ﬂ SCNSors m\py

Article

SNPL: One Scheme of Securing Nodes in IoT
Perception Layer

Yongkai Fan >3, Guanqun Zhao 3*0), Kuan-Ching Li #*(, Bin Zhang >, Gang Tan °(,
Xiaofeng Sun 3 and Fanglue Xia 3

1 Institute of Computer Science and Cybersecurity, Communication University of China, Beijing 100024,

China; fanyongkai@gmail.com
2 Tus College of Digit, Beijing 100084, China
Department of Computer Science and Technology, China University of Petroleum, Beijing 102249, China;
2017011316@student.cup.edu.cn (X.S.); 2017011320@student.cup.edu.cn (F.X.)
Department of Computer Science and Information Engineering, Providence University,
Taichung 43301, Taiwan
Department of Electrical Engineering, University of South Carolina, Columbia, SC 29208, USA;
zhangbin@cec.sc.edu
Department of Computer Science and Engineering, Penn State University, University Park, PA 16802, USA;
gtan@cse.psu.edu
*  Correspondence: 2017215520@student.cup.edu.cn (G.Z.); kuancli@pu.edu.tw (K.-C.L.)

check for
Received: 20 December 2019; Accepted: 11 February 2020; Published: 17 February 2020 updates

Abstract: The trustworthiness of data is vital data analysis in the age of big data. In cyber-physical
systems, most data is collected by sensors. With the increase of sensors as Internet of Things (IoT)
nodes in the network, the security risk of data tampering, unauthorized access, false identify, and
others are overgrowing because of vulnerable nodes, which leads to the great economic and social
loss. This paper proposes a security scheme, Securing Nodes in IoT Perception Layer (SNPL), for
protecting nodes in the perception layer. The SNPL is constructed by novel lightweight algorithms
to ensure security and satisfy performance requirements, as well as safety technologies to provide
security isolation for sensitive operations. A series of experiments with different types and numbers
of nodes are presented. Experimental results and performance analysis show that SNPL is efficient
and effective at protecting IoT from faulty or malicious nodes. Some potential practical application
scenarios are also discussed to motivate the implementation of the proposed scheme in the real world.

Keywords: IoT; security; security framework; IoT nodes

1. Introduction

The Internet of Things (IoT) is well-known for the integration of several technologies with
communication systems [1]. The prosperity of IoT is not the reason to neglect its security issues. In fact,
the security of IoT is far worse than people know in this respect. There are numerous examples in the
real-world about IoT security. For instance, the embedded Radio Frequency Identification (RFID) tags
in devices and equipment can transmit or reply to messages [2]. Without appropriate authentication
mechanisms, data that are collected by sensor networks may be accessed or distorted by attackers [3].
The sensor system works in unattended status, such that adversaries can modify the information
stored in the nodes or decides when the data are delivered to the destination [4]. In the case of node
capture attacks, adversaries can capture or control smart devices, by physically replacing or tampering
with the nodes and disguising a malicious node like a normal node, to interface with the system [5,6].
In these attacks, malicious nodes can transfer legal identity information, which was received from
normal nodes to the target hosts, so that the rogue devices gain trust in IoT networks [7]. Moreover,

Sensors 2020, 20, 1090; d0i:10.3390/s20041090 www.mdpi.com/journal/sensors


http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-0107-4055
https://orcid.org/0000-0003-1381-4364
https://orcid.org/0000-0002-4879-0211
https://orcid.org/0000-0001-6109-6091
http://dx.doi.org/10.3390/s20041090
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/4/1090?type=check_update&version=3

Sensors 2020, 20, 1090 2 of 21

attackers can crack and gain the encryption key by using cryptanalysis attacks [8] or timing attacks [9].
Notably, this means that side-channel attacks can be used to illegally change or control intelligent
devices such as IoT nodes [8].

To mitigate security risks, several security solutions have been proposed in recent years.
Babar et al. [9] proposed an embedded security scheme to strengthen the internal security of a
device itself by prevention, diagnosis, and elimination. Pacheco et al. presented a security framework
that aims at smart cyberinfrastructures [10]. Besides, they proposed a general threat model that can be
used for exploiting new safeguard methodology for IoT devices averting known or unknown attacks.
Huang et al. developed a prototype security framework called SecloT that provides a transparent and
robust protection mechanism for relieving security threads [11]. Kalra et al. presented a protocol
framework for mutual authentication based on Elliptic Curve Cryptography (ECC), which aims to
achieve secure communication between embedded devices and the cloud [12]. Zhou et al. proposed a
novel scheme of media awareness to promote the security heterogeneity of multimedia applications
within a sensor network [13]. Tao et al. presented a framework of security services based on ontology,
for the sake of ensuring confidentiality during an interactive process under an intelligent residential
environment [14]. Kang et al. proposed a security framework and combined it with self-signature and
access control technologies to avoid attacks and ensure the security of a smart home environment [15].
Meidan et al. used machine learning algorithms to identify and classify IoT devices via network traffic
data, and proposed a scheme [16].

With these reported works, however the security of IoT nodes was not thoroughly studied, which
leads to weakness in the security of the perception layer. The perception layer is the bottom of IoT,
containing various IoT devices for collecting or measuring data from the real physical world, and then
transferring to upper layers [17]. It can be said that this layer is of vital importance as it controls the
source of the data, playing the role of “the last mile of communications” in IoT. Moreover, IoT nodes are
the source of data, which is critical to the security of IoT. To address this problem, this paper develops
a Securing Node in Perception Layer (SNPL) scheme. As shown in Figure 1, the primary purpose
of the SNPL scheme is to ensure data authenticity from sources. In IoT nodes, the most important
ones are sensors as they collect and transfer data for further use. The authenticity and trustworthiness
of IoT nodes are critical for data analysis. The gathered data is useless if it is not from true nodes.
The worst part of the entire thing is that data from malicious nodes, which are changed on purpose,
can cause catastrophic consequences for decision-making systems based on them. By realizing this,
SNPL aims to distinguish authentic nodes from malicious nodes to guarantee the reliability of collected
information. To achieve this goal, a security scheme is proposed to ensure the trustworthiness of nodes
in IoT perception layers. Different from other schemes [9-16], all sensitive operations are implemented
in the Trusted Execution Environment (TEE), while general operations are carried out in the Rich
Execution Environment (REE). TEE protects susceptible operations during the detection of malicious
nodes, which enables isolated execution for key-related operations, access policy design, and identity
recognition. Unique values and improved attribute-based signatures are used for the identification of
IoT nodes.

The main contributions of this paper are outlined, as the following:

1.  Propose a security scheme for the perception layer of IoT to identify and avoid potential hazards
caused by unsafe nodes,

2. Combine the TEE technology with the SNPL scheme to provide a safe isolation space for sensitive
operations, such as key generation and node identification,

3. The scheme satisfies the requirement of Confidentiality, Integrity, and Availability (CIA), as well
as the lightweight property, which offers higher availability and portability for application in IoT
devices, and

4. Use unique information of each device node as a kind of identifier such that forgery attacks and
substitution attacks can be effectively reduced. Furthermore, appropriate encryption technologies
can be integrated to enhance the security of the algorithm.



Sensors 2020, 20, 1090 3of 21

Note that this paper mainly focuses on the effectiveness and accuracy of the proposed framework
based on our algorithm, of which the results are expressed as the success rate. Besides, the performance
tests in experiments pay close attention to the various types and quantities of nodes in a small-scale
local IoT. The later experiments are designed and simulated with the Raspberry Pi instead of
real-time applications on a hardware device, for the processing time aiming at highly time-sensitive
applications is not our research focus. Meanwhile, the performance of transmitting periodically nodes,
sensors transmitting at fixed periodic time slots, or other conditions are not within the scope of our
research either.

The remainder of this paper is organized, as follows. Section 2 introduces technical preliminaries
such as TEE, Attribute-Based Signature (ABS) scheme, and a brief introduction of number theory,
which are the technical base of the proposed scheme. Section 3 describes the SNPL scheme in detail.
Section 4 presents experiments and evaluation metrics to assess the performance of SNPL. Section 5
discusses the possible applications, which is followed by concluding remarks in Section 6.

Perception Layer Other Layers

%ﬁgﬂ @@ Data 7 A

= o i ©

Q \ Gateway

S \ = 7A

. NS
Data \ ———r

<

loT devices
Figure 1. The attacker model in the real scenario.

2. Preliminaries

This section briefly introduces key technologies used in the proposed scheme. These technologies
include TEE, ABS scheme, and two mathematical concepts, which are grouped with bilinear pairings
and monotone span programs.

2.1. Trusted Execution Environment (TEE)

TEE is a tamper-resistant processing environment, which is independent of the normal
environment [18]. It runs on an isolated kernel and has the ability to fight against physical attacks
as well as software attacks in the main memory. The substance of TEE is dynamic and updated
securely [19]. Usually, TEE is used to execute sensitive operations such as encryption or key generation,
and it often has more restricted functions and rooms than REE.

Briefly, TEE is constructed to run security services, while REE is a platform for devices to request
services. REE represents a normal processing environment with rich functions. For example, Windows,
Linux, Android, and IOS can be referred. The basic interaction process between TEE and REE is
supported by client Application Programming Interface (API) and shared memory as shown in Figure 2.



Sensors 2020, 20, 1090 4 of 21

This interaction process provides a safe and feasible way to transfer information between the two
isolated execution environments.

Trusted Execution Environment Rich Execution Environment
\\‘—:’,’2 |

Trusted Application

Shared memory J» R LT Shared memory

—_ 3 o o I
TEE Client API
TEE OS I
REE OS
Data PLATFORM

Figure 2. The interaction between Trusted Execution Environment (TEE) and Rich Execution
Environment (REE).

2.2. Attribute-Based Signature (ABS) Scheme

The ABS scheme is a multifunctional control scheme. It allows for users to sign a message by
taking advantage of fine-grained controls over identifying information. For this, the identity of a
signer is uniquely represented by a collection of attributes and a signature of the signer is generated
based on these attributes [20]. Afterward, the signature result can be used, for instance, for verifying a
user’s identification. In short, the rights of users depend on their attributes. Besides, more application
samples can be referred in [20].

A typical ABS scheme has four main steps, which are presented [21]:

1. Setup: The authority or trusted third-party acquires a key pair: Public key (PK) and Master key
(MK). Then, the PK will be opened and the MK will be kept privately. Both PK and MK are
generated by a series of parameters (denoted as para). This step is shown as (PK, MK) « Setup
(para).

2. KeyGen: In order to assign users a set of attributes (denoted as Attr), the third party or authority
generates a Signing key (SK). The SK is given to users for further use. This step is expressed as SK
«— KeyGen(PK, MK, Attr).

3. Sign: In this step, the user obtains a Signature o on the basis of a Claim-Predicate Y, along with
the PK, SK and the attribute set. The user can then use ¢ to sign a message m. The process is
represented as o « Sign(PK, SK, m, Y).

4. Verify: To verify the Signature of the message with the Predicate Y, this step employs a Boolean
function value « Verify(PK, m, Y, o). According to the output, target parties can judge the identity
of data generators.

2.3. Groups with Bilinear Pairings

Let G1, G2 and Gt be the cyclic multiplicative groups, whose orders are all a prime p. Let g1 and
<2 be the generators of G and G, separately, and a map m : G; X Gp — Gr. If m(g1,g2) is a generator
of Gt then m : G; X Go — Gr is a bilinear pairing and it has the following properties [22]:



Sensors 2020, 20, 1090 5of 21

L m(g1% gb) =m(g1,8)";
2. There exists g1 € G1, 2 € Gy that satisfy m(g1,82) # 1;
3. There is always an effective method to calculate m(g1, ¢») for all g1 € Gy, g2 € Go.

2.4. Monotone Span Programs

Suppose there is a matrix M with [ rows and ¢ columns, and a nonzero row vector v, of which the
number of coordinates is identical with the number of columns in M. A span program over a field F is
expressed as S = (M, U, 5)), in which M is the matrix with entries of F, visa target vector, and y is the
labeling of the rows of M.

A monotone span program means the labels of rows are simply positive literals {xy,...x;,]}.
The calculation results of monotone span programs are only monotone functions, and one monotone
span program can calculate a monotone Boolean function [23].

Suppose 6 is a monotone Boolean function. A monotone span program for 6 over a domain D is
a matrix Mjy; with entries in D. Besides, it includes a labeling function i related to rows of M with
input variables of 6. The relationship between 6 and M is as follows: 6(x1,x2,...,x,) = 1if and only if
oM =[1,0,0...,0].

3. The SNPL Scheme

In this section, the SNPL scheme is elaborated for the improvement of reliability and robustness.
First, the node fingermark concept is described to ensure the uniqueness of the node. By doing so, the
SNPL scheme can separate the true node from others. Second, the design of the scheme is discussed.
Finally, the security proof of the proposed design is provided.

3.1. Node Fingermark

To exploit the unique identification information of an IoT node, the concept of fingermark is
used to certify objects by unique features extracted from equipment information. Aside from the
Universally Unique Identifier (UUID) of a device, more complex information or node attributes can
be included. In the SNPL scheme, the Unique Identifier of a hardware device, which is the unique
hardware configuration information of an IoT node, is the original information. If the node is replaced
by a new one, the information will change correspondingly. The hash algorithm is used for a hashing
of the information. The result of encryption is considered as a fingermark value of a device node.
The result of hash value can be used to ensure the trustworthiness of data sources and, therefore, the
identity of the node is guaranteed.

3.2. Scheme Design

Figure 3 shows a usage scenario of the SNPL scheme in the IoT environment. Suppose there is an
IoT network made up of many IoT nodes. Device nodes are located throughout the physical world
and they gather information by various kinds of sensors embedded inside. The collected information
will then be transmitted to the key nodes (for example, the gateways in Figure 3) in IoT. Finally, the key
nodes transfer the processed data to other consumers. The main uncertainty for the security of the
process is that the originality of data, such as the data gathered in key nodes, cannot be guaranteed.
This is a hidden danger at the beginning of the process and may lead to failure of the whole process.
To solve this problem, a security scheme is injected into the perception layer of IoT, between endpoint
nodes (i.e., the IoT devices in Figure 3) and key nodes. The security scheme can effectively reduce
hazards from the beginning by distinguishing nodes with the opposite status.



Sensors 2020, 20, 1090 6 of 21

Perception Layer Other Layers

¥
@ W
9&% Data h‘f

&

S
A
A

=
S st .\
i (- | . > N
K’Q Gateway
2£ SNPL - :
4 ata ‘
g &8
&7 >
q W
loT devices B!
Dustbin

Figure 3. The usage scenario of SNPL in the IoT environment.

Figure 4 exhibits the dominant modules in the proposed security scheme, which is divided into
two parts of execution by employing the REE and TEE technologies. Both parts are running on the same
device as well as the object to build the SPNL scheme. In this scheme, REE runs common insensitive
operations and connects unknown nodes. TEE runs the following five modules as trusted applications:
i. FMK-Gen (responsible for fingermark generation of devices); ii. MPK-Gen (generating the master
key and public key); iii. IK-Gen (create the individual key through the MK and fingermarks); iv. Sign
(use IK to generate a signature for signing the incoming data from nodes and setting up an access
policy); and, v. Verify (use PK, signatures, and the access policy to verify the identification of the data
transmitter). After all sensitive processes have been executed in TEE, the results will be sent back to
REE for later use.

REE TEE

loT nodes

O T . MPK-Gen
=S S

\ ‘ ; s, ‘1’(/\ Data and info / MK-Gen PK-Gen
S @R ¢ &

\ FMK-Gen
- \ /\ FMK Part Data Part IK-Gen
\\7\ z&
Feedback

Gateway Verify Sign

N—

Access

Policy Signature

Non-sensitive operation domain

Figure 4. The dominant modules in a secure scheme.

Figure 5 elaborates on the execution process by formulating several algorithms in detail. At the
end of the process, the SNPL scheme can distinguish malicious nodes from secure ones.



Sensors 2020, 20, 1090 7 of 21

Struct
FMK part & Data part)

info
FMK, o = hash(info) M Generate
FMK
Original Data

[ Pk = (g.9°{g:}.{%). () 1

Generate

MK =(xo,x,9,2) MK&PK

Generate

IK

M FMKiatie

K= (S'SO'{SG}) M Generate

o = (F,B,{L;},{R. Sig

Authorized FMK, o

Setup
L p=a|a]| ..|a policy

Verify

H( SUCCEED / FAILED

Figure 5. The sequence diagram of the architectural algorithm.
3.2.1. FMK-Gen

In this step, the device node’s unique authentication information is used to generate a safe value
to be used later.

At first, the system defines a structure for each IoT device, which consists of two parts, FMKpart
and Data part expressed as Struct = {FMK part, Data part} Meanwhile, suppose that all IoT nodes with
sensors are placed in REE. By the interaction process, IoT nodes transmit gathered data with their
configuration information from REE to the FMK-Gen module in TEE.

After that, the FMK-Gen module extracts the identity information, such as UUID and International
Mobile Equipment Identity (IMEI), from equipment nodes, and then uses the hash algorithm to
generate a secure unique value FMK,,.. This process can be expressed as: FMKy,,, = hash(in fo).
Here the Message-Digest Algorithm 5 (MD5) from OpenSSL library is used to calculate MD5 values as
FMKoaiye-

At the end of this step, the system puts FMK,,,, into FMKpart of Struct. Meanwhile,
the original data is sent into Data part by loT terminal nodes. This can be expressed as:
FMK part < FMKy,1e and Data part < original Data.

Now, each equipment node corresponds to a structure built based on its unique identity and
gathered data. The process can be realized by Algorithm 1 shown below, where i represents the current
node and sum represents the maximum number of nodes:

Algorithm 1 Fingermark Generation

Input: unique information of an IoT device info
Output: [oT node’s FMK,,,e

Define Struct « {FMK part, Data part};

For i «< 0 to sum do

FMK oo < hash(info);

FMK part < FMKy1e;

Data part « original Data;

End for

Return FMK,;.;

3.2.2. MPK-Gen

In this step, the following groups and functions are defined first: two cyclic groups Zj, and Z,, in
which prime order p is the size of the group, universe of attributes U = Z, a collision-resistant hash



Sensors 2020, 20, 1090 8 of 21
function H : {0, 1}" — Z7, and two cyclic groups G and G; of size p that are equipped with a bilinear
pairing e : G; X Go — Gr. Then, the required generators and parameters are emerged as follows:

§ G180/ Quwur < G25%0,X,Y,2 — Zp; ¢y

where g is a generator of Gy, go, - - -, §w,,, are generators of G, xo, x,y, z are randomly chosen from Z;,,
respectively. Then, we set the following values:

1
Xo = ngO/Xj = gjx“ (V] € [Orwmax])} Yj = g;y (2)

Next, the master key MK = (x0,%,Y,2) and the public key

PK = (8/ g5 {8]|] € [0, wmax]}/ {X/|] € [0/ wmax]}/ {Y]|] € [1, wm‘”‘“) can be generated.
The process is summarized in Algorithm 2:

Algorithm 2 Master Key and Public Key Generation

Input: cyclic groups Z;, and Z), of size p, cyclic groups G1 and G; of size p
Output: MK and PK
Define U « Z;,;
Z; «— H:{0,1};
Gr «—e:G1 XGy;
Choose g « Gq;
807+ 8wpu < G2;
X0, X, Y,Z Z;;
For j < 0 to wy,y do
Xo < 80™;
. X+z.
Xj < 8,
Y giv;
End for
MK « (x0,x,y,2);
PK (5,8 8lj € i} {x 1) € lwl}, ¥ € [1 wma] )
Return MK and PK;

3.2.3. IK-Gen

In this step, it is assumed that U’ € U; and Va € U’, where U’ is an attribute set that contains
attributes satisfying the access policy, and 4 is one of the legal attributes. For a randomly selected
generator s < Gy, the following values can be set:

50 _ Sl/xoz, S, = sl/(x+ya) (3)
Note that FMK,,},. is used to construct the value a, which is one of a € U’:
a < FMKoaye 4)
According to the generated MK and the attribute set U’, the user’s individual key is:
IKyr = (s, So, {Sa}) ®)

The above process can be summarized as Algorithm 3:



Sensors 2020, 20, 1090 9 of 21

Agorithm 3 Individual Key Generation

Input: master key MK and Fingermark FMK,,;,,c of an IoT node
Output: individual key IK of an IoT node
Define U’ C U;

Yae U;

Choose s «— Gy ;

For i < 0 to sum do

a < FMKoaiye ;

So 5% ;

Sq Sm ;

End for

IKyr < (s,50,1Sa});

Return I[Kyy;

3.2.4. Sign

Firstly, an access policy is set up to decide which user can get into the system on the basis of
its attributes. Then, the Sign module defines a predicate p(U’) = 1; and calculates a matrix Mjx,,
based on the predicate, and a label vector 4;, which indicates the relationship between an attribute
and its corresponding row. This step means that policy p corresponds to the monotone span program

Me (Zp)lxw with the row labeling a : {I} = U. According to the program M given above, a vector v
corresponding to U’ is computed through the following rules: v; has two values of 0 and 1, which
v; = 1 means the corresponding attribute 4; is used in the access policy while v; = 0 means 4; is not
used or does not exist. Finally, ¢ is calculated as ¢ = H(d||p).

Note that only the set of accessible FM Ky, of authorized nodes is applied to the policy p. The
FMKy10 of those inaccessible nodes are not included in p. The policy p is constructed through OR
operation with authorized FMKy,,. as follows:

p=ailaal ... |a (6)

where a1 = FMKye1,92 = FMKypen .. a; = FMKy,ei. The process can be summarized in
Algorithm 4:

Choose random generators fy from Z;, and tq1,f,...t; from Z;, which are expressed as ty < Z;,
and ty,ty,...t; « Zp, respectively. Then, set values F, B, L; and R; where Vi € {I} and Vj € {w}:

F=sh,B =gtz ?)

L= (Saivi)to-gti(z+€))Rj _ Hizl(Xija’)Mijﬁ ®)

The signature for signing the data in Datapart is setas 0 = (F,B,Ly...L;, Ry ...Ry). The process
can be summarized in Algorithm 5.



Sensors 2020, 20, 1090 10 of 21

Algorithm 4 Set up An Access Policy

Input: FMK,,,,, of addressable IoT nodes
Output: an access policy p
Define p(U’) « 1;

Ixw
My — M€(2,) 5
a:{l} - U;
e « H(dlp);
For i« 0 to/do
aj & FMKyaluei
End for
peaylazl ... la;
Return 0;

Algorithm 5 Signature Generation

Input: individual key IK of an IoT node
Output: signature o of a specific IoT node
Choose ty « Z;;

t1,tp, ...t « Zp,'
Fori—0to/&& j« 0 towdo

F st

B « Sot0+z;

L — (Su,vi)to'gti<z+s)}

R]' - H%Zl(Xijai)Mij-ﬁ;

End for

0 (F,B,L1 . ..L[,Rl ...Rw),'

Return o;

3.2.5. Verify

Based on PK, o, and p generated in the above algorithms, the system can determine whether
an input should be accepted or rejected. The result SUCCEED means the node gets the authority
successfully, while the result FAILED means the node is access-denied. The first step is checking the
value of F. F = 1 indicates FAILED. For F = 0, the following conditions need to be check for all j € {w}:

1. e(B,go™) = e(sF%,gO);
2. Forj=1, ]_[5:1 e(Ll., g],(x-i-%'i'Z)'Mij) - g(F, gﬁ)e(g, RyZ); for j # 1, ngl E(Li,gj(H%H)'M’f) _
e( g, Rj)-
If all od the above conditions hold, the results is SUCCEED. The system then transmits the result
from TEE to REE. The incoming data in Datapart of authorized nodes will be sent back to REE for

further use. Meanwhile, the data from rejected nodes are deleted. This process can be summarized in
Algorithm 6:



Sensors 2020, 20, 1090 11 of 21

Algorithm 6: Verify

Input: public key PK, signature ¢ and predefined access policy p
Output: SUCCEED or FAILED

IfF=1
Then FAILED;
Else

Check e(B, go™) = e(sF%,go);

IfYESand j =1

Check [T'_, e(Li, gj(x+%+z)'M’7) = e(F, gﬁ)e(g, Ry#te);
If YES, return SUCCEED;

Elseif YESand j # 1

Check ]_[i.:1 e(Li, gj(x+%+z)‘Mif) = e(gZ“,Rj);

If YES, return SUCCEED;

Else return FAILED;

3.3. Security Proof

This section provides a security proof of our scheme, which covers illustrations of correctness,
privacy, and unforgeability with formulations. The scheme satisfying the proof can be considered as a
safe solution once proved correct, entirely private and unforgeable [20].

Correctness means that in the light of PK, MK, IK, access policy, and correspondingly generated
true signatures, correct verification results and equations can be obtained in the process of verification.
By the detailed explanation in Section 3.2 and the direct substitution method, it is obvious that the
correctness is fulfilled.

Privacy means the attacker never receive attributes and IK of a legal node by the generated
signature. Here we can see that even though there are different attribute sets leading to different
IKs, any legal attribute sets resulting Verify(PK,d, p,0) = 1 have the identical distribution while
calculating signatures under the same p. When an attacker generates a hoped-for signature without
legal attributes, there is a neglectable possibility to gain a signature satisfying the access policy, which
makes p(U’) = 1and Verify(PK,d, p,0) = 1. Still, the termsino = (F,B,L;...L;, Ry ... Ry) are unique
corresponding while successfully verified. So, the IK and signature generated at different times are
distinct, which draws to the conclusion that privacy is guaranteed.

The unforgeability means the success probability of an attacker in any polynomial times is
ignorable when faced with the following circumstance:

1.  Generate public key and master key by (PK, MK) < MPK-Gen, and send the results to the
attacker; and,

2. The attacker has access to the IK-Gen module and Sign module such that it can generate a forged
signature ¢* to pass the validation of the access policy.

In other words, when an attacker has incorrect access structure and inappropriate attributes, but
eventually gains a correct verification result, we can say that the attacker succeeds to get access.

I
The remaining of this section verifies this property. Let M € (Zp ““ be the monotone span
program of p, a be the row labeling thata : {I} —» U, and ¢ = H(d||p). Then, the following steps are
implemented:

1. Randomly choose hy, ..., < Z, and u « Z;;

1 1 [ocetya)hi—uo] (xy+yz+a;)M; ; : .
2. Calculater; = ;=" {Zizl v Lt forall j € [w];

3.  Let the signature 0 = (01,02,03,04), where 01 = ¢'%, 0y = gs(tﬁz)/x(}z, 03 = {ghfli € [l]}, =

{1 e fwi).



Sensors 2020, 20, 1090 12 of 21

It is necessary to use the programmatic techniques of universal groups to certify the unforgeability
as shown below. Before formal certification, parameters are set similar to previous algorithms
in Section 3.2. An assumption is then made that the fake signature of an attacker is defined as:

ot = (g”*,gb*, {gh;|i € [l}}, {gr;lj € [w]}), with data d* and access policy p*, where (d*, p*) # (d(’i),p(’i)).

P
Similarly, let M* € (Z,) ", of which a* is the row labeling. At last, let &* = H(d"[|p").

Note that u* # 0 and b* = 22 To construct the counterfeit signature, the following equation is

X0z
constructed:
1

l* * * *
Y1 h‘Mi,]‘(xy +yz+ ai)Aj

Loxytyztay e [ ©)
:'21 U v’jAj+y(z+e)rj,]e[w]
= t

where v'; = [1,0,...,0]. Here a hypothesis is that the above equation holds, followed with getting a
contradictory result. That is to say, here reduction to absurdity is used as an effective method, aiming at
reaching an outcome that the attacker can produce a legitimate signature using IK, so that the signature
is not a counterfeit.

Let Lin(P) be the collection of multilinear polynomials, which P is defined as:

P = {1,XO, AO/Z}
U{Aj, (x+2)Aj,Aj/ylj € [w])
U {0s,05/x02,0s/ (x + ay)lo € [n],a € U's}
O, u,5@, g € i € [19], € [wl0)]

(10)

where 0 € Z is chosen randomly and P is the attribute set with coefficients in Z;,. Meanwhile, let
Hom(P) be the collection of homogeneous polynomials, which is the subset of a multilinear polynomial
set, i.e.,, Hom(P) c Lin(P). As our proof is based on the mathematical theory of multilinear functions
and homogeneous polynomial, it comes to the conclusion that the expressions that are provided by the
counterfeit of an attacker cannot embody certain specific terms.

Since it is obviously that u*,b*, {h’l.*li € [l}}, {r;.lj € [w]} € Lin(P), as well as u* = b* fgffj, we can
conclude that:

u*e Hom({AOxo} U {osls € [n]} U {u(q)lq € [v]}) (11)

Since Ajly(z + e*)r; and consequently A jlry, we get:

r; € Hom({A]-, Aj(x + z),Aj/y} U {r](ﬂ)m c [v}}) (12)

Here it is assumed that ¢';; # 0 and u" includes term Agxg. Therefore, Zi;l %u*v’ B

contains AgxpAj. Note that AgxpAj, is impossible to exist in y(z+ s*)r}fo, or appear in
fo h;.‘M;."].O (xy +yz+ a;)A jo- As aresult, it concludes that:

u' e Hom({osls € [n]}u {u(q)lq € [v]}) (13)

Assume that there is a term A; in r;. As u” has no constant term, leading that u*v";A; is incapable

of contributing A; to the equation. It is the same as 25‘;1 h’l.*M;].(xy +yz+ a;‘)A j- But it is necessary to
contribute Aj and A;/y for the equation’s right side, so:

ri€ Hom({Aj(x + Z),Aj/y} U {r§q)|q € [v]}) (14)



Sensors 2020, 20, 1090 13 of 21
Assume that r}f has the term r;q), it is necessary to bring y(z + e*)r; to the equation’s right side,

which generates a term with the coefficient of y(z + ¢*) / y(z + e(q)). u* and {h;‘li € [l}} cannot contribute

y(z+e")/ y(z + s(q)) to the equation As ¢* and ¢(9) are always different, therefore, we can conclude:
rie Hom({Aj(x+2),A;/y}) (15)

As mentioned early, it is assumed that v’;; # 0 for jp. As y(ers*)r;O and

Zf* h; M i (xy +yz+ a;)A jo cannot provide the term u@, u* is impossible to contain the monomial (7).
Accordingly,
u* € Hom({osls € [n]}}) (16)

Ultimately, we can come to a conclusion that:

rie Hom({Aj(x+2),5;/y}) (17)
u* € Hom({osls € [n]}}) (18)
To make the Equation (9) tenable, let i = w!(0;) + 6"(R/O;) where O; =

{os/x +ajyla; € U's,s € [n]}, for any terms of u* should also be provided by the left side of (9) to
realize the equality of this expression. Here we divide /i into two addends to actualize the situation
that o only exists in one part of h}. There is:

r v * l*xy+yz+a* *_/ .
Zi:l wl.Mi,j(xy—k yz+a}) = Zi Ta’flu v'(j € [w]) (19)
1

Here a vector v} is defined, which makes v*"M* = v’y ...v"s = 1,0, ...,0 hold. Besides, according
to prior works, U’s, should comprise the attribute a;. Then, v can be constructed as follows:

o = [x = ”;]w; /log)(i € 1) 20)

in which [os,] is the coefficient of o5, in u* (05, # 0). Based on the above mathematical and derivation,
we have p*(U’s,) = 1, which confirms that the signature is not a counterfeit. That is to say, the property
of unforgeability is proved.

4. Experimental Evaluation

In this section, details about experiments on simulating the SNPL framework are described.
Besides, several performance measurements are defined such that the results can be analyzed and
compared from several different aspects.

4.1. Experiment Design

It is necessary to explain why experiments are not carried out on a large scale here. For the whole
application scenario, the scheme simulated in experiments is a representative or an epitome of different
local IoT, which is connected or communicating with each other. That is to say, other application
scenarios are extensions of similar situations. So, conducting experiments in more extensive or more
situations makes no sense, for those are seen as repetitive actions. The scenario explanation is shown
in Figure 6.

Two experiments are conducted to simulate real IoT application scenarios. The first experiment
is to test the effectiveness and verification capability of the SNPL scheme with a single node of
different types. This experiment provides information on the success rate and means the processing
time of one single node. The second experiment aims to evaluate the performance under different



Sensors 2020, 20, 1090 14 of 21

numbers of nodes. The goal is to test whether the number of devices has an impact on performance.
In the experiments, the processing time of various nodes is recorded to calculate the mean value.
Besides, the accuracy of different nodes is also recorded and compared to ensure the universality of the
SNPL scheme.

sﬂ‘vf
C?'?/l /M Lot;\a\ljl loT 2
% i

5 ‘,Il Local loT 1 gc'g/l
N e 0
%
'g Local loT 3

qc,-j <
loT devices Do &’w \i\ g@ //

Local IoT 5
Our experiment scenario Local loT 4

Figure 6. Scenario explanations of experiments and realistic scenes.

As mentioned early, the first experiment aims to evaluate the effectiveness of the SNPL scheme
with one single node, as shown in Figure 7a. In this experiment, 20 different types of sensors are
connected to the Raspberry PI and each sensor is a separate node. Our purpose is to test whether the
SNPL scheme can identify the data source. The finger marks are generated by using the configuration
text files of devices, which are stored in a specific folder. A policy with one legal attribute is then
defined to verify nodes” identification one by one. Among all of these nodes to be tested, the normal
one represents the objective whose attribute is legal and set into the policy, while the malicious one
represents the node whose attribute is illegal and not in the policy. Then, individual keys of devices
are generated by using the fingermarks as an attribute in the algorithm. These individual keys are
used to sign messages, after which the policy is used to provide verification of these nodes. In this
process, the processing time of the SNPL scheme of 20 different nodes are recorded, their mean value is
calculated, and the success rate is obtained.

The second experiment is to compare the running time and accuracy of the algorithm under
different quantities of nodes, as shown in Figure 7b. This experiment simulates a real-world scenario
and evaluates whether the number of parallel nodes has an influence on the SNPL scheme. The
operation is substantially similar to that of the first experiment, in which the only difference is the
number of processed nodes. Here virtual nodes are defined with respective fingermarks for all targets
and an access policy with all legal attributes (i.e., the attributes which satisfy the policy). Then, each
defined node signs up one message and generates a signature for verifying with the policy. After
that, the verification results are obtained. In this process, the processing time with a different number
of nodes is recorded and compared. The accuracy in terms of throughput rate and blocking rate is
also compared.

The experiment is carried out on the Ubuntu operating system. To implement the proposed SNPL
scheme, Raspberry Pi 3 with different types of sensors is used to simulate different IoT nodes (i.e.,
a temperature sensor attached to the Raspberry Pi 3 simulates the first node, while the photoelectric
sensor attached can be the second simulated node, and others). Open-TEE is used to construct the
TEE in Ubuntu, while the normal execution environment of Ubuntu is considered as the REE. The
Ubuntu system is deployed in VMware workstation 14, which is installed on a Dell Inspiron 15-5577
notebook. Our platform is developed in the C language using qtcreator-3.6.1. The hardware are shown
in Figure 8 and the device specifications are listed below:



Sensors 2020, 20, 1090 15 of 21

Operating system: Ubuntu 14.04 LTS.

Hardware simulation: Raspberry Pi 3 with sensors.
CPU: Intel® Core™ i{7-7700HQ CPU @ 2.80GHz
Memory: 979.8 MB

Storage: 41.1 GBxc

The SNPL scheme can be taken as a “small nodes gateway” to control data transfer to the real
gateway. The “small nodes gateway” can be replicated to simulate different scales of IoT. Therefore,
the experiment can be seen as a classic case of different kinds of IoT environments and the conclusions
can be extended to various real-world scenarios.

Node
(Device) NN % S

___------>C—3Aun'bute

Policy Policy
(a) (b)

Figure 7. (a) The first test based on a single node; and, (b) The second test based on multiple nodes.

(b)

Figure 8. (a) Hardware device as an IoT node; and, (b) Breadboard with sensors installed.

4.2. Experimental Results

In this section, experimental evaluation and comparison of the SNPL scheme are presented. First,
the running time of the entire process of the experiments is discussed. Then, the accuracy under
different types and numbers of nodes are compared.



Sensors 2020, 20, 1090 16 of 21

4.2.1. Processing Time

Figure 9a shows the processing time with 20 kinds of normal nodes. The result shows that the
execution time varies with different nodes. In our experiments, the average execution time of 20 normal
nodes is about 365.661 ms. Figure 9b shows the result of identifying 20 kinds of malicious nodes. Also,
the SNPL scheme has different processing periods when dealing with different nodes. It must be
said that the obvious discrepancy of node 1 is just due to its node type. And the difference of node
2 between normal and malicious properties is just an experimental error, which may be caused by
the system operation time, the network latency, or other factors. The chart shows that the average
time is approximately 365.676 ms. It can be concluded from the statistics that the processing time for
the detection of normal and malicious nodes is comparable. In other words, the performance of the

scheme on identifying nodes is not affected by the properties of nodes.

°
g s“

Processing time for normal nodes Processing time for malicious nodes
asa.0o 450.000

400.000 400,000

3s0.000 350,000
200000 300.000
250000 250,000
200000 200.000
150000 150.000
100.000 100.000
sl 50.000
0200
&

Pracessing time{ms)
Processing time(ms)

g
8

0000

o o > ORI RN RN IS

g J bﬂ JCI R . - o - S O L A A

,ﬂ ST FT TP st er FFEFTFSEE
Nodes

S > N
& &

FF & be‘ & b" & t& &
& &SNS N

(a) (b)

Figure 9. (a) Processing time for normal nodes; and, (b) Processing time for malicious nodes.

Table 1 shows the processing time with different numbers of nodes (1 node, 5 nodes, 10 nodes,
15 nodes, and 20 nodes) excerpted from the complete experimental results. In each case, the amounts
of normal nodes and malicious nodes are shown to evaluate the verification accuracy.

Figure 10 shows a line chart, given by efficiency vs. different number nodes, for an intuitive
description of the results. Here the efficiency is represented by the processing time against different
numbers of nodes. Shorter processing time indicates a higher efficiency of the SNPL scheme. The chart
shows that the processing time increases almost linearly with the increase on the number of nodes.
That is, there is a linear increase relationshi