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Abstract: Maritime surveillance videos provide crucial on-spot kinematic traffic information (traffic
volume, ship speeds, headings, etc.) for varied traffic participants (maritime regulation departments,
ship crew, ship owners, etc.) which greatly benefits automated maritime situational awareness and
maritime safety improvement. Conventional models heavily rely on visual ship features for the
purpose of tracking ships from maritime image sequences which may contain arbitrary tracking
oscillations. To address this issue, we propose an ensemble ship tracking framework with a multi-view
learning algorithm and wavelet filter model. First, the proposed model samples ship candidates with
a particle filter following the sequential importance sampling rule. Second, we propose a multi-view
learning algorithm to obtain raw ship tracking results in two steps: extracting a group of distinct ship
contour relevant features (i.e., Laplacian of Gaussian, local binary pattern, Gabor filter, histogram of
oriented gradient, and canny descriptors) and learning high-level intrinsic ship features by jointly
exploiting underlying relationships shared by each type of ship contour features. Third, with the help
of the wavelet filter, we performed a data quality control procedure to identify abnormal oscillations
in the ship positions which were further corrected to generate the final ship tracking results. We
demonstrate the proposed ship tracker’s performance on typical maritime traffic scenarios through
four maritime surveillance videos.

Keywords: visual ship tracking; multi-view learning; wavelet filter; data quality control; smart ship

1. Introduction

A smart ship is considered in the ship industry as having the advantages of less carbon emissions,
lower risk for the ship crew at sea, higher traffic efficiency, larger cargo carriage capability, etc., and
thus it has attracted much research attention in the maritime traffic community [1–3]. For the purpose
of helping in smart ship maritime navigational environments, varied ship tracking techniques and
data sources are employed to obtain informative static and kinematic ship data from varied maritime
sources. For instance, ship tracking data from maritime surveillance videos provide straightforward
spatial-temporal information (e.g., ship trajectory, ship speeds, ship moving directions) which greatly
enriches the situational awareness capability of the smart ship and, thus, further improve maritime
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traffic safety. More specifically, by noticing potentially risky ship behaviors from the ship tracking
results, the smart ship can inform the risk-involved ships to take early action (e.g., maneuver ship
engines) to avoid potential maritime accidents.

Previous studies mainly employed automatic identification systems (AIS) to track ships sailing
in inland waterways [4–6], and several techniques (e.g., synthetic aperture radar (SAR), long-range
identification and tracking (LRIT)) have been integrated to further enhance ship tracking accuracy [7–10].
More specifically, maritime traffic participants can track ship positions with the LRIT technique over
large time intervals (usually every six hours) when the ship travels far away from coastal areas.
Ships sailing in inland waterway channels can be tracked at smaller time intervals with the help of
AIS-relevant techniques. Indeed, a ship equipped with AIS facilities broadcasts the ship’s position to
neighboring ships and stations every ten seconds; thus, the ship’s position in coastal areas is available
at high resolution from the perspective of time scale (i.e., a ship’s positions in inland waters can be
accessed at higher accuracy compared to those obtained by LRIT). The radar-relevant techniques can
be integrated to improve ship position accuracy (e.g., a ship’s crew may intentionally deactivate their
AIS facility when they are involved in illegal activities) [11–14]. With the help of human involvement,
the abovementioned techniques can meet ship tracking demands in a traditional navigation period.
More specifically, maritime traffic participants are required to transform the abovementioned ship data
(which are considered second-hand maritime visual data) into human-understandable sources (which
are considered first-hand maritime visual data) in traditional navigation period. However, the ship
crew on board will be significantly reduced in the smart ship era, which imposes additional challenges
for autonomous ship tracking tasks (i.e., efficiently obtaining first-hand visual tracking data with less
human involvement).

Computer vision-based methods have shown many favorable results in the object tracking
community [15–18] which presents its potential in addressing the above challenge (i.e., obtaining
first-hand visual data). More specifically, image-based ship tracking models have attempted to extract
distinct features to identify ship positions from maritime image sequences. Prasad et al. [18] provided
a holistic literature review on ship detection and tracking which can be described in consecutive steps:
horizontal line detection, background subtraction, and foreground segmentation, and is considered the
mainstream workflow for maritime object detection. Hu et al. [19] proposed a defogging framework
for the purpose of removing fog interference in a single maritime image which may fail to obtain
haze-removal maritime images in real-world applications. Leclerc et al. [15] employed a deep
convolution neural network to learn distinct ship features from maritime images which can be used
for tracking ships in maritime images. We did not focus on deep learning model performance for
ship tracking tasks, although they have shown many successes in general purpose computer vision
tasks [20,21]. The main reason is that many ship training samples (usually collected in a manual
manner) are required to train deep learning models, and the on-board device may lack sufficient
computational resource when implementing ship tracking tasks in real-world maritime applications.

Park et al. [22] proposed a passive ship tracking model to accurately extract ship trajectories
from maritime videos shot by onboard monocular camera. Wawrzyniak et al. [23] integrated the
background subtraction and bounding box methods to track ships in maritime video streams which
was demonstrated with typical ship tracking challenges. Kang et al. [24] proposed a self-selective
correlation filtering method to track ships by tackling the challenges of ship imaging size variation
and background interference. Zhang et al. [25] proposed a discrete cosine transformation-based ship
detection framework to obtain ship trajectories from maritime images shot by non-stationary platform
cameras. Similar studies can be found in References [26–28].

Previous models fulfilled the visual ship tracking task by extracting a group of distinct ship
features (e.g., intensity, edge, contours, texture, color) from maritime video clips. Following the rule
in the object tracking community, visual feature-based ship tracking models may suffer from the
intrinsic weakness of a 20 pixel error [29]. More specifically, previous studies considering the ship
tracking models obtained 100% accuracy when the average Euclidean distance between the tracked
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and ground truth (i.e., manual labeled) ship positions did not exceed 20 pixels. However, the 20
pixel error may indicate abnormal ship position oscillations which are supposed to be trivial tracking
outliers. To address the issue (i.e., alleviate the trivial tracking oscillations), we propose an ensemble
framework by integrating multi-view learning and data quality control procedures to robustly track
ships from maritime images. The proposed framework includes three steps which are sampling
varied ship training candidates with a particle filter (PF), obtaining raw ship tracking results with
a multi-view learning model, and trivial position oscillation removal with the wavelet filter (WF).
The remainder of this study is organized as follows. The proposed ensemble ship tracking framework
based on multi-view learning and the WF model is introduced in detail in Section 2. The dataset and
experimental results are described in Section 3. We briefly conclude our study in Section 4.

2. Methodology

2.1. Framework Overview

The flowchart of the proposed framework is shown in Figure 1. Ship training samples are crucial
for the success of the ship tracking task which were transformed into the ship state prediction in
maritime image sequences in our study. The PF algorithm randomly samples and re-samples the
region of interest (ROI) in the input frames for the purpose of generating a group of particles (serving
as inputs for training the tracking model) and has shown many successful broad ranges of state
estimation applications in the object tracking community (including the ship state prediction task) [30].
In that manner, we employed the PF model to estimate potential ship moving states (i.e., ship training
candidates) in the ROI from maritime images. Then, the multi-view learning model was proposed to
learn the distinctive ship features from the outputs of the previous step and determine the raw ship
tracking results (i.e., to-be-tracked ship position) in maritime images. Finally, we implemented a data
quality control procedure to identify anomalous ship positions (i.e., abnormal position oscillations)
and suppress the unexpected outliers with the WF algorithm. For the convenience of readability, our
proposed ensemble ship tracking framework is abbreviated as MVLWD (i.e., multi-view learning and
wavelet de-noising) in the following sections.

2.2. Ship Training Candidates Sampling with PF Model

The PF algorithm is considered a type of Monte Carlo method which generates ship candidates
from maritime images with sequence importance sampling criterion. More specifically, the target ship
of the ROI area is sampled by the PF model at a higher probability and vice versa. Note that the PF
model generates varied ship training samples by estimating posterior probability distribution based on
the initial target ship position (which is manually labeled in the first frame). For a given ship video clip,
we employed xt to represent the ship position state at maritime frame t and the observed ship positions
from frame 1 to frame t-1 are denoted as y1:t−1 =

{
y1, . . . , yt−1

}
. The probability distribution of xt can

be predicted with the previously observed ship positions y1:t−1, which is formulated as follows:

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (1)

where the parameter p(xt|xt−1) is the ship state transition distribution likelihood, and the parameter t
should be larger than 1 (i.e., we did not estimate the ship state transition in the first frame used in the
PF model initialization procedure).



Sensors 2020, 20, 932 4 of 17

Figure 1. Schematic diagram of the proposed ship tracking framework. LOG = Laplacian of Gaussian.
LBP = local binary pattern.

Following the rule in previous studies [31,32], we can obtain the observed ship position yt at
frame t, and thus the posterior probability distribution for the updated ship position state xt is shown
as follows:

p(xt|y1:t) =
p
(
yt|xt

)
p(xt|y1:t−1)

p(yt|y1:t−1)
(2)

where p(yt|xt) is the observation likelihood for a ship position state xt, and p(yt|y1:t−1) is a constant.
The PF model estimates the posterior probability p(xt|y1:t) from a group of particles

{
xr

t

}
r=1,...,n

(each particle is a ship candidate in the current ship frame), and each particle is assigned a weight wr
t

(n is the particle number). The weight wr
t in the frame t is updated with observation likelihood p(yt|xt)

according to the bootstrap filter strategy (see Equation (3)). Note that the observation likelihood for
ship position state xt quantitatively measures the similarity between a particle (i.e., a ship candidate)
in the frame t and the ship training template.

wr
t = wr

t−1p(yt|xt) (3)

2.3. Ship Tracking with Multi-View Learning

After obtaining the ship candidates in the previous step, the proposed MVLWD framework
implements the multi-view learning model to track targets by exploiting high-level distinct ship
features (e.g., shape, contour, texture) from the PF sampling results. More details are described in
the following.

2.3.1. Ship Feature Extraction

Previous studies suggest that extracting holistic and distinct feature sets are crucial for the ship
tracking task [26,33,34]. The main reason is that a ship’s visual appearance in maritime images may
experience various imaging challenges such as illumination, deformation, and occlusion. In that
manner, a single type of ship feature may fail to obtain favorable tracking results. Contour and
texture-relevant features have shown favorable performance in many computer vision tasks (e.g.,
vehicle tracking, pedestrian trajectory extraction) [35,36]. Moreover, ship contours and textures are
significantly different from those of water in maritime image sequences. Based on the abovementioned
analysis, we employed texture- and edge-based feature descriptors to extract distinct ship appearance
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features in the ROI of each maritime image. The histogram of oriented gradient (HOG), local binary
pattern. (LBP), and Gabor feature descriptors are commonly used to identify target contours for the
purpose of helping varied trackers obtain high tracking accuracy which indeed have enjoyed huge
success in many object tracking applications [10]. The Canny feature descriptor can effectively overcome
the edge variation challenge (caused by wave imaging changes) [37], and the LoG descriptor is a popular
blob-detector providing a complementary description of ship shape [38]. The MVLWD ship tracker
extracts the above five ship edge features which are further learned by the multi-view learning model
to obtain the compact and high-level ship features. For the purpose of methodology generalization, we
set the symbol G to represent the number of features in our proposed MVLWD tracker.

2.3.2. Establishing Ship Tracking Model with Multi-View Learning

Ship tracking model is required to robustly track ships under varied tracking challenges in typical
maritime traffic scenarios. To that aim, several studies have been conducted to extract different shallow
ship features from the ship training samples (the intrinsic correlations among ship feature sets may not
be fully exploited) which are used to identify target ships in maritime images [39,40]. To bridge the gap,
we employed the multi-view learning model to couple varied ship features into a high-level compact
ship descriptor. Note that each view in the multi-view learning model is indeed a distinct feature.

We employed n particles to sample the ship images (i.e., each image generates n ship training
candidates), and each sample contained G different features (i.e., ship edge and texture features
obtained in the previous step). Thus, we needed to solve n×G ship tracking tasks considering that the
learning sparse representation of each feature of a particle is an individual task. For each feature, we
employ g = 1, . . . , G, Xg

∈ Rdg×n to represent the ship feature matrix, where dg is the feature vector
dimension for the corresponding gth feature (i.e., the gth ship feature). We denoted Dg

∈ Rdg×N as an
over-complete ship dictionary, where each column of Dg is the ship template of the gth feature, and
N represents the number of ship templates. Following the rule in Reference [41], we can obtain the
relationship between the latent representation matrix Wg and the ship view matrix Xg. Given the ship
feature matrices Xg =

{
X1, . . . , XG

}
for the n particles and the corresponding training sample responses

Yg =
{
Y1, . . . , YG

}
, we can establish a linear function between the ship feature matrices and response

with Yg
≈ XgWg (g = {1, 2, . . . , G}). In that manner, we obtained the latent representation matrices

Wg =
{
W1, . . . , WG

}
(the Wg is also known as decomposition matrix).

The Wg explores the independence for the ship particle by capturing the intrinsic statistical
characteristics among different features. Note that each Wg can be decomposed into two collaborative
components Pg and Qg, which is formulated as Wg = Pg + Qg. The Pg is considered as the weight
matrix on the row sparse constraint, and the Qg is the counterpart of the column matrix. More
specifically, the zth column of Wg is non-zero when the zth column for Qg is non-zero. In that
manner, we considered the zth ship particle as an outlier task. At the same time, the zero columns
of Qg indicated that the non-zero rows of Pg shared the same ship features. After decomposing the
representation matrices for all of the ship features, we padded the weight matrices Pg and Qg (g = 1,
. . . , G) in a horizontal manner. In that manner, we obtained global weight matrices P and Q on the row
and column directions, respectively. We introduced the group least absolute shrinkage and selection
(LASSO) penalty method (denoted as `1,2) to minimize the feature difference between different tasks
and the corresponding features [42]. More specifically, we obtained the joint distinct ship features
and suppressed the trivial features on the row matrix (i.e., the P matrix) with the `1,2 criterion, and
the corresponding outputs were the sparse representation matrix for the P. Note that the rule was
applicable to the column matrix (i.e., Q matrix). The multi-view learning-based representations for the
sampled ship particles can be obtained by solving Equation (4):

min
W,P,Q

G∑
g=1

fL(DgWg
−Xg) + λ1‖P‖1,2 + λ2‖QT

‖1,2 (4)
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where fL(DgWg
−Xg) is the cost function for the reconstruction errors during multi-view learning

procedure. The parameters λ1 and λ2 control the sparsity of the matrices P and Q, respectively.

The operator ‖•‖1,2 is equal to
∑

i

(∑
j(·)

2
i, j

) 1
2 , where (·)i, j is the matrix element at the ith row and

jth column.
Previous studies suggest that the cost function in Equation (4) plays a crucial role for the

performance of the multi-view learning-based tracker [43]. The Frobenius norm has shown its
advantages in different tracking applications, which is employed as the cost function in our study too.
Thus, we can re-formulate Equation (4) by substituting the cost function with the Frobenius norm
which is shown as follows:

min
W,P,Q

G∑
g=1

1
2
‖DgWg

−Xg
‖

2
F + λ1‖P‖1,2 + λ2‖QT

‖1,2 (5)

where ‖•‖2F is the Frobenius norm.

2.3.3. Solving the Ship Tracking Model

The multi-view learning-based ship tracking performance (i.e., the tracking accuracy) heavily
relies on the solution for Equation (5). For the purpose of readability convenience, we split the
Equation (5) into two parts which are shown as Equations (6) and (7). More specifically, we can
obtain the optimal solution for Equation (5) by combing the solutions of Equations (6) and (7) in a
linear superposition manner. Previous studies suggested that the accelerated proximal gradient (APG)
method can successfully tackle the Frobenius-norm relevant optimization challenges [44] and thus is
employed in our study too. The residual of ship tracking results obtained by the APG model at the vth
iteration is

(
1
v2

)
, and thus we can obtain a smaller tracking error by implementing the APG model with

more iterations.

ϕ(P, Q) =
G∑

g=1

1
2
‖DgWg

−Xg
‖

2
F (6)

s(P, Q) = λ1‖P‖1,2 + λ2‖QT
‖1,2 (7)

The APG method solves Equations (6) and (7) with the steps of composite gradient mapping and
aggregation which are detailed as follows:

Step 1: Composite gradient mapping. Motivated by previous studies [32,45], we introduced
the composite gradient mapping model to address the ship tracking problem in Equation (5). More
specifically, we reformulated the ship tracking problem with Equations (5)–(7) in the form of Equation (8)
as follows:

Γ(P, Q; A, B) = ϕ(A, B) + 〈∇Aϕ(A, B), P−A〉+ 〈∇Bϕ(A, B), Q− B〉
+
γ
2 ‖P−A‖ 2

F +
γ
2 ‖Q− B‖2F + s(P, Q)

(8)

where ϕ(A, B) is the first-order Taylor expansion of ϕ(P, Q) at point (A, B). The s(P, Q) is the
regularization term which is presented with the Euclidean distance between points (P, Q) and (A, B).
The parameter γ represents the penalty coefficient for each iteration. In particular, ∇Aϕ(A, B) and
∇Bϕ(A, B) represent the partial derivatives of ϕ(A, B) with respect to A and B. The

〈
∇Aϕ(A, B), P−A

〉
is the inner product between ∇Aϕ(A, B) and P−A, and

〈
∇Bϕ(A, B), Q− B

〉
represents the inner product

of ∇Bϕ(A, B) and Q− B.
Step 2: Aggregation. At the vth APG iteration procedure,

(
Av+1, Bv+1

)
can be calculated by linearly

combining (Pv, Qv) and
(
Pv−1, Qv−1

)
. Thus, we can obtain the updated Av+1 and Bv+1 by Equations (9)
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and (10), respectively. The parameter ηv is identified with Equation (11). Note that each element in the
matrices P0, Q0, A1, and B1 are set to zero for the purpose of initialization.

Av+1 = Pv + ηv

(
1− ηv−1

ηv−1

)(
Pv
− Pv−1

)
(9)

Bv+1 = Qv + ηv

(
1− ηv−1

ηv−1

)(
Qv
−Qv−1

)
(10)

ηv =

 2
v+3 , v ≥ 1

1, v = 0
(11)

Given the set (Av, Bv), the solution of the vth iteration of the APG procedure is to find the minimal
solution for Equation (12) which can be decomposed as finding the minimization values for the Pv and
Qv (see the Equations (13) and (14), respectively). Following the rules in Reference [46], we obtained
the solutions for each row of P and each column of Q in Equations (13) and (14) with a closed form
solution through Equations (15) and (16), respectively. More specifically, the ship tracking result was
obtained when the minimization problems in Equations (13) and (14) were solved.

(Pv, Qv) = arg min
P,Q

Γ(P, Q; Av, Bv) (12)

Pv = arg min
P

1
2
‖P−Rv

‖
2
F +

λ1

γ
‖P‖1,2 (13)

Qv = arg min
Q

1
2
‖Q− Sv

‖
2
F +

λ2

γ
‖QT
‖1,2 (14)

Pv
i,· = max(0, 1−

λ1

γ‖Rv
i,·‖

)Rv
i,· (15)

Qv
·, j = max(0, 1−

λ2

γ‖Sv
·, j‖

)Sv
·, j (16)

where Pv
i,· represents the ith row of Pv and Qv

·, j represents the jth column of Qv. The operator ‖•‖ is the
Euclidean distance.

2.4. Ship Position Denoising with WF Model

The outputs from the previous step are the raw ship tracking positions which may contain small
tracking errors such as irregular ship position oscillations. The main reason for causing such anomalous
tracking results can be ascribed to the low video quality and background imaging interference (e.g.,
waves, buoys). The WF model is thus applied to rectify the potential outliers which is detailed
described as follows. Note that ship tracking position in each frame was represented as Cx, Cy, Cw, Ch
where Cx and Cy are the x and y coordinates for the top-left point of the bounding box (i.e., the tracked
ship). The Cw and Ch are the width and height for the bounding box, respectively. We describe the WF
denoising procedure on the Cx data series for the sake of simplicity (the rule is applicable to the Cy,
Cw, and Ch data series). We denoted the raw x coordinates by the previous step as S(Cx), which was
further processed by a J-scale decomposition of the WF model. The S(Cx) can be decomposed into
approximate coefficient Ac and detail coefficients Dc (c = 1, . . . , J), which is shown as follows:

S(Cx) = Ac +

J∑
c=1

Dc (17)
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The detail coefficients Dc are the details in the raw Cx data series which contains both of the
regular and irregular oscillations. We employed the soft threshold function to obtain noise-free detail
coefficients D̂c at varied scales (see Equations (18) and (19)) [47]. In that manner, we reconstructed the
noise-suppressed x coordinates Ŝ(Cx) with Equation (20).

D̂c =

sign((Dc))
(
|Dc| − tg

)
, |Dc| ≥ tg

0, |Dc| < tg
(18)

tg = σ
√

2 log(g) (19)

Ŝ(Cx) = Ac +

J∑
c=1

D̂c (20)

where g is the sample length for the Cx data series. The tg is the threshold for determining the anomaly
detail coefficient and σ represents the standard deviation of the noise in the Cx series.

3. Experiments

3.1. Data

We performed the ship tracker on different maritime videos to verify the effectiveness of our
proposed MVLWD model. More specifically, four video clips involved with typical maritime traffic
scenarios were shot at Shanghai Port (denoted as video #1, #2, #3, and #4), which were used as the
benchmark data for evaluating the proposed ship tracking model performance. The ship tracking
challenge in each video was different from each other and is described in detail as follows. Videos
#1 and #2 involved ship overlapping challenges in the two maritime video clips. More specifically,
the visual appearance of the target ship was similar to that of the obstacle in video #1, and the
overlapping-involved ships in video #2 showed different appearances. The main tracking challenge in
video #3 is that the to-be-tracked ship was small in imaging size, and the target ship in video #4 was
interfered with by the wave clutters in video #4. We are willing to share our collected maritime video
clips with interested readers (by request) considering that public computer vision datasets (e.g., Visual
Object Tracking (VOT) [48]) do not contain typical maritime traffic scenarios. The typical frames for
each video clip are shown in Figure 2.

3.2. Experimental Platform and Evaluation Criteria

For the purpose of tracking performance validation, the proposed MVLWD ship tracker and
another two popular ship trackers were implemented to track ships in the above four video sequences.
The two ship tracking models were labeled as the Meanshift and ship tracker based on multi-view
learning and sparse representation (abbreviated as STMS) [10,49]. The three trackers were implemented
on Windows 7 OS, and the CPU was an Inter Core i5-4210M at 2.6 GHz and the RAM was 8 GB.
The simulation platform was MATLAB (R2016 version). A previous study suggested that the precision
and success rate can be used for evaluating a ship tracker’s performance [29]. The success rate relevant
metrics can be easily identified in a manual manner and thus were not used in our study. In that manner,
we employed precision relevant metrics to quantify the performance of the ship tracking model.
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Figure 2. Ship frame samples for the collected video clips.

Note that the ground truth ship positions in the first frame of each video were employed to
initialize the three trackers. To the aim of quantitatively evaluating the ship tracker’s performance, we
employed the Euclidean distance to measure the distance between the ground truth and the tracked
ship positions. More specifically, the ship (both the ground truth and tracked) are presented by a
bounding box in ship frames, and the Euclidean distance between the center points of the ground truth
and tracked ship position was calculated to evaluate the ship tracker’s performance.

We used Gm(x, y) to represent the ground truth ship position (i.e., the center point of the ground
truth bounding box) at maritime frame m, and Tm(x, y) was the counterpart (i.e., the tracked ship
position). The Euclidean distance between the two points in frame m was calculated by Equation (21).
Three typical statistical indicators were employed to further demonstrate the tracking model’s
performance: mean distance (MD), root mean square error (RMSE), and mean absolute error (MAE)
(see Equations (22)–(24)). A smaller value of MD indicates that the tracked ship position series was
closer to the ground truth data (i.e., the ship tracking model obtained better accuracy) and vice versa.
The rule is applicable to the RMSE and MAE statistics.

Em(G, T) =
√
(Gm(x) − Tm(x))

2 + (Gm(y) − Tm(y))2 (21)
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MD =
1
M

M∑
m=1

Em(G, T) (22)

RMSE =

√√√
1
M

M∑
m=1

(Em(G, T) −MD)2 (23)

MAE =
1
M

M∑
m=1

∣∣∣Em(G, T) −MD
∣∣∣ (24)

where M is the ship position sample length. The Gm(x) represents ground truth ship position on the
x-axis of frame m, and Gm(y) is the counterpart on the y-axis. The Tm(x) and Tm(y) represent the x
and y coordinate of the tracked ship position of frame m.

3.3. Results

3.3.1. Ship Tracking Results for Video #1

We present the ship tracking results with the three trackers in detail for video #1, and then verify
the model’s performance on video #2, #3, and #4. More specifically, we demonstrated our proposed ship
tracking model’s (i.e., MVLWD model) performance with different wavelet bases, which were further
compared against the other two ship tracking models. The harr basis, db basis, sym basis, coif basis,
and bior basis in the WF model demonstrated the efficacy on the traffic data smooth applications [50]
which showed the potential of suppressing ship position outliers in our study. In that manner, our
proposed model performances were presented in detail with the WF model implemented with the
above wavelet basis. The MVLWD model implemented with the harr wavelet was labeled as MVLWD
(harr), and this rule is applicable to the MVLWD (db), MVLWD (sym), MVLWD (coif), and MVLWD
(bior).

As shown by the red curve in Figure 3, we found that the tracking error of the Meanshift tracker
was significantly larger than the other tracking models (i.e., the distance by the Meanshift tracker
is obviously larger than the other two trackers). After carefully checking the Meanshift tracking
results (by plotting the Meanshift tracking bounding boxes on the image sequences), we found that the
Meanshift tracker wrongly tracked the target ship when it was partially occluded by the ship sailing
in a neighboring waterway channel. The STMS Euclidean distance distribution curve (see the green
line in Figure 3) fluctuated at smaller magnitude than that of the Meanshift tracker (though the STMS
tracking accuracy at several frames were worse than those of Meanshift model). More specifically, the
STMS tracker successfully tracked the target ship when the ship was partially occluded by the obstacles
from frame #80 and on. It is noted that the STMS’s tracking performance, from approximately frame
#250 to #520, was not satisfactory, as the target ship was completely sheltered by the neighboring ship.

The proposed ship tracker’s performance (different wavelets are labeled with a different color)
showed better accuracy as the corresponding Euclidean distances were lower than the counterparts of
Meanshift and STMS trackers. From frame #1 to #250 (the target ship was not (or slightly) occluded by
the neighboring ship), the proposed MVLWD tracker with different wavelets showed similar tracking
accuracy to that of the STMS tracker. Our proposed ship tracker showed its advantages when the ship
was severely occluded by the obstacle (see the Euclidean distance distributions from frame #250 to
#520). The main reason is that the proposed ship tracker employed a data quality control procedure to
validate ship moving displacements with the previous ship positions; thus, the abnormal oscillation
data were successfully corrected.

Table 1 showed that the MVLWD tracker (at different wavelet bases) obtained smaller tracking
errors compared to the Meanshift and STMS trackers. More specifically, the MD obtained by the
Meanshift tracker was 41.01 pixels which is approximately three-fold higher than that of the STMS
tracker. The MD obtained by the proposed MVLWD tracker ranged from 8.46 pixels (obtained by the
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MVLWD with the db wavelet basis) to 9.15 pixels (obtained by the MVLWD (bior)) which demonstrates
the efficacy of the proposed ship tracker. The RMSE and MAE statistics distributions for the three
trackers show similar results to that of the MD. The RMSE and MAE indicators for the Meanshift
tracker were 29.41 and 24.70 pixels, respectively, which are both higher than their counterparts for
the STMS and MVLWD trackers. More specifically, the STMS obtained a, RMSE and MAE (14.16
and 11.93 pixels, respectively) that were both half of those of the Meanshift tracker, and the MVLWD
counterparts were both half of that of its STMS counterparts. From the perspective of the RMSE and
MAE, the MVLWD (haar) obtained the optimal tracking accuracy (i.e., the RMSE and MAE were 7.73
and 6.24 pixels, respectively). In summary, the proposed MVLWD tracker obtained better tracking
accuracy on the ship occlusion challenge (with similar visual appearances shared by the target and
obstacle ships) in video #1. Note that the MVLWD tracker with haar wavelet analysis was the default
setting in our study without further specifications.

Typical tracking results on video #1 are shown in Figure 4 to further visualize the different ship
trackers’ performance. It is noted that the three trackers showed favorable tracking accuracy at the
beginning when the target ship was not occluded (see the ship tracking results at frame #48 in Figure 4).
But, the two trackers (i.e., Meanshift and STMS) failed to accurately track the target ship in the latter
frames (i.e., frames #409 and #519), as the tracked ship bounding boxes were not well matched with
the ground truth. The main reason is that the two models extracted visual features (serving as ship
descriptor) from the ship image sequences which are sensitive to the ship occlusion interference (i.e.,
the features may be wrongly extracted from neighboring ships). The proposed MVLWD tracker
alleviated the ship occlusion interference by introducing spatial-temporal information in maritime
images. More specifically, the WF model in the MVLWD decomposed the tracked ship’s positions
into different details, where the noise details were suppressed from ship positions considering the
spatial-temporal constraints.

Figure 3. Euclidean distance distribution for the three trackers on video #1.

Figure 4. Ship tracking results for the three trackers on typical frames in video #1.
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Table 1. Statistical performances for the three trackers on video #1.

MD (Pixels) RMSE (Pixels) MAE (Pixels)

Meanshift 41.01 29.41 24.70
STMS 14.03 14.16 11.93

MVLWD (haar) 8.54 7.73 6.24
MVLWD (db) 8.46 7.94 6.55

MVLWD (sym) 8.57 8.08 6.64
MVLWD (coif) 8.74 8.11 6.67
MVLWD (bior) 9.15 8.41 7.12

3.3.2. Ship Tracking Results on Video #2

Video #2 involved a ship occlusion challenge, where the target ship was occluded by a neighboring
ship with different visual appearances. The Euclidean distance distribution curve obtained by the
Meanshift tracker showed a similar variation tendency as that of video #1 (see Figure 5). More
specifically, the Meanshift tracker permanently lost the target ship due to the fact of a wrongly extracted
shallow edge feature from the obstacle ship in the ship occlusion images. The obstacle ship was wrongly
learned as template in the ship occlusion images which cannot be rectified in the latter tracking image
sequences (i.e., the ship’s visual appearance can be fully observed without occlusions). The Euclidean
distance distributions for the STMS and MVLWD trackers showed more stable performances in
comparison to the Meanshift model. The main reason is that the two models extracted different ship
features and thus ship occlusion with different visual features in video #2 can be partially suppressed
during the ship tracking procedure. Besides, we found that the MVLWD tracker-obtained Euclidean
distance distribution curve varied smoother than that of the STMS curve, and this indicates that the
abnormal ship tracking oscillations were successfully suppressed.

The statistical performances for the three trackers are shown in Table 2 which clearly demonstrates
that the MVLWD tracker obtained better tracking accuracy than the other two trackers. More specifically,
the three statistical indicators (i.e., MD, RMSE, and MAE) for the MVLWD tracker were 5.44, 4.16, and
2.80 pixels. The statistical values for the STMS model were at least 30% higher than the counterparts of
the MVLWD tracker, and the Meanshift tracking accuracy were significantly lower than those of the
two trackers. The typical ship tracking results on video #2 were shown in Figure 6 which were different
from those shown in video #1. More specifically, the three trackers were not severely degraded by the
ship occlusion challenge when the obstacle ship showed different visual appearances in comparison to
the target ship. The Meanshift tracker slightly lost the target ship (i.e., the Meanshift bounding boxes
in the frames were not far away from the ground truth) when the ship occlusion happened. Both the
STMS tracker and MVLWD tracker successfully tracked the target ship in the ship occlusion frames
(see the tracking results for frames #192 and #350), while the proposed ship tracker obtained closer
ship tracking results. The ship tracking results in video #1 and #2 showed that our proposed MVLWD
tracker can suppress ship occlusion interference and obtain better tracking results in comparison to the
other two trackers.
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Figure 5. Euclidean distance distribution for the three trackers for video #2.

Figure 6. Ship tracking results for the three trackers for typical frames in video #2.

Table 2. Statistical performances of the three trackers for video #2.

MD (Pixels) RMSE (Pixels) MAE (Pixels)

Meanshift 29.15 30.21 24.15
STMS 7.87 7.29 4.78

MVLWD (haar) 5.44 4.16 2.80

3.3.3. Ship Tracking Results for Videos #3 and #4

The proposed MVLWD and the two ship trackers were also implemented to tackle the
challenge of small ship tracking and sea clutter interference (i.e., videos #3 and #4, respectively).
The Euclidean distance distribution shown in Figure 7 indicates that the MVLWD tracker obtained
better tracking accuracy than the Meanshift and STMS models on the two typical ship tracking
challenges. The Meanshift tracker identified background and clutter pixels near the target ship as the
ship which were thus wrongly tracked in the maritime images, leading to the performance loss for the
Meanshift tracker (see the red curves in Figure 7a,b). The STMS model was not obviously interfered
by the tracking challenges in video #3 and #4 which can be observed in the green curve shown in
Figure 7a,b, respectively. By contrast, our proposed ship tracker successfully determined intrinsic ship
features from the maritime video clips, and the WF model successfully removed the trivial position
oscillation outliers.

We further analyzed ship trackers’ performances with the three statistical indicators which are
shown in Tables 3 and 4. It was found that the Meanshift model performance on video #3 was better
than those on video #4 which is consistent with ship tracking results for the previous video clips.
Based on that, we can conclude that the Meanshift tracking model performance easily suffered from
the success/failure of ship visual feature extraction. It is noted that the MVLWD tracker obtained the
minimum number of tracking errors for the two videos. More specifically, the MD, RMSE, and MAE
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obtained by the MVLWD tracker were 6.34 pixels, 5.22 pixels, 4.78 pixels on video #3 and 5.57 pixels,
2.93 pixels, 2.28 pixels on video #4 (which can be found in Tables 3 and 4, respectively). According to
the above analysis, our proposed ship tracker can successfully track ships at different ship tracking
challenges in the four typical maritime video clips in the manner of obtaining robust ship features
(and further discarding the trivial features from imaging interferences), eliminating the ship tracking
outliers by suppressing the abnormal ship oscillations.

Figure 7. Euclidean distance distribution for the three trackers on video #3 and video #4.

Table 3. Statistical performances for the three trackers on video #3.

MD (Pixels) RMSE (Pixels) MAE (Pixels)

Meanshift 12.33 11.45 9.40
STMS 6.83 5.88 5.09

MVLWD (haar) 6.34 5.22 4.78

Table 4. Statistical performances for the three trackers on video #4.

MD (Pixels) RMSE (Pixels) MAE (Pixels)

Meanshift 23.28 26.92 17.17
STMS 5.99 3.60 2.79

MVLWD (haar) 5.57 2.93 2.28
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4. Conclusions

Robust ship tracking plays a crucial role in visual perception tasks in the smart ship era, which
can encounter varied challenges (ship occlusion, wave clutter interference, abnormal ship position
variation, etc.). To address this issue, we proposed an ensemble ship tracking framework based
on the multi-view learning algorithm and WF model. Firstly, the proposed ensemble ship tracking
framework was used to generate ship candidates by sampling the maritime images with PF. Secondly,
the multi-view learning model was proposed to track ships consisting of steps of feature extraction
and ship tracking model establishment and solution determination. Thirdly, the data quality control
procedure was implemented with the WF model to remove the abnormal tracking oscillations. We
tested our proposed ship tracking model’s performance on the four typical scenarios (i.e., four typical
ship tracking challenges), and the average MD, RMSE, and MAE for the proposed ship tracker were
6.47 pixels, 5.01 pixels, 4.03 pixels which were at least 20% lower than the counterparts for the Meanshift
and STMS trackers.

Though the proposed framework obtained favorable ship tracking performances for the typical
maritime scenarios, we can further expand our research in the following aspects. First, the weather
conditions in the collected ship video clips were relatively good (e.g., high visibility, windless). Testing
the model tracking performance on the videos shot at extreme weather conditions can provide more
holistic evaluation results. Second, our model worked well under a single ship tracking challenge
in the four traffic scenarios and evaluation of the model’s performance with multiple ship tracking
challenges is in need. Third, testing the ship’s tracking performance on a single maritime video
involving several challenges can be an interesting exploration in the future. Fourth, exploiting the ship
tracker’s performance with a non-perfect initialization challenge (instead of initializing with ground
truths) can be another interesting expansion. Last but not least, we can further implement additional
general-purpose tracking models (e.g., deep learning-based models, kernelized correlation filter for
the purpose of tracker performance comparison.
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