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Abstract: Wearable internet of things (IoT) devices can enable a variety of biomedical applications,
such as gesture recognition, health monitoring, and human activity tracking. Size and weight
constraints limit the battery capacity, which leads to frequent charging requirements and user
dissatisfaction. Minimizing the energy consumption not only alleviates this problem, but also
paves the way for self-powered devices that operate on harvested energy. This paper considers an
energy-optimal gesture recognition application that runs on energy-harvesting devices. We first
formulate an optimization problem for maximizing the number of recognized gestures when energy
budget and accuracy constraints are given. Next, we derive an analytical energy model from the
power consumption measurements using a wearable IoT device prototype. Then, we prove that
maximizing the number of recognized gestures is equivalent to minimizing the duration of gesture
recognition. Finally, we utilize this result to construct an optimization technique that maximizes the
number of gestures recognized under the energy budget constraints while satisfying the recognition
accuracy requirements. Our extensive evaluations demonstrate that the proposed analytical model
is valid for wearable IoT applications, and the optimization approach increases the number of
recognized gestures by up to 2.4× compared to a manual optimization.

Keywords: wearable devices; gesture recognition; energy model; energy harvesting; energy optimization

1. Introduction

Designing small form factor wearable devices without degrading user experience can enable
pervasive biomedical applications such as gesture-based control, health monitoring, and activity
tracking [1–4]. However, a small form factor generally limits the capacity of the battery, hence requiring
frequent battery replacements and charging, which are inconvenient. Lighter flexible batteries have
advantages in size and weight, but their capacities (200 mAh @ 1.2 g) [5] are not enough for the
seamless operation of wearable devices. Therefore, maximizing the utilization (i.e., useful work) under
a tight energy budget is key to the success of wearable IoT devices [6].

Harvesting energy from ambient sources is an attractive way to alleviate the battery problem [7],
especially for wearable IoT devices. Among various energy-harvesting resources, it is known that
photovoltaic cells (PV-cells) generate 10–100 mW/cm2 [8,9], which can operate the wearable device
even without a battery. Researchers have also recently studied other ambient energy sources, most
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notably thermo-electric [10] and kinetic energy [11,12]. These studies have shown that thermo-electric
generators (TEGs) and piezo electric devices can generate up to 50 µW and 2 mW power, respectively.
Hence, they are extremely useful and complementary to PV-cells, especially for indoor environments.
In this work, we consider the combination of an energy-harvesting source and a small-size energy
storage device such as a rechargeable battery or a capacitor, as shown in Figure 1. We complement
the energy-harvesting source with a back-up storage device since the amount of harvested energy is
intermittent and exhibits significant variations depending on the time and day [13].

The goal of this paper is to maximize the work performed by an energy harvesting wearable
device under a given energy budget. To demonstrate the effectiveness of the proposed solution, we
employ a gesture recognition application and the system shown in Figure 1. Gesture recognition
was chosen as the driver application since it is an important component of biomedical applications,
including gesture-based control and interaction with robotic assistive devices. We implemented gesture
recognition using a wearable device consisting of an energy-harvesting subsystem, a microprocessor,
a 3-axis accelerometer, a 3-axis gyroscope, and a Bluetooth Low Energy (BLE) interface (detailed in
Section 3). Hence, our concrete goal in this context becomes maximizing the number of correctly
recognized gestures under an energy budget, which is determined by the harvested energy.

This paper makes three novel contributions to address the major challenges in solving the
aforementioned optimization goal. First, accurate energy consumption and gesture recognition
accuracy models are needed to guide this optimization. Second, the problem should be solved
at runtime with minimum implementation overhead. Finally, the optimization methodology has to be
validated using an energy-harvesting device and user subject studies to be credible.

Toward this end, we first measured and characterized the power consumption of the sensors,
microprocessor, and BLE separately while performing gesture recognition. The detailed energy
characterization presented in this paper enabled us to develop a novel compact energy model that
can be used at runtime by energy-optimization algorithms. Minimizing energy consumption alone
can degrade accuracy and reduce the number of correctly recognized gestures. Therefore, it was also
necessary to constrain the minimum allowed recognition accuracy. To achieve this, we analyzed the
recognition accuracy as a function of the gesture recognition duration by performing user studies.
The models presented in this paper are currently the most detailed and accurate energy consumption
and recognition accuracy characterizations available, to the best of our knowledge. Finally, we
design a novel computationally efficient algorithm using these models to maximize the number of
recognized gestures at runtime under the energy budget and accuracy constraints. Our extensive
experimental evaluations demonstrate that the proposed approach increases the number of recognized
gestures by up to 2.4× compared to a manual optimization while consuming one order of magnitude
less energy compared to the state-of-the-art approaches based on radar [14] and electromyography
()EMG) [15] processing.
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Figure 1. Proposed wearable gesture recognition system. BLE: Bluetooth Low Energy.

In summary, the novel contributions of this paper are as follows:

• A detailed energy consumption analysis for wearable gesture recognition devices and novel
analytical models considering different operating voltage levels;

• An algorithm to maximize the number of recognized gestures under the given energy budget and
accuracy constraints;
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• Empirical evaluations using a wearable device prototype, which demonstrate up to 2.4× increase
in the number of recognized gestures compared to a manual optimization;

The rest of this paper is organized as follows: we review the related work in Section 2. We present
the system overview and the proposed algorithm in Sections 3 and 4. We discuss the experimental
results in Section 5 and summarize the conclusions in Section 6.

2. Related Work

Wearable IoT devices have been studied extensively due to their form factor and cost benefits.
Researchers have proposed sensor networks, gesture-based control, health monitoring, and activity
monitoring as potential applications of IoT devices [16–22]. Gesture recognition using wearable devices
has received significant attention due to its applications in human-computer interaction, gesture-based
control, and virtual reality [23–26]. For instance, impedance sensing [25] and EMG sensors [23,26]
on wearable devices are used to recognize gestures. The use of motion sensors with dynamic time
warping (DTW) [24,27] and template matching methods [27] have also been proposed to identify
gestures. While these studies achieved high recognition accuracy, most of them were implemented and
tested offline on the host machines. In contrast, we propose a low-power implementation of gesture
recognition on a wearable prototype under the given energy budgets considering energy-harvesting
applications.

Wearable devices need to operate under tight energy budgets due to their small battery
capacities. Therefore, a significant amount of research has focused on wearable devices with energy
harvesting [7,28,29]. As examples, a jacket with solar and thermal energy harvesting [7] and a
multi-sensor wearable bracelet with body-heat harvesting [28] have been proposed. Energy harvesting
in wearable IoT devices also requires energy management and energy allocation algorithms [30–32].
In this regard, the work in [29] manages sleep and wake-up cycles to enable 24-h operation of the
wearable sensor node whereas the work in [30] allocates the duty cycle of a wireless sensor node for
every control interval. Similarly, a dynamic programming approach was used to perform near-optimal
energy allocation for self-powered wearable devices [32]. Unlike prior approaches, our work assumes
that the energy budget for each time horizon is provided by a similar algorithm and maximizes the
number of gestures recognized under this energy budget.

In addition to the proposed energy management, low-power computing is critical for wearable
devices due to the limited energy budget. Recent research has focused on the accuracy–power trade-off
in wearable devices [33–36]. For instance, the technique presented in [33] used dynamic sensor selection
to minimize the power consumption of a gesture recognition body area network. This maximized
the network lifetime. The work in [34] proposed an algorithm to perform optimal feature selection in
wearable sensor networks. In contrast to these approaches, we propose a novel runtime algorithm that
maximizes the number of gestures that can be recognized in a given time horizon. While our previous
work in [37] formulated the problem as a nonlinear optimization problem and proposed a graphical
solution, in this work we first present our detailed characterization of the energy consumption in
wearable devices. Then, we provide a theoretical optimization methodology to maximize the number
of gestures recognized and validate the proposed methodology with experimental measurements.

3. Target System Overview

3.1. Energy-Harvesting Wearable Device Prototype

We designed a wearable gesture recognition prototype which integrates a PV module and a
maximum power point tracking (MPPT) charger as the energy harvesting system, as shown in Figure 2.
The MPPT charger (TI BQ25504 [38]) is connected to the output of the PV module. It runs an MPPT
algorithm to maximize the power provided to the energy storage, which is a lithium polymer battery
in our case. The MPPT algorithm ensures that the maximum power is transferred from the PV-cell to
the energy storage device regardless of the changes in the load current.
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The dimensions of the PV module used in this work (SP3-37) [39] are 37 mm × 64 mm. It generates
66 mW power, which amounts to a power density of 2.8 mW/cm2. This is smaller than typical rigid
modules since the SP3-37 is a physically flexible PV module with lower performance and it loses
some white space due to electrical connections. Finally, we use a lithium polymer battery (DMI
PGEB0054338) [5] which weighs 1 g with 45 mAh capacity for energy storage to alleviate the problem
caused by the non-negligible energy fluctuation over a day.

A motion processing unit (InvenSense MPU-9250) [40] collects the user motion data while the
microprocessor (TI CC2650) [41] executes a gesture classifier. The microprocessor also has the ability to
perform BLE communication. In the prototype, we also added test ports to measure the power
consumption of each major component. As shown in Figure 2, our prototype is designed and
implemented to be attached on the hand.

The amount of harvested energy determines the energy budget that can be exploited by the device.
To be practical, this system has to maximize the number of intended operations (in our case, gesture
recognition) under this budget, while maintaining a minimum level of recognition accuracy. Therefore,
we present a methodology to maximize the number of recognized gestures with a given energy budget
and accuracy constraint.
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Figure 2. Gesture recognition prototype. MPPT: maximum power point tracking; MPU: motion
processing unit; PV: photovoltaic.

Table 1. The major parameters.

Symbol Description

tg Time spent by the device to infer a single gesture
Ng(tg) Number of gestures recognized in a finite horizon
Eg(tg) Active energy consumption of a single gesture
Ei(tg) Idle energy consumption of the device

Eb Energy budget over a finite horizon
Ecomm Communication energy consumption of the device

Eµp
act(tg) Active energy consumption of the microcontroller

Esen
act (tg) Active energy consumption of the sensor

Eµp
idle(tg) Idle energy consumption of the microcontroller

Esen
idle(tg) Idle energy consumption of the sensor

Gacc(tg) Accuracy of gesture recognition

3.2. Problem Formulation

Given the characteristics of the energy-harvesting system, one can determine the energy that can
be harvested over a finite horizon th [32]. We use this amount as the energy budget Eb available for the
wearable device during the time th. The gesture recognition duration tg is defined as the time spent by
the device to infer a single gesture, as summarized in Table 1. The wearable device actively senses
the hand motion and processes the data during this period, which takes a portion of th. We denote
the number of gestures recognized within the finite horizon by Ng(tg), since it is a function of the
gesture recognition duration. The energy consumption per gesture Eg(tg) is a function of tg, because
tg determines the active time of the processor and sensor. Similarly, the energy consumption of the
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device during the idle time is denoted by Ei(tg). Finally, the energy consumed for transmitting the
recognized gesture is denoted by Ecomm. With this notation, the proposed optimization problem is
formulated as:

maximize Ng(tg) such that (1)

Etotal(tg)=Eg(tg)·Ng(tg)+Ei(tg)+Ecomm ≤ Eb (2)

Gacc(tg)≥Gacc,min (3)

The first constraint in this formulation ensures that the total system energy consumption is always less
than the energy budget. The second constraint guarantees that the accuracy of the gesture recognition
Gacc(tg) is greater than a minimum accuracy Gacc,min. Note that Gacc(tg) is a function of tg, since tg

determines the number of data points used for gesture recognition given the sampling frequency.
Solving the optimization problem given by Equations (1)–(3) at runtime is not easy since both the

objective and constraints are nonlinear. Moreover, system dependencies make it hard to model the
behavior of Eg(tg) and Ei(tg).
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Figure 3. Energy budget and minimum accuracy requirements constrain the gesture recognition
duration tg from above and below, respectively. Hence, we maximize the number of recognized
gestures within the feasible region.

3.3. Overview of the Proposed Approach

The energy consumed per gesture is an increasing function of the gesture recognition duration
tg since a longer duration increases the active time of the sensors and processor. While precise
characterization requires a detailed model as developed in Section 4.1, it can be conceptually illustrated
by the left axis in Figure 3. Hence, the gesture recognition duration tg is bounded from above by the
given energy budget Eb. Similarly, the gesture recognition accuracy is expected to improve when a
larger number data samples and longer processing time is used. Again, its precise behavior can be
found only after user studies, but we can conceptualize it as a non-decreasing function of the gesture
recognition duration, as illustrated by the right axis in Figure 3. Consequently, a minimum accuracy
requirement bounds the gesture recognition duration tg from below, regardless of the shape of the
curve. As a result, the feasible region for the optimization problem is the intersection of the regions for
energy and accuracy, as highlighted in Figure 3.

To quantify a solution within the feasible region, we need to express the total energy consumption
as a function of the gesture recognition duration, that is, Eg(tg) and Ei(tg) should be derived. Then,
we need to model Ng(tg) such that it can be maximized within the feasible region. We solved this
optimization problem through following steps:

1. Develop the gesture recognition algorithm on the target hardware and characterize the power
consumption of individual components (Sections 4.1 and 4.2);

2. Construct mathematical energy consumption models using this characterization (Section 4.3);

3. Derive an expression for Ng(tg) and its maximum point using the mathematical models
(Section 4.4);
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4. Combine the output of step 3 with the lower bound on tg given by the gesture recognition
accuracy Gacc,min to find the optimal solution. Note that we characterize Gacc(tg) through user
studies presented in Section 5.4.

4. Energy-Optimal Gesture Recognition

4.1. Gesture Recognition Algorithm

We define five gestures made by one hand (i.e., backward, forward, left, right, and wave), as
shown in Figure 4. In addition, we include a stationary gesture to detect when the device is inactive.

Backward Forward Right Left Wave

Figure 4. Illustration of the target gestures.

The target gestures can be classified using a variety of supervised learning algorithms, such as
support vector machine (SVM), decision tree, logistic regression, and neural network (NN). Selecting
the appropriate algorithm depends on the input data size, accuracy, and latency requirements, as
well as available computational power and memory. In our application, the input is provided by a
3-axis accelerometer with 50 Hz sampling rate. Since common gestures take approximately 0.8 s [42],
a baseline implementation with tg = 0.8 s leads to 3 × 50 Hz × 0.8 s = 120 input features. We aim at a
flexible solution that can be easily extended to have more number of gestures and input features. Our
goal is to achieve 90% or higher accuracy on a small wearable IoT device. While both SVM and NN
implementations meet the accuracy requirement on our test data, we adopt an NN due to its flexibility.
We performed a thorough design space exploration and designed an NN with a single hidden layer
with four neurons. The details of this design space exploration are presented under experimental
results in Section 5.2 because it does not affect the proposed energy algorithm.

We employ two versions of the NN for the gesture recognition application:

• Baseline NN uses all 120 accelerometer samples collected by the three-axis accelerometer during
tg as input features.

• Reduced NN employs transformed features derived from the raw accelerometer data. We utilize
the minimum, maximum, and mean values of each axis (x, y, z) over tg. Hence, these amounts to
a total of nine input features. Since the number of transformed features does not depend on tg,
we can change it at runtime.

4.2. Operation and Energy Measurements

Figure 5 shows the power consumption of the microprocessor and the sensor (i.e., accelerometer)
for a single gesture. The power consumption of the microprocessor is presented using a dashed blue
line, while the sensor power consumption is presented using a solid red line. The default behavior
of the target device is to stay in the idle state, as shown on the left side of Figure 5. The power
consumption of the sensor is close to zero at this state, while the microprocessor consumes about
1.3 mW of power even in the idle state. When the user initiates a gesture, the accelerometer senses the
movement and wakes the system up. The first step after system wake-up is to perform a pre-processing
routine that prepares the accelerometer and microprocessor for the gesture recognition. Next, the
accelerometer samples motion data for a duration of tg while the user is performing the gesture.
The power consumption of the sensor increases by about 1.2 mW when sampling the motion. Once
the data acquisition is complete, the sensor goes back to the idle state after transmitting data to the
microprocessor. In parallel, the microprocessor extracts the features and identifies the gesture using the
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NN, which consumes significant power as shown in Figure 5 using the microprocessor post-processing
annotation. The power consumption of the microprocessor when performing the gesture processing is
about 10 mW at peak. Finally, the microprocessor transmits the recognized and classified gesture to
the host using the BLE protocol, which consumes about 4 mW of power. We also see periodic peaks in
the microprocessor power consumption that are necessary to maintain an BLE connection active.
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Figure 5. Power consumption during a gesture recognition when tg = 400 ms.

4.3. Energy Consumption Modeling

The power measurements shown in Figure 5 provide useful insights, but cannot be directly
used to solve our optimization problem. Hence, we model the energy behavior of the gesture
recognition system based on the results of power consumption measurements. Figure 6 shows
the detailed power consumption behaviors and corresponding energy models for the microprocessor
and sensor, separately.

Active state energy: The active energy consumption per gesture Eg(tg) consists of the energy
consumption of the microprocessor, Eµp

act(tg), and of the sensor, Esen
act (tg), in active states, as illustrated

in Figure 6a. Hence, we can express it as:

Eg(tg) = Eµp
act(tg) + Esen

act (tg) (4)

Eµp
act(tg) can be modeled by adding the peak components to the common static energy consumption

as follows:
Eµp

act(tg) = Pµp
com · tg + Eµp

pre + Eµp
post(tg) (5)

where Pµp
com, Eµp

pre, and Eµp
post are the microprocessor’s common static power consumption, preprocessing

energy consumption, and post-processing energy consumption, respectively. Note that the energy
consumption of preprocessing does not depend on tg.

Similarly, Esen
act (tg) can be decomposed as illustrated in Figure 6(b). Hence, it can be written as:

Esen
act (tg) = Psen

com · tg + Esen
pre + Esen

acq(tg) + Esen
post(tg) (6)

where Psen
com, Esen

pre , Esen
acq(tg), and Esen

post(tg) are the sensor’s common static power consumption, the
preprocessing energy consumption, the data acquisition energy consumption, and the post-processing
energy consumption in the sensor, respectively.



Sensors 2020, 20, 764 8 of 16

𝑬𝒄𝒐𝒏𝒏𝑬𝒑𝒐𝒔𝒕
𝝁𝒑 (𝒕𝒈)𝑬𝒑𝒓𝒆

𝝁𝒑𝑷𝒄𝒐𝒎
𝝁𝒑

(a) Microprocessor

𝑬𝒂𝒄𝒒𝒔𝒆𝒏 (𝒕𝒈) 𝑬𝒑𝒐𝒔𝒕𝒔𝒆𝒏 (𝒕𝒈)𝑬𝒑𝒓𝒆𝒔𝒆𝒏𝑷𝒄𝒐𝒎𝒔𝒆𝒏

(b) Sensor

Figure 6. Components of active state energy when tg = 400 ms.

Idle state energy: The energy consumption of the system during the idle state is described as follows:

Ei(tg) = Eµp
idle(tg) + Esen

idle(tg) (7)

where Eµp
idle(tg) and Esen

idle(tg) are the total energy consumption of the microprocessor and the sensor in
idle state, respectively. The idle time of the system can be calculated by subtracting the total active
time from th. Then, Eµp

idle(tg) can be modeled as below:

Eµp
idle(tg) = Pµp

com
(
th − tg · Ng(tg)

)
(8)

Similarly, the sensor does not have any operation during the idle state. Hence, Esen
idle(tg) can be

written as:
Esen

idle(tg) = Psen
com

(
th − tg · Ng(tg)

)
(9)

Communication energy: Since the BLE communication uses a fixed time interval tconn to maintain
the connectivity, the wearable system uses the upcoming slot to transmit the data. Hence, the energy
consumption caused by BLE communication Ecomm during the time horizon th can be described
as follows:

Ecomm = th/tconn · Econn (10)

where Econn is the energy consumption of BLE packet exchange in each time period. Note that Econn

is the additional energy consumption due to BLE communication. Hence, we have to consider the
common static energy consumption when we calculate the energy per bit transmission.

We use the measured energy consumption values to obtain the constant terms in the energy
models of the microprocessor and the sensor. Using these values, the energy models are expressed as a
function of tg. Detailed validation of the energy model is presented in Section 5.3, while the numeric
values are summarized in Table 2.

4.4. The Proposed Optimization Methodology

The optimization goal in this work is to maximize Ng(tg). Therefore, we start with expressing
Ng(tg) as a function of processor and sensor energy consumption. From Equations (1) and (2), we can
express Ng(tg) as:

Ng(tg) ≤
Eb − Ecomm − Ei(tg)

Eg(tg)
(11)

By substituting Ei(tg), Ecomm, and Eg(tg) using Equations (5)–(6) and Equations (8)–(10), we can
re-write Equation (11) as:

Ng(tg) ≤
Eb − th/tconn · Econn − (Pµp

com + Psen
com) · th

Eµp
pre + Eµp

post(tg) + Esen
pre + Esen

acq(tg) + Esen
post(tg)

(12)
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The numerator of Equation (12) represents the energy budget for gesture recognition, which
is fixed for each finite horizon, th. It is evaluated by subtracting BLE energy consumption and idle
energy consumption, as we have to spend this energy at a minimum to keep the system running.
Note that time parameters th and tconn in the numerator are constant. In addition, the energy and
power parameters Eb, Econn, Pup

com, and Psen
com in the numerator are also independent of tg. Therefore,

we conclude that the numerator is independent of tg and it does not change during each finite time
horizon. Finally, we can prove that the numerator of Equation (12) is nonnegative [43].

The denominator of Equation (12) represents the sum of the dynamic energy consumption
for one gesture recognition. This means that the number of gestures Ng(tg) is maximized when
we minimize the dynamic energy consumption of one gesture recognition. Esen

acq(tg), Eµp
post(tg), and

Esen
post(tg) are increasing functions of tg, while the remaining two terms are independent of tg. That

is, the denominator is an increasing function of tg. Consequently, we can show that maximizing the
number of recognized gestures Ng(tg) is equivalent to minimizing tg [43]. As specified in Equation (3),
tg is bounded from below by the accuracy constraint Gacc,min. Therefore, the optimization problem is
solved by choosing the minimum tg that meets the accuracy constraint.

5. Experimental Evaluation

5.1. Experimental Setup

Power consumption measurements: We designed and implemented the custom wearable
prototype shown in Section 2 for our experiments. In order to measure the power consumption
of the microprocessor and accelerometer separately, we added test points to the prototype. With these
test points, we profiled the power consumption of the microprocessor and accelerometer using an NI
PXIe-6356 DAQ system [44]. In the experiments, we sampled the power consumption with a 5 kHz
frequency to capture the power consumption profiles at a fine-grained level.

User studies: We performed user studies to validate the proposed optimization algorithm. To this
end, we first obtained data from seven users while performing the target gestures. For each gesture
performed by each user, the wearable device first sampled the accelerometer and used the NN to
identify the gesture. Then, the identified gesture was transmitted to a host device, such as a smartphone
or a laptop. In the data collection phase of the study, we also transmitted the raw acceleration data to
the host such that a classifier could be trained. With this protocol, we obtained a total of 30 datasets,
each containing 50 gestures. Of these 30 datasets, we reserved 10 sets for the NN training. Following
popular machine learning flows, we reserved 80% of the data for training, 10% for cross-validation,
and 10% for testing. Finally, the 20 remaining datasets were used to test the accuracy of the NN. This
data was never seen by the NN so that the robustness of the network could be evaluated fairly.

5.2. Neural Network Classifier Design

The classifier should achieve the recognition accuracy target while minimizing the energy
consumption and area (i.e., the number of weights in this context). To enable an efficient design
space exploration, we implemented a programmable NN classifier that allows the number of hidden
layers and neurons to be changed. Figure 7 shows the structure of the NN classifier with one and
two hidden layers, respectively. We start with the input layer that takes the input features for the
current gesture. This amounts to a total of 120 features in the case of the baseline NN and 9 features
for the reduced NN. After the input layer, we included either one or two hidden layers for the design
space exploration. The neurons in the hidden layer use the sigmoid activation function to introduce
non-linearity in the NN classifier. The output of the hidden layers feeds the output layer neurons.
The output layer consists of six neurons—one neuron for each gesture and a neuron for the stationary
gesture such that we can identify when the user’s hand is stationary. Neurons in this layer also include
the sigmoid activation function to generate the probabilities of each gesture. We chose the gesture with
the highest output probability as the final gesture.
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(a) NN Classifier with Single Hidden Layer (b) NN Classifier with Two Hidden Layers

Figure 7. Neural network (NN) classifier architectures used in the design space explorations.

After choosing these two network structures, we performed a design space exploration by varying
the number of neurons in the hidden layers. We trained each NN classifier instance and obtained
the gesture recognition accuracy. During these experiments, the number of training epochs was
set to 300, while the batch size was 50. We chose these values since they offer a good trade-off
between training time and accuracy. Furthermore, we performed a five-fold cross-validation training
to ensure robustness.

Figure 8 plots the accuracy of the gesture recognition as a function of the number of neurons in
the hidden layers. The x-axis in the figure represents the total number of neurons used in the hidden
layers. The accuracy values shown in the figure correspond to the median accuracy obtained when
using five-fold cross-validation. We used the median accuracy to ensure that the neural network was
robust in the five-fold cross-validation. We observed that the median accuracy of a single hidden layer
network with two neurons was only about 85%. Furthermore, it exhibited a high variance in accuracy
for different folds. The median accuracy increased up to four neurons and then saturated at around
96%. We observed a similar trend in accuracy for two hidden layers: the accuracy saturated at 96%
once the total number of neurons was seven. Since our goal was to obtain accuracy greater than 90%
while keeping the memory footprint small, we chose to use a single-hidden-layer network with four
neurons in the hidden layer. After choosing the neural network structure, we performed the final
training of the chosen NN classifier. We obtained 96.5%, 97.4%, and 98.4% accuracy for the training,
cross-validation, and testing data, respectively.

Figure 8. Recognition accuracy according to the number of neurons in the hidden layer.

5.3. Energy Model Validation

We validated the energy consumption models presented in Section 4.3 by running the gesture
recognition application with the baseline and reduced NNs. The gesture recognition duration tg of
the baseline NN was set to 800 ms because tg cannot be changed at runtime. The gesture recognition
duration tg in the reduced NN was swept from 400 to 800 ms in increments of 100 ms.

The extracted values of the key model parameters are summarized in Table 2. These values
were extracted by fitting the measurement results to the proposed energy models. We also report
parameters for three different supply voltages because the battery voltage varied with the status of
the energy-harvesting and discharging operation to the target device. In addition, the supply voltage
impacted both the device power consumption and the number of recognized gestures under a given
energy budget. In our experiment, the supply voltage could be considered to be constant within one
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gesture recognition interval because voltage changes were relatively slow compared with the gesture
recognition interval.

The proposed models achieved a mean percentage error of only 0.01% for the baseline NN. The
corresponding error for the reduced NN ranged from 0.01% to 0.12%. The maximum error across all
data points was only 2.9%. This shows that the proposed models can be used for energy optimization.

Table 2. The energy model parameters for different energy storage voltages.

Symbols
2.7 V 3.0 V 3.3 V

Baseline Reduced Baseline Reduced Baseline Reduced

Econn (µJ) 30.8 31.8 30.9
Pµp

com (µW) 1134.4 1337.8 1584.7
Psen

com (µW) 71.8 87.3 105.5
Eµp

pre (µJ) 86.8 89.2 92.1
Esen

pre (µJ) 102.8 114.8 153.9

tconn (ms) 66 200 66 200 66 200

Eµp
post(tg) (µJ) 207.4 158.1·tg+42.6 203.8 157.0·tg+48.2 212.5 171.1·tg+53.6

Esen
post(tg) (µJ) 30.7 12.7·tg+15.7 37.6 24.7·tg+14.3 177.3 152.2·tg+33.8

Esen
acq(tg) (µJ) 835.6 1047.0·tg+3.9 931.6 1157.0·tg+8.0 1040.0 1273.0·tg+18.3

5.4. Gesture Recognition Accuracy Analysis

We used gesture recognition experiments from the seven users to evaluate the accuracy of the
proposed NN classifier. We provided a random sequence of 50 gestures for the user to perform.
The NN classified the gesture and transmitted it to the host device, which stored it for the accuracy
analysis. We repeated the experiment three times for each user to obtain a total of 150 gestures per
user. After completing the experiments, we compared the classification output of the NN and the
reference gesture to obtain the accuracy. By performing an offline analysis using the raw acceleration
data with tg = 800 ms, we also obtained the accuracies for multiple values of tg, from 100 to 800 ms.
The same collected data was used to avoid the overhead of data collection for each value of tg. Figure 9
shows the accuracy of the NN as a function of the gesture recognition duration tg. We observed that
the accuracy of all gestures was greater than 90% when tg > 380 ms. The accuracy degraded rapidly
when tg was reduced below 380 ms. We observed that a lower value of tg made it harder to distinguish
the features of each gesture. Furthermore, a gesture may not even be completed in less than 380 ms.
For instance, the NN needed a larger number of samples to extract the features of the wave gesture,
leading to the rapid degradation of its accuracy. By taking into account the accuracy change with tg,
we chose 380 ms as the lower bound for tg. We also observed that the accuracy of the baseline NN
degraded faster with lower tg, since it used raw acceleration samples as features. Nevertheless, our
aim was to maintain accuracy greater than 90% for the baseline NN as well.
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Figure 9. Accuracy of gesture recognition with the reduced NN for all users.
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5.5. Optimization Results

Based on the results of Figure 9 and Section 4.4, we confirmed that the minimum tg satisfying the
accuracy requirement could maximize the number of gestures recognized by the wearable devices
during th. In the experiment, we set th to one minute considering the length of a single gesture and
the characteristics of energy harvesting which fluctuate according to environmental conditions. Three
energy budgets, Eb={120 mJ, 180 mJ, 240 mJ} were considered to evaluate the proposed optimization
methodology. Each energy budget, from the first, corresponded to the harvested energy during time th
when the harvested power from the ambient was equal to 2 mW, 3 mW, and 4 mW, respectively. We
also considered three different voltage levels (2.7, 3.0, and 3.3 V) of the energy storage to show that
the proposed optimization algorithm maximized the number of recognized gesture regardless of the
voltage level of the energy storage.

We evaluated the effectiveness of the proposed methodology by comparing the number of
recognized gestures to the results of the baseline NN as well as the manually optimized version of the
baseline NN by increasing tconn. Our solution (labeled as Reduced) used the same tconn as the manually
optimized baseline to present the benefit of the algorithm excluding the effect of tconn change. The
minimum accuracy of gesture recognition was set to 90% throughout the experiments.
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Figure 10. Comparison of the number of recognized gestures for various energy budgets and energy
storage voltages.
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Figure 10 shows the number of gestures recognized by the three versions of the gesture recognition
classifier. When the energy budget was set to 120 mJ, the baseline NN was able to recognize 15 or fewer
gestures during time th depending on the voltage level of the energy storage. At 3.0 V, only 4.6% of the
energy budget was used for recognizing four gestures, while the static energy and BLE communication
consumed 71.3% and 24.1% of the energy budget, respectively. If the level of supply voltage decreased
to 2.7 V, the number of recognized gestures increased to 15 because the wearable device consumed
less common static power at 2.7 V. Conversely, when the voltage level was increased to 3.3 V, the
wearable device was unable to recognize any gestures since the energy budget was not sufficient for
even the static and communication energy. The baseline method with longer tconn recognized more
gestures—from 5 to 30—by reducing BLE communication energy. Finally, the proposed optimization
recognized 9 to 53 gestures which represented an improvement of 1.7× to 1.8× at all supply voltages,
compared to the manually optimized baseline.

We also analyzed the effect of energy budget changes. Since the increased energy budget makes
the portion of the energy consumed by BLE connection and static energy decrease significantly,
a greater portion of energy can be used to recognize the more gestures. As shown in the figure, all three
versions recognized more gestures than the lower energy budget. In particular, we observed significant
improvements when the supply voltage was 3.3 V because the device consumed higher power at
the higher supply voltage and the energy budget used for the recognition was increased more than
in the low supply voltage. Overall, our optimization approach utilized the increased budget more
efficiently than the baselines, with 1.8× to 2.4× enhancement over the manually optimized baseline
NN. Similarly, the proposed approach consumed 1.3 mW ∼ 4.3 mW while recognizing a gesture. This
is one order of magnitude lower compared to the state-of-the-art approaches based on radar [14]
and EMG [15] processing, respectively. We observed that when the energy budget was 240 mJ, the
maximum number of gestures that could be recognized by our approach and the optimized baseline
were not limited by the energy budget, but by the time.
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Figure 11. Illustration of the optimal solution for different energy budgets when the energy storage
voltage is 2.7 V.

Figure 11 illustrates the optimization results in more detail. For simplicity, we only provide the
results with a 2.7 V supply voltage. The dotted curve denotes the implicit upper bound induced by th
while the vertical dashed line indicates the accuracy constraint. The result of baseline NN is presented
just with the � marker because the baseline NN was not able to adopt a tg change at runtime. The
results of our approach are represented by the solid curve varied the number of gestures Ng(tg).

As shown in Figure 11, Ng(tg) is a decreasing function of tg. Hence, we concluded that the
minimum gesture recognition duration satisfying the accuracy requirement determined the optimal
operating point, as stated in Section 4.4.

When the energy budget was increased to 240 mJ, the Ng(tg) curve shifted up, as shown in
Figure 11b. This meant a larger number of recognized gestures, as expected. We observed that Ng(tg)

started intersecting the timing constraint given by the dashed curve. As a result, the constraint due
to time horizon (tg · Ng(tg) ≤ th) determined the maximum number of gestures. Hence, the optimal
point was at the corner of the feasible region.
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6. Conclusions

Biomedical applications are becoming popular with the advances in wearable IoT devices. Despite
their significant potential, the useful lifetime of wearable devices is critically limited due to limited
battery capacity (hence, energy). This paper addressed this problem by proposing a novel optimization
algorithm for energy-harvesting wearable devices. We first formulated an optimization problem to
maximize the number of recognized gestures under tight energy budget and accuracy constraints.
To solve this problem, we constructed compact analytical energy consumption models and gesture
recognition accuracy characterizations by performing experiments using a wearable device prototype.
Finally, we proved that maximizing the number of recognized gestures is equivalent to minimizing the
gesture recognition duration from the analytical model.

The proposed technique was demonstrated using a gesture recognition prototype. Our extensive
experimental evaluations demonstrate that it improved the number of recognized gestures up to 2.4×
more than the manually optimized baseline. The proposed technique can be extended in two directions.
First, we aim to maximize the utility of wearable devices in general. Hence, this approach can be also
applied to other applications whose accuracy can be characterized in a similar way, such as human
activity recognition. Second, we currently use the available energy budget and accuracy targets as
inputs. A holistic optimization could be achieved by adaptively choosing these targets at runtime as a
function of the user task, environment, and backup energy level.
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