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Abstract: Concrete structures are featured heavily in most modern societies. In recent years, the need
to inspect those structures has been a growing concern and the automation of inspection methods
is highly demanded. Acoustic methods such as the hammering test are one of the most popular
non-destructive testing methods for this task. In this paper, an approach to defect detection in
concrete structures with active weak supervision and visual information is proposed. Based on audio
and position information, pairs of samples are actively queried to a user on their similarity. Those are
used to transform the feature space into a favorable one, in a weakly supervised fashion, for clustering
defect and non-defect samples, reinforced by position information. Experiments conducted in both
laboratory conditions and in field conditions proved the effectiveness of the proposed method.

Keywords: acoustic inspection; defect detection; clustering; weak supervision; active query

1. Introduction

Concrete structures are featured heavily in most modern societies. This is especially true for social
infrastructures such as tunnels, bridges, and highways. Such large scale structures require regular
inspection to prevent the propagation of damages caused by various factors such as rain and wind.
The importance of such inspection work was underlined in recent catastrophic failures such as the
collapse of the Sasago tunnel in Japan [1] or, more recently, the collapse of the Morandi bridge in
Italy [2].

Inspection of large scale concrete structures is paramount to ensure the safety of their users and
several methods exist for this task such as using capacitive transducers [3], microwave imaging [4],
or embedded piezoceramic transducers [5].

One popular method for the inspection of such structures is the hammering test. It consists of
hitting the surface of the tested area with a hammer and using the returned impact sound to assess the
presence of defects under the surface, as illustrated in Figure 1. This method is extremely popular due
to its simplicity and non-destructive nature.

There are two factors complicating the inspection of concrete structures. Currently, inspection
work is predominantly conducted by veteran human inspectors and there is a shortage of such skilled
workers. On the other hand, the population of concrete structures reaching ages where inspection
is critically required is ever increasing. Therefore, the automation of inspection methods such as the
hammering test is highly demanded.

While there are some previous works employing direct methods [6], most of them used machine
learning approaches. In [7], the sound of dragging chains across concrete surfaces was used with
Linear Prediction Coefficients. In [8], Independent Component Analysis was used along a Radial Basis
Function Neural Network. In [9], Ensemble Learning was used with time-frequency analysis. In [10],
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Partial Least Squares Regression was used to predict the gap in concrete-metal composite structures.
While achieving high performance, such supervised learning approaches have an inherent dependency
on the available training data. For concrete structures, such training data are neither available nor easy
to produce.

The other end of the machine learning spectrum is called unsupervised learning. In [11], Mode
Decomposition, Principal Component Analysis, and Independent Component Analysis were used
for concrete bridge inspection. In [12,13], clustering methods were used. Those bypassed the issue of
training data but involved strong priors in their design to compensate for the absence of training data,
for which no mitigation would be possible.

Weakly supervised methods, also known as semi-supervised methods, are a mix of supervised
and unsupervised methods. Such methods aim to achieve the best of both worlds. From the point
of view of concrete structure inspection, such approaches are also extremely attractive since human
involvement can be maintained during the actual inspection process. The work in [14] proposed
an initial framework for weakly supervised inspection of concrete structures, later expanded by the
addition of visual information in [15]. However, weak supervision was assumed to be provided by
the human user on randomly chosen pairs of samples. However, this makes for weak supervision of
inconsistent quality. Weak supervision quality greatly affects the performance of the resulting defect
detection and, in most cases, it is possible to actively query the user for specific weak supervision.

Therefore, in the present paper, an active weakly supervised method reinforced by visual
information for the inspection of concrete structures using acoustic methods is proposed.

Figure 1. Hammering test conducted by a professional on the upper wall portion of a tunnel: only
a simple hammer is needed,thus the popularity of this non-destructive testing method. However,
there is the need of skilled operators to correctly differentiate hammering sounds and given the great
population of structures in need of testing, automation is actively demanded. In addition, since it relies
heavily on the operator’s skills, the final result remains subjective.

2. Our Novelty and Overview of Proposed Method

The method of Louhi Kasahara et al. [13] was unsupervised, i.e., did not require supervision of
any form by a human user, and used position information in order to reinforce the clustering in audio
feature space. The proposed method is a weakly supervised method and therefore requires a human
user to provide weak supervision on each considered dataset of hammering samples. The proposed
method uses position information to both reinforce clustering in the feature space obtained by weak
supervision and in the active query process, i.e., select pairs of samples to query the human user on.
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The methods of Louhi Kasahara et al. [14] and Louhi Kasahara et al. [15] were weakly supervised.
Louhi Kasahara et al. [14] only used weak supervision, as opposed to Louhi Kasahara et al. [15] and
the proposed method that use position information to complement weak supervision. The method of
Louhi Kasahara et al. [15] assumed that the human user would randomly select pairs of samples for
weak supervision. This resulted in weak supervision of inconsistent quality and, thus, inconsistent
defect detection performance. The proposed method actively queries the user: hammering samples
are first processed and a selection process to decide which pairs of samples the human user should
provide weak supervision on is proposed.

Our contributions can be summarized as follows:

• We explore an active weakly supervised method for the issue of defect detection in concrete
structures.

• Previous work passively waited for a user to provide weak supervision and had no control over
its quality. Our proposed method actively queries the user to increase the probability of obtaining
quality weak supervision.

• Visual information is also employed to use the position of hammering samples in the active query
as well as in the analysis in order to reinforce weak supervision results.

An overview of the proposed method is shown in Figure 2. During the hammering process, audio
data are recorded and visual information is used to record the location of each hammering sample, i.e.,
the position on the tested structure where the hammer head contacted the concrete surface. Audio
data are processed into Fourier spectrum using Fast Fourier Transform (FFT), normalized and finally
converted into Mel-Frequency Cepstrum Coefficients (MFCC). Active query, based on both audio
and visual information, is used to obtain quality weak supervision on MFCC samples and Relevant
Component Analysis (RCA) [16] is used to learn an appropriate metric for discriminating defect
hammering samples. Finally, Fuzzy C-Means, a fuzzy clustering algorithm, is used to discriminate
defect and non-defect hammering samples.

Figure 2. Overview of proposed method for active weakly supervised defect detection using
hammering and visual information.
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3. Preprocessing

3.1. Fourier Spectrum and Position Information

Audio-samples are initially time-series data and not really suited for analysis. It has been long
established in audio signal processing that frequency analysis, i.e., analysis using the Fourier spectrum,
is a more suitable approach. The Fourier spectrum of an audio signal can be obtained using the
Fourier transform.

The Fourier transform consists of decomposing a time-series function, i.e., a signal, into the
different frequencies it contains. The Fourier transform of a signal in the time domain is a function
in the complex domain, with its absolute value representing the amount of each frequency present
in the original signal and its complex argument representing the phase offset. The absolute value of
the Fourier transform, designated as simply Fourier spectrum in the remaining of this paper, is used as
initial feature vector for a sound sample. Given a sound sample defined by x = (x1, ..., xd), its Fourier
spectrum a = (a1, ..., ad) is defined as in Equation (1) using FFT, an algorithm computing the discrete
Fourier transform.

aj = |
d

∑
l=1

xle−
2πi

d jl | j = 1, ..., d (1)

For illustration, Fourier spectrums of a couple of non-defect and defect hammering samples are
shown in Figure 3.

(a) Fourier spectrum of a non-defect hammering sample.

(b) Fourier spectrum of a non-defect hammering sample.

(c) Fourier spectrum of a defect hammering sample.

(d) Fourier spectrum of a defect hammering sample.

Figure 3. Fourier spectrums of hammering samples. It can be noted that features allowing
discrimination of defect hammering samples are not obvious.

3.2. Normalization

In the most general audio-based inspection setting, there is no assumption about the regularity of
the input. In the case of the hammering test for concrete structures, there is no information about how
much energy is used to hit the structure and to generate sounds. Especially in the case where a human
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conducts the striking motion, as opposed to a robot, there are no guarantees that the same amount of
force is used for every audio sample and therefore correct comparison among those audio samples
cannot be conducted.

To conduct comparison between audio samples, with ā being the mean of the components of ai as
defined in Equation (2) and d the dimensionality of a, a normalization to zero mean and unit variance
is conducted as in Equation (3) to obtain the normalized Fourier spectrum ã = (ã1, ..., ãd):

ā =
1
d

d

∑
i=1

ai, (2)

ãi =
ai − ā√

∑d
i=1(ai−ā)2

d−2

. (3)

3.3. Mel-Frequency Cepstrum Coefficients

The work presented in [12] showed the effectiveness of MFCC as feature vectors for hammering
samples to the emulate the human audition’s ability to conduct the hammering test. MFCC
is a hand-crafted feature vector originally built for speech recognition, devised with a strong
understanding of how human beings perceive sounds. It is widely popular in the field of speech
recognition as well as other related fields such as music information retrieval [17,18].

The main steps for building MFCC are as follows:

1. Calculate the periodogram estimate of the power spectrum.
2. Apply Mel filterbanks, i.e., ensemble of filters, to the power spectrum and sum the energy in

each filter.
3. Calculate the logarithm of all filerbank energies.
4. Calculate the Discrete Cosine Transform (DCT) of the log filterbank energies.

The first step is to compute the periodogram estimate of the power spectrum as in Equation (4):

Pi =
1

Nwindow
|ãi|2. (4)

Mel filterbanks are a set of N f ilter triangular filters, usually between 20 to 40, equally spaced in the
Mel scale presented in Equation (5), where f is the frequency in Hertz. The Mel scale is an empirical
scale tuned to the previously mentioned sensitivity of the human cochlea.

M( f ) = 1125 ∗ ln(1 +
f

700
). (5)

This filterbank is applied to the periodogram estimate of the power spectrum. This provides
N f ilter energy values. Finally, the DCT of the logarithm of those energy values are calculated. The result
is what are called MFCC.

For the sake of clarity, in the remainder of this paper, the MFCC of a hammering sample is
denoted using simply x. Therefore, the dataset D = {Xi}i∈[1...N] is composed of hammering samples
Xi = {xi, li}, with li corresponding to the hit location on the tested structure.

4. Active Weakly Supervised Metric Learning

4.1. Active Query

The performance of weakly supervised methods is conditioned by the quality of the provided
weak supervision. In the proposed method, RCA, a weakly supervised metric learning method, is
employed. RCA learns an adapted metric for the clustering task at hand based on the weak supervision
provided by a human user, i.e., hints on how the feature space should be. Concretely, weak supervision
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consists of what are called constraints or, more precisely, must-links, pairs of samples indicated as similar
through querying the user. If those hints are distributed badly in the feature space, the transformation
to the adapted feature space cannot be achieved with satisfying performance. In our previous work,
it was assumed that the human user would randomly choose pairs of samples to provide as constraints.
In the proposed method, the pairs of samples to query the user are actively selected in an effort to
provide better performance.

The default metric, usually the Euclidian distance, is not satisfactory for discriminating defect
hammering samples in the MFCC feature space. However, the shortcomings of a non-suited metric
mostly appear over medium to short ranges, as local structures of the data are usually easier to discern
than global ones. More concretely, if two samples are very similar to each other, their distance across
various metrics would remain small and the difference between metrics would be relatively small. On
the other hand, the correct metric should be able to capture accurately the distance between dissimilar
samples. In terms of weak supervision, this means must-links between samples separated by a big
default metric value are more likely to contribute to a meaningful change in the computed new metric.

Moreover, one particular aspect of hammering samples is that they are composed of audio and
position data. This spatial correlation of hammering samples was shown to provide great help in defect
detection performance [12]. Samples that are physically located near one another can be expected to
usually have strong similarity since they resulted from hits of the hammer on similar concrete surfaces.
The only case where this does not hold is for defect boundaries, where closely located samples do
belong to different classes and are therefore dissimilar. This is not relevant for the scope of the proposed
method since only similar pairs of samples are used as weak supervision. Therefore, it is desirable
to obtain must-links for sample pairs that are located physically far from each another, i.e., weak
supervision on distant pairs of samples for which the shortcomings of the default metric are most
likely to be apparent.

To take into account the two concepts presented in the two previous paragraphs, we propose an
active query scheme based on both distances in the audio space and physical space. Pairs of samples
{Xi, Xj} are selected to be queried to a user based on the query selection probability P(i, j) defined as
in Equation (6), where the first and second term of the numerator correspond to the default metric in
MFCC and physical space, respectively, and the denominator is a normalizing term.

P(i, j) =
|xi − xj|+ |li − lj|

∑(k,l),k<l |xk − xl |+ |lk − ll |
. (6)

The proposed active query scheme is described in Algorithm 1.

Algorithm 1: Pseudo-code of proposed active query scheme.
Data: Dataset D of N samples Xi, target number of must-links Nq

Result: Set of must-linksM
for each sample pair {Xi, Xj} do

P(i, j) =
|xi−xj |+|li−lj |

∑(k,l),k<l |xk−xl |+|lk−ll |

end
while |M| < Nq do

Randomly select a sample pair {Xi, Xj} based on P(i, j)
Query the user on the selected pair {Xi, Xj}
if The answer is positive then

Add the selected sample pair {Xi, Xj} to the set of must-linksM
Set selection probability of selected pair to null:
P(i, j)→ 0

end
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4.2. Relevant Component Analysis

RCA is a metric learning clustering method proposed initially in [16]. Several variants
exists [19–21] and recently several successful applications have been reported [22,23].

Based on weak supervision, RCA computes a linear transformation of the feature, where the
clustering task would be easier. Using must-links, a process akin to whitening is conducted. Given
Nchunklet chunklets {Ml}l∈[1...Nchunklet]

, which are must-links regrouped using their transitive property,
with m̂l being the mean of elements inMl , RCA can be divided into three steps:

1. For each chunklet, subtract its mean from each sample it contains.
2. Compute the covariance matrix Ĉ as in Equation (7), with Ntotal being the total number of elements

contained in the chunklets.

Ĉ =
1

Ntotal

Nchunklet

∑
j=1

∑
xi∈Ml

(xi − m̂l)(xi − m̂l)
T . (7)

3. Compute the whitening transformation associated with this covariance matrix, i.e., the inverse
square root of the covariance matrix, and apply it to the dataset as in Equation (8).

xnew = Ĉ−1/2x. (8)

5. Clustering with Position Information

Fuzzy C-Means is a suited clustering framework to incorporate spatial information along with
the main data type [24] and has been successfully used with hammering data in [13]. It is a fuzzy
clustering algorithm, meaning that samples belong to several clusters at the same time, with varying
degrees expressed through fuzzy membership coefficients. Fuzzy C-Means in our proposed method is
composed of two fuzzy membership coefficient update steps that are iterated until convergence has
been reached. The algorithm is described in Algorithm 2.

5.1. Audio Feature Update Rule

The first update is the regular Fuzzy C-Means update, conducted on MFCC features only. For
each sample Xi toward each cluster center cj, the corresponding fuzzy membership coefficient is noted
uij. With {cj}[j=1...K], the cluster centroids, and m, a parameter controlling the fuzziness of the system,
the update rule is conducted as in Equation (9):

uij =
1

∑N
l=1

d(xl ,ci)
d(xj ,cj)

2/(m−1)
. (9)

5.2. Spatial Feature Update Rule

The compacity of defect and non-defect areas of the tested structure is expressed through the
introduction of a spatial estimator, based on a spatial neighborhood NB(Xi) for each sample Xi. This is
defined using the position information of hammering samples, as in Equation (10). A spatial estimator
hij is then used to estimate the fuzzy membership coefficients of the considered sample based on
its neighborhood, as in Equation (11), with |NB(Xi)|, the number of neighbors for sample Xi. This
process enables keeping the same hammering resolution and offers a much more stable output compared
to a simple smoothing step after clustering.

NB(Xi) = (Xi ∈ D | |li − lj| ≤ γ), (10)

hij =
1

|NB(Xi)| ∑
k∈NB(Xi)

ukj. (11)
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Combination of the spatial estimator and regular Fuzzy C-Means update is conducted as in
Equation (12), with p and q weighting exponents on each fuzzy components:

uij →
up

ijh
q
ij

∑k up
kjh

q
kj

. (12)

The centroid update rule remains unchanged from the regular Fuzzy C-Means. Conversion to
a crisp clustering is done by maximum membership. The whole process is summarized in Algorithm 2.

Algorithm 2: Pseudo algorithm of Fuzzy C-Means with Position Information.
Data: Dataset D of N samples Xi, number of clusters K
Result: Partitioning of D into K fuzzy clusters expressed through fuzzy coefficients uij

foreach hammering sample Xi ∈ D do
Assign random fuzzy coefficients uij

end
while termination criterion is not met do

foreach cluster centroid cj do
Conduct centroid update

cj =
∑i um

ij xi

∑i um
ij

end
foreach hammering sample Xi ∈ D do

Update in MFCC space
uij =

1

∑N
l=1

d(xl ,ci)
d(xj ,cj)

2/(m−1)

Build spatial estimator
hij =

1
|NB(Xi)| ∑k∈NB(Xi)

ukj
Combine

uij →
up

ijh
q
ij

∑k up
kjh

q
kj

end
end

6. Experiments

6.1. Experimental Setup In Laboratory Conditions

The used setup is illustrated in Figure 4 and experiments were conducted on concrete test blocks
containing various man-made defects to simulate natural ones. Standard concrete mixture ratios used
in Japanese tunnels were also used for those concrete test blocks. Depending on the mixture ratios of
concrete, the sound of the hammering test can vary greatly. For each type of structure, strict standards
define the mixture ratio of concrete to be used and human inspectors are trained on each specific type
of structure. Our proposed method does not rely on training data and, therefore, assuming that the
human user providing the weak supervision has been trained on the corresponding concrete mixture
ratio, it is applicable to all concrete mixture ratios.

Test blocks were hit at the upper surface on several locations, once per location. The used
hammer was a KTC UDHT-2 (head diameter 16 mm, length 380 mm, weight 160 g), commonly used in
hammering test by professionals and sound was recorded at 44.1 kHz using a Behringer ECM8000
microphone coupled with a Roland UA-25EX soundboard and a laptop for data analysis. Fourier
Spectrums of length 1024 were obtained using FFT and MFCC were computed with 10 coefficients.
The hammer head was painted in red and the location of each hammering sample was obtained by
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color-tracking the hammer head. In all experiments, p and q were set to the default value of 1, meaning
equal contribution of audio data and visual information.

Figure 5 shows a generic schematic of the blocks used in experiments. Red areas correspond to
defect areas. Three scenarios were considered:

• Case 1 corresponds to a situation where the tested area of a concrete structure contains a single
delamination. The dataset is composed of 462 samples: 272 non-defects and 190 defects. Referring
back to Figure 5, α = 30 deg., l = 200 mm, d = 115.5 mm and L = 230.9 mm. The setting K = 2
was used.

• Case 2 aims to simulate the presence of multiple delaminations in the tested area. Two concrete
blocks containing each a single delamination were put together. This dataset is composed of
270 samples: 155 non-defects and 115 defects. Referring back to Figure 5, for the left side block
α = 15 deg., d = 40 mm, l = 149.3 mm, and L = 154.5 mm. For the right side block α = 15 deg.,
l = 200 mm, d = 53.6 mm and L = 207.1 mm. The setting K = 2 was used.

• In Case 3, one concrete block containing a delamination and another one containing a polystyrene
cuboid to simulate a void were put together. This aims to simulate the co-existence of defects of
different natures in a single tested area. This dataset is composed of 254 samples: 159 non-defects
and 95 defects. The setting K = 4 was used here since the two blocks were from different
concrete batches.

Figure 4. Experimental setup: concrete test block (A); hammer with red head for position recognition
by image processing (B); web camera (C); and microphone (D).
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(a) Generic schematic of the delamination type
concrete test block.

(b) Schematic of the void type concrete test block.

Figure 5. Schematic of the concrete test blocks containing man-made defects. Compared to natural
defects found in the field, such concrete test blocks have the advantage of having the ground truth, i.e.,
location of defects, known in advance, without the need to destroy them, due to precise and elaborate
fabrication processes.

6.2. Experimental Setup In Field Conditions

Field experiments in actual concrete structures currently in service present big logistic and legal
issues. Therefore, experiments were conducted in a mock tunnel, as shown in Figure 6a. Its structure,
fabrication process, and scale match the profile of small one way tunnels commonly found in Japan.
In outdoor conditions, the mock tunnel differs from the previously presented concrete test blocks in
the nature of its defects: they occurred naturally. Therefore, this mock tunnel can be considered to
very accurately match actual inspection sites, while presenting the advantage of availability. Since the
defects were not man-made here, their number and type were limited.

Two areas of interest were found in the mock tunnel, Area 1 and Area 2, both corresponding to
a ceiling portion where a delamination was found. Furthermore, Area 1 presented extensive surface
damage caused by rainwater leakage. Here, the ground truth of defect was obtained by the help of
a veteran human professional, with expert knowledge of the hammering test. Great care was given
during his inspection of the mock tunnel and, therefore, this human inspection result can be considered
to be superior to what is usually conducted in actual inspection sites, where time is often a constraint.
The setting K = 2 was used for both Area 1 and Area 2.

Furthermore, the hammering was conducted in this mock tunnel using an automated
hammering module, mounted on a system named Variable Guide Frame. An illustration is provided
in Figure 6b [25–27]. This particular setup can collect hammering samples virtually anywhere inside
a tunnel and the hammering motion was designed to mimic those of human inspectors. As reported
in [25], the hammering module was designed to output consistent hammering at 0.2 J using a hammer
head weighting 133.8 g, i.e., a hammering force of about 1.5 N.
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(a) Mock tunnel used in field experiments. Conditions as close
as possible of actual inspection sites were realized due to its
scale and naturally-occurred defects.

(b) Hammering module mounted on Variable Guide Frame.
This setup allows automatic collection of hammering samples
in any location inside of a tunnel.

Figure 6. Field experimental setup using a mock tunnel and hammering module [13].

7. Results and Discussions

Figure 7 shows the tested concrete blocks and areas in the mock tunnel, with each defect area
shown with a red overlay. Figure 8 illustrates the defect detection outputs using the proposed
method. Figure 9 reports the performance obtained using the method of Louhi Kasahara et al. [14],
RCA with the proposed active query method, the method of Louhi Kasahara et al. [15], and the
proposed method.

(a) Case 1: single crack. (b) Case 2: dual cracks. (c) Case 3: crack and void

(d) Area 1. (e) Area 2.

Figure 7. Picture of the considered cases in laboratory conditions and in field conditions. Red areas
indicate defect areas.

In Figure 8a,b, it can be seen that the separation defect/non-defect hammering samples by our
proposed method is excellent, only missing a couple of samples. In Case 3, shown in Figure 8c,
the output of the proposed method shows an overspill of the void defect area. However, the two
distinct defects, as well as the two distinct blocks, were rather well discerned. Regarding Area 1 and
Area 2, the proposed method outputted the results reported in Figure 8d,e. The overall result is good.
Misclassified samples are mainly located on the edge of the target area, hinting at possible variations
induced by the hammering module. The defect/non-defect borders were however well discerned and
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the degraded surface condition of Area 1 did not seem to negatively affect the performance of our
proposed method.

non-defect defect

(a) Proposed method on Case 1.

non-defect defect

(b) Proposed method on Case 2.

non-defect 1 defect 1 non-defect 2 defect 2

(c) Proposed method on Case 3.

non-defect
defect

(d) Proposed method on Area 1.

non-defect
defect

(e) Proposed method on Area 2.

Figure 8. Example outputs of proposed method.

RCA with the proposed active query scheme should be put in direct comparison with
Louhi Kasahara et al. [14], the only difference between those two methods being the active query
scheme. For Cases 1 and 2, results in Figure 9a,b show that the proposed active query scheme achieves
consistent, higher quality of weak supervision, resulting in a better performance in average and lower
values of standard deviation.

The method of Louhi Kasahara et al. [15] employs both visual information and weak supervision,
and it can be noted that this allows good performance in Cases 1 and 2, shown in Figure 9a,b. However,
the results of Louhi Kasahara et al. [15] were lacking in consistency, shown by high values of standard
deviation. The addition of the proposed active query scheme in our proposed method allows again to
raise the average performance as well as increase the consistency of output.

Case 3, the results of which are reported in Figure 9c, seems to be a more difficult dataset. This
is certainly due to the higher number of clusters since the two blocks were from different batches
and defect types also vary. Without visual information, while the consistency of output was slightly
increased by our proposed active query scheme compared to Louhi Kasahara et al. [14], the average
performance slightly decreased. However, since the addition of visual information allows the proposed
method to outperform the method of Louhi Kasahara et al. [15], it can be strongly suspected that the
nature of errors was different when using the proposed active query scheme: those errors were easier
to compensate for by the spatial estimator.

The proposed active query method allowed average performance increase for both Area 1 and
Area 2, as shown in Figure 9d,e. Performance on the two datasets collected in field conditions are
overall lower than in laboratory conditions. This is certainly due to the environmental noise in such
outdoor settings coupled with the noise of the hammering module. The irregularity of the hammering
grid pattern and the low number of samples compared to datasets obtained in laboratory conditions
may have also have affected the performance, especially with regards to the spatial estimator.
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Figure 9. Performance evaluation of several weakly supervised methods for the hammering test in
laboratory conditions: (A) method of Louhi Kasahara et al. [14]; (B) RCA with the proposed active
query; (C) method of Louhi Kasahara et al. [15]; and (D) proposed method. The averages of 20 runs
with sets of 20 must-links each are reported. Error bars corresponds to one standard deviation.

8. Conclusions

An active weakly supervised method for defect detection in concrete structures using hammering,
an acoustic inspection method, and visual information is proposed. By actively querying the human
user, based on sample pair distance in audio feature space and physical space, the consistency of
the quality of weak supervision was increased, resulting in an overall increase in performance.
The proposed method can greatly help the human user provide adequate weak supervision and
can be expected to be valuable for real inspections, where the number of samples to be considered
can be colossal. Experiences in both laboratory conditions, using concrete test blocks, and field
conditions, using a mock tunnel and automated hammering module, showed the effectiveness of the
proposed method.

As future work, we would like to further explore the potential of active weak supervision. Some
variants of RCA make use of dissimilar pairs [19] and an active query scheme for such pairs would
certainly contribute to increase performance. We would also like to conduct additional experiments, at
larger scale and with more varied defect configurations.
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