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Abstract: In this study, a sensor based on the development of a planar antenna immersed in sediments
dedicated to water content monitoring in this type of material is proposed and experimentally
validated. It is produced by a conventional Printed Circuit Board (PCB) manufacturing process on
a double-sided metalized FR4 substrate. The sensitivity of the sensor is ensured by the variation
of the real part of the complex dielectric permittivity of sediments with water content at around
1 GHz. As shown, in this frequency range, electrode polarization and Maxwell-Wagner polarization
effects become negligible, leading to only a bulk water polarization sensitivity. The sensor operates
in the reflection mode by monitoring the variation of the resonant frequency as a function of
the sediment density through the S;; reflection measurements. An experimental sensitivity of
820 MHz.g~!.cm® was achieved. Despite the simplification of data interpretation at the considered
frequency, the influence of ionic species such as NaCl in sediments on the real part of the relative
complex dielectric permittivity is highlighted. This demonstrates the importance of considering a
second parameter such as the Sq; level at low frequency or the electrical conductivity to extract the
density from the frequency measurements.
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1. Introduction

The study of sedimentary systems and assessment of geological hazards associated with different
external mechanisms (earthquake, tsunami, etc.) requires a characterization of the physical and
mechanical properties of the medium such as electrical conductivity and density. Different methods
exist for this purpose [1]. The most generalized one is coring followed by laboratory gravimetric
analysis. Densities may be also determined by nuclear/X-ray devices due to the fact that sediments
absorb more nuclear radiation as the bulk density increases [2—4]. Acoustic profilers sensitive to the
variation of the acoustic impedance have also been used for decades to measure in-situ properties of
subsurface sediments [5,6]. Optical backscattered sensors (OBS) are also very popular for this purpose
and measure the turbidity of water and then suspended sediment concentrations [7]. Electromagnetic
sensors are based on the variation of dielectric property of materials, i.e., the relative complex dielectric
permittivity ¢, = ¢’ —je’’. Indeed, the latter is strongly correlated to the water volume content due to
the high value of the real part of the relative dielectric permittivity (¢”) of water with respect to other
species, about 5 for minerals and 80 for water. However, below 50 MHz, electrode polarization and
Maxwell-Wagner polarization affect the dielectric permittivity measurements, leading to erroneous
high ¢’ values [8-10]. Extracting the water content by considering simple mixture models is therefore a
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challenging task. Within this context, there is a real interest in developing electromagnetic sensors
around or above 1 GHz, the limit for which the material can be considered as a simple mineral-water
mixture. For example, the Hydra Probe (Stevens Water Monitoring System) [11] is based on frequency
domain reflectometry (FDR) at 50 MHz and measures the complex dielectric permittivity of soils to
indirectly indicate the volumetric water content and electrical conductivity.

Printed planar resonant microwave sensors [12-16] were recently proposed as promising tools for
dielectric material characterization due to their possible integration in microwave integrated devices,
low-power consumption and low cost. The operating principle of these sensors is based on a resonant
structure that is influenced by the variation of the dielectric property of a material localized in its
surrounding environment. The resonant frequency, quality factor and signal amplitude of the device
are exploited to derive both the real (¢) and imaginary (¢’’) parts of the relative complex dielectric
permittivity. Development of specific planar microwave resonators was reported in the literature for
the determination of the relative humidity in air [17-23] or water content in concrete and organic
coatings [24-27]. The present work aims to develop a planar antenna, which acts as a microwave
resonator for the monitoring of water content in sediments. Kaolinite clay is considered as a substitute
for real sediments for laboratory tests. The first part of the study aims to demonstrate that the dielectric
property of kaolinite from 0.5 to 10 GHz is related to dipolar relaxation of bulk water without any
additional polarization effects. This result encourages the development of antennas in this frequency
range and the monitoring of the density via the measurement of the resonant frequency. As is detailed
in the following sections, a restricted frequency region was selected to provide a resonant sensor
with an acceptable quality factor. Among the different existing topologies of antennas, a patch planar
antenna was considered due to its small size and thus possible integration in many devices, for example
in multi-sensor cones of penetrometers [28]. The second part of the study focuses therefore on the
optimization of the patch antenna immersed in kaolinite, a material with high dielectric losses, and on
the discussion on its sensitivity toward the density. The presence of ionic species in pore water is known
to enhance polarization effects. Its influence on the sensor’s response is therefore also investigated.

2. Materials and Methods

Kaolinite powder (SOKA: Société Kaoliniere Armoricaine, Saint-Brieuc, France) with a density
of 2.6 g/cm® and de-ionized water were mixed with different ratios to simulate real sediments with
several densities. Variation of the densities around 1.6 g/cm® were considered, since this value is
close to the mean value of the sediment density distribution found in seawater [29]. Their dielectric
properties were measured by an open-ended coaxial probe (Keysight Technologies) from 0.2 to 10 GHz
by a network analyzer (Agilent E8364A, 45-50 GHz). Prior to analysis a Short-Open-Load (SOL)
calibration was made together with the standard protocol which includes the measurements of the S;
parameter in air and de-ionized water. The electrical conductivity of the sediments was simultaneously
measured by a conductometer (S-470, Mettler Toledo). Following the achieved results, a patch antenna
was optimized and designed on a FR4 substrate (¢’ = 4.4; tan § = 0.02) with a thickness of 1.6 mm
that was powered with a coaxial feed. This optimization was done by the HFSS software (ANSYS)
and by considering a patch antenna immersed in a material associated with ¢’ = 35 and tand = 0.1,
which simulates sediments of 1.6 g/cm? around 1 GHz. Finally, the optimized planar antenna was
produced by a standard Printed Circuit Board (PCB) manufacturing process, here photolithography,
and immersed in sediments to experimentally validate the method. The reflection parameter S;; was
then measured by using the same network analyzer and calibration procedure mentioned above. The
step in frequency was 3.6 MHz.
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3. Results and Discussion

3.1. Dielectric Characterization of Kaolinite with Different Densities

Figure 1a,b displays the dielectric characterizations of kaolinite with different densities performed
by an open-ended coaxial probe from 0.2 to 10 GHz. As observed in Figure 1a, the real part of the
relative dielectric permittivity ¢’ is very sensitive to a variation of the density d. Indeed, increasing
the water content, i.e., decreasing d, leads to an increase of ¢’ in agreement with the high dielectric
value of water (about 80) in the considered frequency range. The variation of ¢’ with the frequency is
relatively weak from 0.2 to 2 GHz. At a higher frequency, the decrease of ¢’ is explained by the dipolar
relaxation of water molecules. Figure 1b displays the characterization of the imaginary part of the
dielectric permittivity £”. A minimum of ¢” is clearly highlighted around 1 GHz. At low frequencies,
all curves are very close. In contrast, at high frequencies, a clear dependence of ¢” as a function of the
density d is observed. These experimental findings are very close to the results obtained by Dong and
Wang [30]. As detailed by these authors, they are mainly associated with the bulk water polarization.
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Figure 1. Variation of the relative complex dielectric permittivity as a function of frequency for five
different densities (a) real part ¢” and (b) imaginary part ¢ ”’.

To further discuss these experimental results, the data were compared to the Cole-Cole model [31,32],
based on these equations:

el —el)(1+ (wr) ™ sinaZ
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where « is the constant (1 > a > 0) related to the distribution of the relaxation time 7, w is the cyclic
frequency of an external electric field change, ¢; and ¢, are respectively the static and infinite relative
dielectric permittivity constant and o is the electrical conductivity of the material. Figure 2 displays the
comparison between this model and the experimental data for two selected densities. The parameters
associated with the Cole—Cole model are given in Table 1. As seen in Figure 2a, the frequency variation
of ¢’ is very well described by the model. At low frequency, below 2 GHz, an almost constant value
of ¢’ very close to ¢; is observed. At higher frequency, the decrease of ¢’ due to dipolar relaxation
is also well reproduced. From Table 1, it appears clear that the density depends only on ¢, the two
other parameters T, o remaining constants. Figure 2b focuses on the imaginary part €” of the relative
dielectric permittivity. The contribution of both terms of Equation (2) are represented in this figure. As
shown, a good agreement between the model and the data is also achieved. At low frequency, below
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0.5 GHz, the second term of Equation (2), which depends on o, is the main contribution to €”, the first
one being negligible. All curves depicted in Figure 1b being nearly identical in this frequency range,
fitting the experimental data leads to only one value of the electrical conductivity for the different
densities (800 uS/cm). Above 2 GHz, the increase of ¢” associated with the relaxation process is
well described by the first term of Equation (2). In this case, due to the presence of ¢ in this term,
the imaginary part ¢” also depends on the density. Despite the success of the Cole-Cole model to
describe the data correctly, some disagreement on the ¢’ values at very low frequency are clearly
reported. Moreover, the values of the electrical conductivity extracted from the model (o) with respect
to the experimental measurements (0exp) are significantly different. These disagreements observed
below 0.5 GHz suggest that some other contribution attributed interfacial polarization or that double
layer polarizations may occur at low frequencies.
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Figure 2. Fitting of the experimental data by the Cole-Cole model for (a) the real part and (b) the
imaginary part of the relative dielectric permittivity. The contributions of the two terms of Equation (2)
are displayed in b.

Table 1. Values of the parameters used in the Cole-Cole model detailed in Equations (1) and (2).

d(g/cm3) € £ oo o T(s) o(uS/cm) Oexp(1S/cm)
1.73 30.6 2 0.2 5x 10712 800 450
1.68 34 2 0.2 5x 10712 800 530
1.64 35.6 2 0.2 5x 10712 800 500
1.58 38.8 2 0.2 5x 10712 800 510
1.54 40.6 2 0.2 5x 10712 800 480

The achieved experimental data are of first importance for the development of the sensitive device
to the density. Radiofrequency resonators are based on a frequency variation associated with the change
of ¢’ of the material under monitoring. Here, as observed, a constant value of ¢’ independent of the
frequency and strongly correlated to the density is found between 0.5 and 2 GHz. Moreover, in between
these frequencies, dielectric losses, which impact the quality factor, are minimized. Consequently, this
frequency range was selected for the design of the patch antenna.

3.2. Optimization of the Sensitive Patch Antenna

The optimization of the patch antenna was made by considering the antenna powered by a coaxial
feed embedded in a material displaying ¢’ = 35and fand = 0.1, which represents the sediments at
about 1 GHz. The sketch of the antenna is depicted in Figure 3a. An antenna length of L = 80 mm
was chosen in order to operate around 0.5 GHz, the lowest frequency in the selected frequency range.
This value of L is very low with respect to a similar patch antenna designed in air due to the strong
influence of ¢ = 35 on the effective dielectric permittivity. Design of the antenna with values of the
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width W around 80 mm were first unsuccessfully tested. Only lower values of W provide acceptable
results for the optimization of the embedded antenna. Figure 3b—d displays the S1; parameter as a
function of the localization of the feed yf on the patch with respect to the center of the antenna for
widths in the range of a few mm. As observed in Figure 3b, for W = 7 mm, the optimal value of the
feed location y; is equal to 30 mm, leading to a value of S;; of =30 dBm. For W = 5 mm, as shown
in Figure 3¢, a similar behavior is found with yf = 22 mm. The location of the feed is then moving
toward the center of the patch with respect to the previous case. With a lower value of W, as observed
in Figure 3d, a degradation of the reflection parameter is predicted by the antenna. Consequently, the
antenna with W = 5 mm and y¢ = 22 mm was considered to investigate its sensitivity to ¢’.
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Figure 3. (a) Sketch of the antenna and parametric study of the antenna embedded in a material
associated with ¢’ = 35,fand = 0.1 and operating around 0.5 GHz; (b) W =7 mm, (¢) W =5 mm,
(d) W =3 mm.

To investigate the influence of the working frequency on the results, a second antenna resonating
at a higher frequency was also considered. A sketch of this antenna is depicted in Figure 4a. The
antenna’s length is reduced with respect to the first antenna; L is equal to 28 mm to ensure a radiation
around 1.3 GHz. Figure 4b—d presents the S;; reflection parameter as a function of the width W and
localization of the feed y;. In Figure 4b, results are displayed for a width W = 8 mm. As observed,
increasing yf seems to improve the S;; parameter. However, the —10 dB level is never reached,
leading to an unacceptable response. Figure 4c presents the reflection parameter for W = 4 mm. In this
case, by increasing yy, a correct antenna response is achieved. However, such an antenna cannot be
fully optimized due to physical limitations of y¢. Figure 4d displays the reflection parameter S;; for a
lower value of W (3 mm). In this case, an optimal value of yf (10 mm) associated with a S;; value of
—35 dB is found. A further decrease of W was not considered due to physical reasons associated with
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the powering of the antenna by the coaxial port. As the consequence, the configuration depicted in
Figure 4d was chosen for testing.
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Figure 4. (a) Sketch of the antenna and parametric study of the antenna embedded in a material
associated with ¢/ = 35,tand = 0.1 and operating around 1.3 GHz; (b) W = 8 mm, (c) W =4 mm,
(d) W =3 mm.

The designs of the two achieved antennas displayed in Figures 3a and 4a show that the conventional
square shape of patch antennas is lost with the optimization procedure associated with the presence of
sediments. The term “patch” may therefore lead to erroneous conclusion or misunderstanding and
should be suppressed in further applications or discussion, even if patch antennas served as a starting
point for the development of such antennas. The radiation patterns of both antenna are presented
in Figure 5. As can be seen, the directivity of patch antennas traditionally realized in air is strongly
suppressed by the presence of sediments. The maximum gains of the two antennas are indeed very
low: =7 dBi and —12.5 dBi at 0.5 and 1.3 GHz, respectively. These values combined together with the
high transmission attenuation factor of the material cause transmission experiments to be difficult.
As the consequence, the proposed sensor was applied only in a reflection mode by measuring the Sy
reflection parameter.
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-180
(a) (b)
Figure 5. Radiation pattern of antenna operating at 0.5 GHz (a) and 1.3 GHz (b). (Red pattern: H-plane

and purple pattern: E plane).
3.3. Sensitivity of the Patch Antenna to the Density and Experimental Validation

Following the optimization stage, the sensitivity of the sensor to the variation of ¢” and hence to d
was investigated. For this purpose, electromagnetic simulations were made for the two antennas by
covering them by a material displaying several values of ¢’ while keeping fixed tan6 = 0.1. Results
are depicted in Figure 6a for the antenna working around 0.5 GHz. As can be seen, a clear shift of
the resonance towards low frequency is associated with an increase of ¢’, demonstrating thereby the
feasibility of the proposed method. We also note a change of the Sy level at the working frequency
when ¢’ is varying. This effect is explained by the optimization procedure, which is highly dependent
on ¢’. Increasing or decreasing ¢’ from 35, the value chosen for the optimization, leads to a degradation
of the antenna response. Figure 6b displays the results obtained for the second antenna working at
1.3 GHz. As can be seen, a similar behavior is observed. Figure 6¢ reports the variation of the resonant
frequency F; for the two antennas when changing ¢’. The frequency variation is linear in the two cases.
As detailed in references [33,34], the sensitivity S, of the dielectric resonant method is defined as:

AF,

Se = Ae’ (3)

where AF; is the shift of the resonance frequency and A¢’ the associated variation of the real part of
relative dielectric permittivity. In the present case, the sensitivity is constant for a particular antenna
and corresponds to the slope of the linear equation depicted in Figure 6b. A higher sensitivity is then
obtained at 1.3 GHz. This antenna was therefore selected.

In order to experimentally validate the method, the antenna working at 1.3 GHz was
realized by conventional photolithography. Figure 7a presents the antenna on the FR4 substrate
(thickness = 1.6 mm). The thickness of the copper sheets is 35 um. As shown in Figure 7b, the
antenna was horizontally placed in a tank and covered by kaolinite. An SMA connector placed on the
metallic backplane was used to connect the vectorial network analyzer. The thickness of sediments
on the antenna was kept to about 4 cm to ensure no influence of air on the sensor response. Before
measurements, the sediments were mixed to get a uniform material and to avoid sedimentation.
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Figure 6. (a) Variation of the Sy parameter as a function of frequency for different permittivity values.
for the antenna operating at 0.5 GHz and (b) 1.3 GHz; (c) variation of the resonant frequency as a
function of the real part of the relative dielectric permittivity for both antennas (red line: antenna
working around 0.5 GHz, blue line: antenna working at 1.3 GHz).
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antennas

(b)

Figure 7. (a) Photography of the planar antenna produced on FR4; (b) experimental set-up used for the
validation of the sensor.

Figure 8a displays the change of the experimental S;; parameter when the density varies from 1.57
to 1.73 g/cm3. The variations of both the resonant frequency and S;; value at the resonant frequency
can be observed, in agreement with the electromagnetic simulations. The minimum of the Sq; value
achieved for d = 1.6 g/cm?® corresponds to the case where the antenna is optimized. Any variation of
¢’ or tand from this situation leads to an increase of the Sy level. Figure 8b presents the variation of
the resonant frequency as a function of the density. As shown, a linear fitting provides a very good
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description of the data in the density range under consideration. The sensitivity S4 of the sensor can
then be defined as:

AF, _
Sq = = 820MHz g~ ! em® 4)
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Figure 8. (a) Variation of the S;; parameter as a function of the frequency for different densities of the
sediments for the antenna working at 1.3 GHz; (b) variation of the resonant frequency as a function of
the density.

Following the linear fitting displays in Figure 8b, the error on the density Ad is given by the relation:
Ad (g/em®) = 1.22 AF, (GHz) (5)

where AF, is the error on the determination of the resonant frequency. Experimentally, this value
is in the order of the frequency step chosen for the Si; acquisition. A step of 3.6 MHz leads to
Ad = 4.4 x 1073 g/cm?, i.e., a relative uncertainty well below 1%. This value makes the proposed sensor
competitive with respect to acoustic sensors with the advantage of limiting the data treatment [35].
Note that the sensor displays such a high resolution due to the choice of the frequency range and to the
optimization procedure detailed above. Both enable the retention of a correct resonance shape in the
high loss dielectric material.

To investigate the influence concentration of ionic species in sediments on the sensor’s response,
similar curves to those depicted in Figure 8a were measured at different concentrations ¢ of NaCl (from
0% to 1.5% in mass). As an example, Figure 9a displays the S1; parameter as a function of the density
for a concentration ¢ = 0.5%. As indicated in the legend of the figure, the variation of the density
remains very close to that observed in Figure 8a. However, it is now accompanied by an increase of the
electrical conductivity, from 2200 to 4000 uS/cm. This increase of conductivity leads to a decrease of the
Sq1 level at low frequency due to the associated radiofrequency losses. A shift of the resonance clearly
appears when increasing the density in agreement with the data reported in Figure 8. As discussed
above, to investigate a possible effect of polarization electrode initiated by ionic species on the sensor’s
response, Figure 9b displays the resonances measured with two conditions: (d = 1.64 g/cm?, ¢ = 0%)
and (d = 1.646 g/cm?, ¢ = 1%). The penetration of ions in sediments leads clearly to a frequency shift
associated with a decrease of the ¢’. This result is supported by the decrease of the real part of the
relative dielectric permittivity of pore water containing NaCl ions with respect to pure water, from 80.5
to 73.5 at ¢ = 3% [36] and was previously exploited to develop a resonant sensor sensitive to water
salinity [37] or pH [38]. It confirms also that at the frequency considered here, the material can be
considered as a simple mixture of water and mineral with no polarization effects. Indeed, these effects
of polarization would lead to the opposite situation with an unrealistic increase of ¢’. The two sets of
data depicted in Figure 9b being associated with almost the same density of sediments, it is clear that
the extraction of the density from presented measurements cannot be made by only considering the
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measured resonant frequency F;. Knowledge of the ionic concentration is required for this purpose.
In particular, the S;; level at low frequency may be used, since it varies with c.

d = 1.734 glem ;0 = 2200 psicm
d = 1.686 gicm *;c = 2550 usicm
d = 1.664 gicm ;G = 2750 psicm
d = 1.643 gicm ;0 = 3000 psicm
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d=1646gicm’, c=1%

0.5 1.0 1.5 2.0 25 3.0 0.5 1.0 15 2.0 25 3.0
Frequency (GHz) Frequency (GHz)
(a) (b)

Figure 9. (a) Variation of the S;; parameter as a function of the frequency for a concentration ¢ = 0.5 %;
(b) resonances measured at (d = 1.640 g/cm3, c=0%)and (d = 1.646 g/cm3, c=1%).

Figure 10a presents the resonant frequency as a function of the density for several concentrations.
Almost parallel lines can be observed due to the presence of shifts induced by the presence of ionic
species in pore water, which reduces the real part of its relative dielectric permittivity. The density d
can be extracted from the measured resonant frequency F; via the relation:

Fr - (X(C)
d = ———— (6)
B(c)
1.60 _
|311| —=4.2e ¢°—5.56'n 16000
1.553 [
" 14000
1.50 4 14 I
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(a) (b)

Figure 10. (a) The resonant frequency F; as a function of the density for several ionic concentrations
c. (b) The Sy reflection parameter measured at 0.5 GHz and the conductivity o as a function of the
concentration ¢ of NaCl solutions.

The values of « and (3 parameters are reported in Table 2. As can be seen, the 3 parameter is
independent of the concentration, explaining the presence of almost parallel lines in Figure 9a. This is
not the case for « (c), which clearly displays a variation with the concentration. The knowledge of the
concentration is therefore of crucial importance to extract the density from the measurements. For this
purpose, we propose to exploit the results depicted in Figure 9b where the S1; level at low frequency is
shown to depend on c. Figure 10b presents the S1; level measured at 0.5 GHz as a function of c. As can
be seen, the S1; level is indeed correlated to ¢ and varies with an exponential law. From the measured
Sy1 values at 0.5 GHz, the concentration c can therefore be determined, leading to the knowledge of the
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density d via Equation (6). Fundamentally, the variation of the S11 level at low frequency is induced
by the increase of the electrical conductivity. An alternative to the monitoring of c by the Sy level is
the additional measurement of the electrical conductivity. To provide further insight on this point,
the electrical conductivity is also represented in Figure 10b.

Table 2. « and 3 parameters deduced from the fitted curves displayed in Figure 10a.

C(%) o) B

0 0.06  0.82
0.5 013 0.783
1 0.316  0.682
1.5 0.338 0.674

4. Conclusions

As a summary, the development of planar resonant radiofrequency sensors for water content
monitoring in high loss dielectric materials such as sediments is feasible around 1 GHz due to the
absence of polarization effects and to the presence of a minimum of the radiofrequency losses. These
two points enable (1) the optimization of an antenna in an unfavorable medium and (2) a clear
understanding of the observed frequency shift. The realized resonant sensor shows a high resolution
with a relative uncertainty of less than 1%, making it competitive with respect to acoustic sensors.
In the second part of the study, when dealing with pore water with different ion contents, the feasibility
of the proposed method is also proved. In this case, the consideration of only the frequency shift is not
sufficient and consideration of either the Si; parameter at low frequency or electrical conductivity is
mandatory. The proposed resonant sensor, which is compatible with the standard PCB manufacturing
process, should therefore considered as a promising innovative method for the monitoring of sediments
in geological sciences.
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