves
through the interface of the composite specimen within the acquisition system until the completion of
each shear test.

4. Experimental Results and Discussions

4.1. Analysis of the Shear Test Results of Composite Specimens

The shear stress-displacement curve and shear stress-time curve of Composite specimens I, II,
and III are shown in Figures 9–11, respectively. The shear failure process of the composite specimen
was divided into two stages. In Stage 1, the shear stress increased linearly and reached the peak value.
In Stage 2, the shear stress of the curve abruptly decreased, and the interface of the composite specimen
underwent shear failure. The shear failure of Composite specimen I occurred after 22 min, the shear
failure of Composite specimen II occurred after 19.8 min, and the shear failure of Composite specimen
III occurred after 20.4 min. Although all specimens are made from similar materials, the failure time
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of interfaces will be slightly different due to test error and individual difference. Figures 9–11 reveal
that the three composite specimens underwent shear failure after approximately 20 min at shear
displacements of approximately 2.5 mm; thus, the results for the three composite specimens were
in good agreement. The composite specimens after shear failure are shown in Figure 12. As can be
seen from the figure, the three composite specimens exhibited uneven damages along the interface.
Generally, the composite rocks will be damaged along or near the interface. Due to the bonding degree
of the interface and individual differences, the specimen will be damaged unevenly along the interface.
Although the composite specimen materials, pouring methods and curing time are the same, the failure
interface of the specimen will be slightly different and they are all near the interface.
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4.2. Time-Domain Analysis of Monitoring Signals

During the shear tests, each actuator successively generated sweep sine wave signals at intervals
of 2 min, and the corresponding sensors monitored the waves transmitted through the interface of the
composite specimens. In the study, 0.001–0.004 s signals with obvious monitoring signal characteristics
were selected for analysis. The peak curve of the amplitude of each received SA signal in Composite
specimen I is shown in Figure 13. The peak value of the amplitude of the monitored signal decreased
abruptly after 22 min, which was consistent with the shear failure that occurred in Composite specimen
I after 22 min. The peak curve of the amplitude of each received SA signal in Composite specimen II is
shown in Figure 14. The peak value of the amplitude of the monitoring signal decreased abruptly after
20 min, which was in good agreement with the shear failure of Composite specimen II after 19.8 min.
Due to the uneven pouring of Composite specimen II and the different density of SAs’ position, the
amplitude of signals received by the two sensors is quite different, but the change trend is similar.
The peak curve of the amplitude of each received SA signal in Composite specimen III is shown in
Figure 15. The peak value of the amplitude of the monitoring signal decreased abruptly after 22 min,
which was in good agreement with the shear failure of Composite specimen III after 20.4 min. Based
on the analysis of the test results, the peak value of the amplitude of each monitoring signal was found
to correspond to the shear failure process of the composite specimen. During the shearing process, the
peak values of the amplitudes of the monitoring signals gradually decreased. When the specimens
underwent complete shear failure, the peak values of the signal amplitudes decreased abruptly.
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Based on the results of the signal analyses before and after the shear failure of the composite
specimens, the signals received by the SAs before and after the shear failure of the Composite specimen
I are shown in Figure 16. The amplitude of the signal detected by the two sensors after 22 min was
significantly lower than that of the signal detected by the two sensors after 20 min. The signals received
by the SAs before and after the shear failure of Composite specimen II are shown in Figure 17. The
amplitude of the signal detected by the two sensors after 20 min was significantly lower than the
amplitude of the signal detected by the two sensors after 18 min. The signals received by the SAs before
and after the shear failure of Composite specimen III are shown in Figure 18. The amplitude of the
signal detected by the two sensors after 22 min was significantly lower than that of the signal detected
by the two sensors after 20 min. The analysis reveals that after the composite specimens underwent
shear failure, the amplitude of the interface wave significantly decreased. The resulting time-domain
signal reveals that this method can be used to monitor the shear failure of composite rocks. Compared
with the traditional strain monitoring method, when the composite sample is damaged, the stress
waves value drops obviously, which can help to send out the warning signal, and also shows that the
method has high sensitivity.
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4.3. Rock Shear Damage Index Based on Wavelet Packet

For the quantitative analysis of the entire rock shear failure process, the energy of each monitoring
signal was computed based on the wavelet packet energy analysis method. Moreover, the rock shear
damage index was computed based on Equations (1)–(4). The shear failure damage index of Composite
specimen 1 monitored by SA 3 is shown in Figure 19a, and the shear failure damage index of Composite
specimen I monitored by SA 4 is shown in Figure 19b. The figures demonstrate that during the entire
shearing process, the shear fracture damage index of Composite specimen I monitored by both sensors
gradually changed, and then increased abruptly when Composite specimen I underwent failure after
22 min. The shear failure damage indices of Composite specimen II monitored by SA 3 and SA 4
are shown in Figure 19c,d, respectively. There was an initial gradual increase in the shear failure
damage index of Composite specimen II, followed by an abrupt increase after the shear failure that
occurred after 19.8 min. The shear failure damage indices of Composite specimen III monitored by SA
3 and SA 4 are shown in Figure 19e,f, respectively. There was an initial gradual increase in the shear
failure damage index of Composite specimen III, followed by an abrupt increase after the shear failure
that occurred after 20.4 min. The variation of the shear failure damage index of the three composite
specimens exhibited high repeatability and consistency. Therefore, the shear failure damage index
of the composite specimens based on the wavelet packet analysis can quantitatively characterize the
shear failure process of the composite specimens; effectively monitor the shear failure of the composite
specimens; and provide a timely warning when the damage index abruptly increases and approaches
a value 1. If this method can be applied to the actual engineering monitoring, it can ensure the safe
operation of the underground space structure engineering. However, due to the limitation of practical
engineering conditions, the research of the application of this method needs to be further conducted.

The general monitoring method cannot quantitatively characterize the damage index. The study
uses the wavelet packet energy method to calculate the stress wave energy value, and uses the root
mean square difference between the energy to characterize the damage index. The experimental results
of this research and the results of applying the method to the degree of debonding of the reinforced
concrete interface and the degree of landslide slip are consistent, which again proves the feasibility of
this method [55,57].



Sensors 2020, 20, 1376 13 of 17
 Sensors 2020, 20, 1376 13 of 17 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 19. Shear failure damage index of Composite specimen monitored by SAs: (a) SA 3 in 

Composite specimen I; (b) SA 4 in Composite specimen I; (c) SA 3 in Composite specimen II; (d) SA 4 

in Composite specimen II; (e) SA 3 in Composite specimen III; (f) SA 4 in Composite specimen III. 

The general monitoring method cannot quantitatively characterize the damage index. The study 

uses the wavelet packet energy method to calculate the stress wave energy value, and uses the root 

mean square difference between the energy to characterize the damage index. The experimental 

results of this research and the results of applying the method to the degree of debonding of the 

reinforced concrete interface and the degree of landslide slip are consistent, which again proves the 

feasibility of this method [55,57]. 

Figure 19. Shear failure damage index of Composite specimen monitored by SAs: (a) SA 3 in Composite
specimen I; (b) SA 4 in Composite specimen I; (c) SA 3 in Composite specimen II; (d) SA 4 in Composite
specimen II; (e) SA 3 in Composite specimen III; (f) SA 4 in Composite specimen III.

4.4. Further Discussions

When the composite specimens fail, the shear stress drops rapidly, as shown in Figures 9–11. This
indicates that the composite specimens have brittle failure. This also causes the stress wave to drop
rapidly. By analyzing the peak value of stress wave, the damage process of composite specimens
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can be described to some extent, but sometimes the peak value will fluctuate, which will affect the
accuracy of the test results. From Figures 12–14, it can be seen that the time-domain signal of composite
specimens after failure declines significantly, so the failure process of composite specimens can be
monitored from the time-domain signal analysis. However, the failure damage index of composite
specimens cannot be quantitatively characterized. Wavelet packet energy method is used to calculate
the energy value of monitoring signal, and root mean square deviation is used to calculate the shear
damage index of rocks, which can quantitatively represent the failure degree of composite samples.
When the composite specimen is damaged, the damage index is shown in Table 2. In conclusion, the
monitoring of composite rocks shear failure based on piezoelectric active sensing method has potential
engineering application value.

Table 2. Damage index of composite specimen at failure.

The Number of Composite Specimen I II III

The time of Monitoring (min) 22 20 22
Damage index of SA 3 0.9520 0.8445 0.8857
Damage index of SA 4 0.9922 0.9605 0.8818

5. Conclusions and Future Work

The piezoelectric active sensing monitoring method and wavelet packet energy analysis method
were employed for the shear failure monitoring of rock composites fabricated in this study. The
specimens were drilled and embedded with piezoelectric SAs. A shear test was carried out using direct
shear apparatus. Meanwhile, the monitoring test was carried out by transmitting sweep sine wave and
receiving wave. The shear stress-time curves of the composite specimens, in addition to the amplitude
peak curves of the signals detected by the SAs before and after the shear failure of the composite
specimens, were compared and analyzed. Upon the shear failure of the composite specimens, there
were corresponding changes in the amplitude and peak value of the signal. This consistency proves
the feasibility of the piezoelectric active sensing method in the shear failure monitoring of composite
rocks in the laboratory condition. However, the actual engineering conditions are complicated, and the
research of the application of this method needs to be further carried out. The damage index of the rock
shear failure was computed using the wavelet packet analysis method to quantitatively represent the
process of rock shear failure. The variation trends of the damage index and shear stress with respect
to time were consistent. In addition, the good repeatability of the test results of the three composite
specimens further indicates the feasibility and reliability of the method. In future work, the stress
wave propagated across the interface in the composite rocks will be modeled based on the fractal
contact theory, which was recently developed for the modeling of stress waves propagated through
the interfaces of bolted joints [61,62].
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