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Abstract: Frequent location updates of individual Internet of Things (IoT) devices can cause several
problems (e.g., signaling overhead in networks and energy depletion of IoT devices) in massive
machine type communication (mMTC) systems. To alleviate these problems, we design a distributed
group location update algorithm (DGLU) in which geographically proximate IoT devices determine
whether to conduct the location update in a distributed manner. To maximize the accuracy of the
locations of IoT devices while maintaining a sufficiently small energy outage probability, we formulate
a constrained stochastic game model. We then introduce a best response dynamics-based algorithm to
obtain a multi-policy constrained Nash equilibrium. From the evaluation results, it is demonstrated
that DGLU can achieve an accuracy of location information that is comparable with that of the
individual location update scheme, with a sufficiently small energy outage probability.

Keywords: massive machine type communication (mMTC); Internet of Things (IoT); distributed group
location update algorithm; location update; nash equilibrium

1. Introduction

Recently, the Internet of Things (IoT) has been rapidly adopted all over the world [1–3]. Because
of this explosive popularity, massive machine type communication (mMTC) has been defined as one of
main communication types in 5G networks [4–6]. One of the primary application scenarios of mMTC
is intelligent transportation systems (ITSs) [7–10], where many IoT devices (e.g., GPS devices and
various types of sensors) are deployed in vehicles. With the assistance of IoT devices, various useful
services can be provided to users, especially when the locations of IoT devices are well managed [11].
For example, consider a package tracking system in which the tracking IoT devices are attached to
each package in the vehicle, and these IoT devices update their locations to the location management
server. The package tracking service can then be easily achieved. In addition, we can consider a case
where people have more than 2 ∼ 3 wearable devices (e.g., smart watch, health monitoring devices,
etc.) in their bodies and these devices update their location for advanced services (e.g., location-based
advertisement, location tracking, etc.). However, when all the IoT devices update their locations
individually, a significant signaling overhead can occur in networks. In addition, because the signaling
process and message transmission for location updates generally consume a large amount of energy,
frequent location updates can cause energy depletion of IoT devices. Many works have addressed this
problem [12–23]. One of the intuitive solutions is electing a representative IoT device (i.e., group leader).
Then, only a group leader updates its location (which is probably the same as locations of the other
IoT devices). Even though this approach can reduce unnecessary location updates, the procedure
of electing a group leader needs considerable signalings. In addition, when the group leader fails,
the whole system can be disrupted.
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In this paper, we propose a distributed group location update algorithm (DGLU) for massive
machine type communication (mMTC). In DGLU, when geographically proximate IoT devices move
to another location, they determine whether to conduct the location update in a distributed manner.
Because each IoT device cannot know the other IoT devices’ decision, some degree of redundant
location updating may occur. In other words, to achieve a sufficient accuracy of location information,
some redundant location updates are unavoidable. However, excessively redundant location updates
decrease the energy efficiency of IoT devices. To optimize this trade-off, we formulate a constrained
stochastic game model that can be converted into an equivalent linear programming (LP). We then
design a best response dynamics-based algorithm to reach a multi-policy constrained Nash equilibrium.
The evaluation results show that DGLU can achieve an accuracy of location information that is
comparable with the individual location update scheme while controlling the energy outage probability
below the desired level. Moreover, it is observed that DGLU can be adopted in practical systems due
to the fast convergence property of the proposed iteration algorithm.

We summarize the contributions of this paper as follows: (1) to the best our knowledge, this is the
first work to optimize the trade-off between the accuracy of location information and the energy
efficiency of IoT devices in a distributed manner (i.e., based on a constrained stochastic game);
(2) the optimal location update policy can be obtained with a few iterations, which indicates that
the policy can be adopted by practical systems without an excessive overhead; and (3) the presented
evaluation results under various environments can provide invaluable guidelines for constructing
mMTC systems.

The remainder of this paper is organized as follows. Related works are summarized in Section 2
and DGLU is elaborated in Section 3. Then, the constrained stochastic game model is formulated in
Section 4. Evaluation results are presented in Section 5, and followed by the conclusion in Section 6.

2. Related Work

Several studies were conducted on mobility management in IoT systems [12–27]. These can be
categorized into: (1) mobility management for an individual device [12–16]; (2) mobility management
for a group of devices [17–23]; and (3) mobility management for the privacy of devices [24–27].

Fu et al. [12] proposed a delayed location update algorithm where mobile devices postpone their
location updates until the the timer expiration to decrease the number of updates. Pacheco-Paramo et al. [13]
designed two location management schemes with the objective reducing signaling overhead with
a sufficient accuracy of location information of mobile devices. Ko et al. [14] proposed an adaptive
location update algorithm, where mobile devices update their location only at specific locations where
they remain for a long time. Yu and Gu [15] introduced a cost-efficient location management scheme
where a mobile device conducts location updates only in chosen locations by considering its current
status. Wang et al. [16] proposed an Q-learning-based mobility management scheme where a mobile
device makes a handover decision by observing the task delay. However, the feature of group mobility
was not investigated in these studies [12–16].

Wang et al. [17] proposed a group location update method in which two leader selection methods,
regular and irregular selection methods, are used depending on whether a previous group leader
exists or not. Fu et al. [18] suggested a group-based mobility management scheme where the location
management server divides mobile devices into several groups by considering the similarity of their
mobility patterns, and a leader device conducts location update on behalf of the other devices in
the same group. Li and Wu [19] introduced a delay-based location management scheme for a group
of mobile devices, in which each mobile device updates its location after a random time delay to
reduce simultaneous location update. Suzuki et al. [20] developed a low-complexity mobility detection
mechanism based on signaling data of mobile devices. Chowdhury et al. [21] proposed a resource
management method for group mobility that includes a bandwidth adaptation policy and a dynamic
bandwidth reservation policy. Dooren et al. [22] proposed a group handover scheme to allow for the
simultaneous handover of a group of mobile devices and evaluated its performance based on derived
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analytical models for handover delay. Chatzikokolakis et al. [23] proposed a location management
scheme where only one device performs location update on behalf of a group formed for the application
specific purpose.

Aman et al. [24] proposed a location-based authentication protocol that exploits physical unclonable
functions to establish a root of trust, secure key generation, and hardware authentication. Albouq et al. [25]
introduced a privacy protection approach by integrating obfuscation and trust third party approaches
and exploited cahching and mix-zone technologies to improve its efficiency. Saia et al. [26] introduced
a blockchain-based distributed paradigm to exchange data between IoT devices in a private manner.
Sun et al. [27] analyzed an existing dummy location selection algorithm protecting the location privacy
of IoT devices, an then proposed a new dummy location privacy algorithm that optimizes a tradeoff
between the computational cost and the privacy requirement of IoT device.

However, no previous work optimized the location update strategy of multiple devices in a
distributed manner based on a constrained stochastic game.

3. Distributed Group Location Update Algorithm (Dglu)

The system model in this paper is shown in Figure 1. In our system model, it is assumed that
several IoT devices are attached to a primary object (e.g., person and vehicles), and these IoT devices
have energy harvesting capability (i.e., IoT devices can charge their batteries whose capacity is denoted
by Emax). Meanwhile, due to the mobility of the primary object, the locations of the IoT devices change,
and therefore these devices update their locations to the location management server. However,
when all IoT devices update their locations individually, a significant signaling overhead can occur in
networks. In addition, because the signaling process and message transmission for location updates
generally consume a large amount of energy, frequent location updates can deplete the energy of IoT
devices even though they have harvesting capability. Therefore, we introduce a concept of group
mobility management, i.e., due to the proximity of IoT devices, the locations of all devices in one
group can be managed when only the representative IoT device (i.e., the group leader) updates its
location. A group leader can be elected in a distributed manner or centralized manner, but the election
procedure leads to a significant signaling overhead. In addition, when the group leader is out-of-order,
the whole system cannot operate well. To mitigate these problems, in DGLU, when the locations of
geographically proximate IoT devices change, they determine whether to conduct the location update
in a distributed manner. To avoid degradation of the accuracy of location information, some redundant
location updates need to be allowed. However, when too many IoT devices conduct location updates
redundantly, their energy efficiency can decrease. Thus, each IoT device should consider neighboring
IoT devices’ updates in the same group and determine whether to conduct location update. For the
optimal decision on location update, a constrained stochastic game model is formulated in Section 4.
If an IoT device decides to update its location, it transmits a location update message including some
information such as its identification, group identification, location, and update time. After receiving
the location update message from IoT devices, the location management server updates its database
based on the information included in the message.

Meanwhile, when a corresponding device (e.g., a package tracking service provider) wants to
find the location of a specific IoT device, it can request the location management server for its location.
After receiving this request, the location management server first checks the group of the IoT device.
It then provides the location of any IoT device with the latest update time in that group. For example,
in Figure 1, because IoT devices 2 and 3 have the latest update time, the location management service
provides the location of IoT device 2 or 3 to the requester.
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Figure 1. System model.

4. Constrained Stochastic Game

For a distributed optimal decision on location update to maximize the location accuracy while
maintaining the energy outage probability below a desired level, a constrained stochastic game model
is formulated [28]. In our game model, N IoT devices are the players, and IoT device i and player i are
used interchangeably. Important notations for the constrained stochastic game model are summarized
in Table 1.

Table 1. Summary of notations.

Notation Description

Si Local state space of IoT device i

S Global state space

Li State space for denoting the current location of IoT device i

Ui
State space for denoting the registered location of IoT device i at the location
management server

Ei State space for denoting the energy of IoT device i

Lmax Number of locations within the target area

Emax Maximum battery capacity of IoT device

Ai Local action space of IoT device i
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Table 1. Cont.

Notation Description

A Global action space

ρLi Probability of occurrence of location change of IoT device i

PLi L′i
Probability that IoT device i moves from Li to L′i

PH Probability that IoT device harvests one unit of energy

πi Stationary policy of mobile device i

π Stationary multi-policy of all mobile devices

π−i Stationary policy of all edge clouds except mobile device i

λ−i
Probability that at least one IoT device except IoT device i has registered its
current location with the location management server

4.1. Local State Space

Each player i (i.e., IoT device i) has a finite local state space Si. A global state space S can then be
denoted by ∏

i
Si, where ∏ is the Cartesian product. The local state space of player i can be defined as

Si = Li ×Ui × Ei (1)

where Li and Ui represent the state spaces denoting the current location of IoT device i and the
registered location of IoT device i at the location management server, respectively. Also, Ei means the
state space representing the energy of IoT device i.

When the number of locations in the systems is Lmax, Li and Ui can be described as

Li = {1, 2, 3, ..., Lmax} (2)

and
Ui = {1, 2, 3, ..., Lmax}, (3)

respectively.
Meanwhile, Ei can be represented by

Ei = {0, 1, 2, ..., Emax}. (4)

4.2. Local Action Space

Each player i has a finite local action space Ai. Then, a global action space A can be defined as
∏
i

Ai. Since each IoT device i has two options (i.e., conduct location update and does not conduct

location update), Ai can be defined by
Ai = {0, 1} (5)

where Ai = 0 means that IoT device i does not update its location, whereas Ai = 1 indicates that IoT
device i conducts location update.

4.3. Transition Probability

The location of IoT device i at the location management server is updated based on the current
location of IoT device i when it conducts a location update, i.e., the transition of Ui is affected by Li
and Ai. In addition, when conducting location update, IoT device i consumes energy. The transitions
of Ei are influenced by Ai. Meanwhile, all states (i.e., Li, Ui, and Ei) transit independently from each



Sensors 2020, 20, 7336 6 of 16

other. Therefore, for an chosen action Ai, the transition probability P[S′i |Si, Ai] from the current state
Si = [Li, Ui, Ei] to the next state S′i = [L′i, U′i , E′i ] can be described as

P[S′i |Si, Ai] = P[L′i|Li]× P[U′i |Ui, Li, Ai]× P[E′i |Ei, Ai]. (6)

We assume that the probability of occurrence of a location change for IoT device i is ρLi , which is
inversely proportional to the residence time in Li. Therefore, P

[
L′i|Li

]
can be derived as

P[L′i|Li] =


ρLi PLi L′i

, if L′i 6= Li

1− ρLi , if L′i = Li
0, otherwise

(7)

where PLi L′i
is the probability that IoT device i moves from Li to L′i.

When IoT device i does not update its location (i.e., Ai = 0), its location registered at the location
management server does not change (i.e., U′i = Ui). On the other hand, when IoT device i conducts
location update (i.e., Ai = 1), its location registered at the location management server is updated
based on the current location of IoT device i (i.e., U′i = Li). Therefore, the corresponding transition
probabilities can be represented by

P[U′i |Ui, Li, Ai = 0] =

{
1, if U′i = Ui
0, otherwise

(8)

and

P[U′i |Ui, Li, Ai = 1] =

{
1, if U′i = Li
0, otherwise.

(9)

IoT devices can harvest energy only if they are in an appropriate situation (e.g., solar-based
harvesting IoT device should be located at a sunny spot for the harvesting). Thus, a Bernoulli random
process taking values in {0, 1} can be exploited to model whether IoT devices harvest one unit of
energy or not, i.e., it is assumed that IoT devices harvest (or do not harvest) one unit of energy with
the probability PH (or 1− PH) [29]. Therefore, in our system model, when IoT device i with non-fully
charged battery (i.e., Ei 6= Emax) does not update its location to the location management server,
its energy Ei increases by one unit with probability PH . If the battery of IoT device i is fully charged
(i.e., Si = Emax), the energy of IoT device i does not increase, because it cannot harvest energy anymore.
To sum up, the corresponding probabilities can be described by

P[E′i |Ei 6= Emax, Ai = 0] =


PH , if E′i = Ei + 1
1− PH , if E′i = Ei
0, otherwise

(10)

and

P[E′i |Ei = Emax, Ai = 0] =

{
1, if E′i = Ei
0, otherwise.

(11)

IoT devices can harvest energy only if they are in an appropriate situation (e.g., solar-based
harvesting IoT device should be located at a sunny spot for the harvesting). Thus, a Bernoulli random
process taking values in {0, 1} can be exploited to model whether IoT devices harvest one unit of
energy or not, i.e., it is assumed that IoT devices harvest (or do not harvest) one unit of energy with
the probability PH (or 1− PH) [29]. Therefore, in our system model, when IoT device i with a non-fully
charged battery (i.e., Ei 6= Emax) does not update its location to the location management server,
its energy Ei increases by one unit with probability PH . If the battery of IoT device i is fully charged
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(i.e., Si = Emax), the energy of IoT device i does not increase, because it cannot harvest energy anymore.
To sum up, the corresponding probabilities can be described by

P[E′i |Ei 6= Emax, Ai = 0] =


PH , if E′i = Ei + 1
1− PH , if E′i = Ei
0, otherwise

(12)

and

P[E′i |Ei = Emax, Ai = 0] =

{
1, if E′i = Ei
0, otherwise.

(13)

When IoT device i conducts location update (i.e., Ai = 1), it consumes one unit of energy.
However, if IoT device i does not have any energy (i.e., Ei = 0), it cannot conduct location update.
In this situation, IoT device i does not consume any energy. Also, its energy can increase by one unit
with probability PH . Therefore, P[E′i |Ei 6= 0, Ai = 1] and P[E′i |Ei = 0, Ai = 1] can be represented as

P[E′i |Ei 6= 0, Ai = 1] =


PH , if E′i = Ei
1− PH , if E′i = Ei − 1
0, otherwise

(14)

and

P[E′i |Ei = 0, Ai = 1] =


PH , if E′i = Ei + 1
1− PH , if E′i = Ei
0, otherwise.

(15)

4.4. Reward Function

To maximize the accuracy of location of IoT device i, we define a reward function. When the
current location of IoT device i is the same as the registered location at the location management server
(i.e., Li = Ui), a corresponding device can obtain the accurate location of IoT device i. Even though
the current location of IoT device i is not same as the registered location at the location management
server (i.e., Li 6= Ui), if at least one IoT device except IoT device i has conducted location update,
the location management server can provide the accurate location of IoT device i to a corresponding
device. Therefore, the reward function can be defined as

r (Si, Ai) =

{
1, if Li = Ui
λ−i, if Li 6= Ui

(16)

where λ−i represents the probability that at least one IoT device except IoT device i has updated its
location to the location management server.

4.5. Constraint Function

To prevent the situation where the energy outage probability becomes higher than a certain level,
the constraint function c (Si, Ai) is defined. An energy outage implies that the current energy of IoT
device i is 0. Thus, the constraint function c (Si, Ai) can be defined as

c (Si, Ai) =

{
1, if Ei = 0
0, otherwise.

(17)
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4.6. Optimization Formulation

Let πi and π be a stationary policy of IoT device i and a stationary multi-policy of all IoT devices,
respectively. Then, the long-term average probability that the accurate location of IoT device i can be
provided to a corresponding device can be defined as

ζE (π) = lim
T→∞

1
T

T

∑
t=1

Eπ

[
r
(
St, At)] (18)

where St and At are the global state and the action at time t, respectively.
The one of objective of IoT device i (i.e., constraint) is to maintain a long-term average energy

outage probability below a certain level, which can be described by

ξE (π) = lim
T→∞

1
T

T

∑
t=1

Eπ

[
c
(
St, At)] ≤ θE (19)

where θE means the target average energy outage probability.
The multi-policy π∗ =

(
π∗i , π∗−i

)
is the constrained Nash equilibrium, which is the solution of

the formulated constrained stochastic game, if ζE
((

π∗i , π∗−i
))
≥ ζE

((
πi, π∗−i

))
for each IoT device i

among any πi such that
(
πi, π∗−i

)
is feasible (i.e., the constraint is satisfied). In the constrained Nash

equilibrium, IoT device i cannot achieve a higher location accuracy with any other stationary policy
πi while the other IoT devices do not change their stationary policies or IoT device i will violate
the constraint.

For the multi-policy constrained Nash equilibrium, the best response policy π∗i of IoT device i
given any stationary policies of other IoT devices π−i can be defined as

ζE
((

π∗i , π−i
))
≤ ζE

((
πi, π−i

))
. (20)

LP can then be exploited to obtain the best response policy of IoT device i. Let φi,π−i (Si, Ai) be
the stationary probability in local state Si and action Ai of IoT device i given the stationary policies of
other IoT devices π−i. Then, the solution of the equivalent LP model φ∗i,π−i

(Si, Ai) can be mapped to
the best response policy of the constrained stochastic game [30,31]. The equivalent LP model can be
defined by

max
φ(S,A)

∑
S

∑
A

φi,π−i (Si, Ai) r(Si, Ai) (21)

s.t. ∑
S

∑
A

φi,π−i (Si, Ai) c(Si, Ai) ≤ θE (22)

∑
A

φi,π−i

(
S′i , Ai

)
= ∑

S
∑
A

φi,π−i (Si, Ai) P[S′i |Si, Ai] (23)

∑
S

∑
A

φi,π−i

(
Si
′, Ai

)
= 1 (24)

φi,π−i

(
Si
′, Ai

)
≥ 0 (25)

The objective function in (21) maximizes the probability that the accurate location of IoT device
i is provided to a corresponding device. On the other hand, the constraint in (22) maintains the
average energy outage probability below the desired target probability θE. The constraint in (23) is for
the Chapman-Kolmogorov equation. In addition, we can satisfy the probability properties with the
constraints in (24) and (25).
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If the LP problem is feasible, the stationary best response policy of IoT device i can be given by

π∗i (Si, Ai) =
φ∗i,π−i

(Si, Ai)

∑
A′i∈Ai

φ∗i,π−i

(
Si, A′i

) . (26)

The best response dynamics can be applied to update the policies of IoT devices as shown in
Algorithm 1, and the diagram for IoT device i is shown in Figure 2. Note that the proposed algorithm is
enhanced compared to the algorithm in [32] to reduce the number of time slots to exchange information
(i.e., λi). In the proposed algorithm, IoT devices interact with each other through the probability λ−i
(see line 6 in Algorithm 1). The probability that IoT device i updates its location can be obtained from

λi = ∑
Si 6=0

φi,π−i (Si, Ai = 1). (27)

λ−i can then be calculated by

λ−i = 1−∏
i′ 6=i

(1− λi′). (28)

Algorithm 1: Best response dynamics-based algorithm.

1: Calculate the optimal medium access probability P∗M.
2: Inform the P∗M to IoT devices
3: Initialize the policies πi for ∀i.
4: while Stationary policies of all IoT devices converge
5: for All IoT devices i do
6: Transmit the λi to other IoT devices with P∗M
7: Calculate the probability λ−i = 1− ∏

i′ 6=i
(1− λi′)

8: Solve the LP problem to get the stationary best response policy π∗i
9: end for

10: end while

To calculate λ−i, each IoT device transmits the probability λi to the other IoT devices, which implies
that each IoT device should access the medium. It is assumed that IoT devices use a slotted-ALOHA
protocol due to its simplicity, i.e., IoT devices access the medium at each time slot with a specific
probability in a distributed manner. To reduce the collision probability, the location management server
informs the optimal medium access probability to IoT devices (see line 2 in Algorithm 1). Please note
that the optimal medium access probability is inversely proportional to the number of IoT devices [33].

The complexity of the whole algorithm depends on the complexity of the algorithm solving LP
problem. Specifically, the complexity of the Vaidya’s algorithm, that is the representative algorithm
solving a LP problem, is O((|Si||Ai|)3) [34] (i.e., polynomial time), where |Si| and |Ai| denote the
numbers of states and action of IoT device i, respectively. Meanwhile, to reach the equilibrium,
the algorithm needs only a few iterations (see Section 5.1), which indicates that the proposed algorithm
can easily be implemented in real IoT systems.



Sensors 2020, 20, 7336 10 of 16

Figure 2. Diagram of IoT device i in DGLU.

5. Evaluation Results

For a performance evaluation, we compare the proposed algorithm, DGLU, with the following three
schemes: (1) ALWAYS, where an individual IoT device always performs location update whenever it
moves to another location; (2) RAND, where IoT devices randomly perform location update; (3) P-BASED,
where IoT devices perform location update with probability P; and (4) LEADER, where a only group
leader conducts location update whenever it moves to another location. For P-BASED, P is set to 0.3.

The performance metrics are the average energy outage probability ζE and the average location
accuracy ζA. We assume that the initial batteries of all IoT devices are fully charged. Meanwhile,
the other default parameter settings are as follows. The total number of IoT devices in the group
ND is 3. The maximum battery capacity of the IoT devices, Emax, is set to 10, and the number of
locations within the target area Lmax is 10. The other default parameter settings are summarized in
Table 2, where [0.5 0.4 0.3] denotes the energy harvesting probability of each devices (e.g., the PH of
IoT device 1 is 0.5).

Table 2. Default Parameter Settings.

Parameter Emax ρL θE PH

Value 10 0.7 0.05 [0.5 0.4 0.3]

5.1. Convergence to Nash Equilibrium

Figure 3 shows the convergence to the constrained Nash equilibrium policy. From Figure 3, it can
be observed that the proposed algorithm converges quickly within a few iterations (i.e., 6 iterations)
to the equilibrium. As a result, we believe that DGLU can be implemented in practical systems without
an excessively large overhead.

In addition, it can be found that when a certain IoT device performs location update with a high
probability, other IoT devices conduct fewer location updates at best response. In our simulation
setting, because IoT device 1 performs the location update with a high probability (i.e., 0.9) at the first
iteration, other IoT devices (i.e., IoT devices 2 and 3) perform location updates with low probabilities.
In this way, IoT devices 2 and 3 can reduce their energy consumption without decreasing location
accuracy owing to the update by IoT device 1.
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Figure 3. Convergence to the constrained Nash equilibrium policy.

Figure 4 shows the average number of time slots to exchange update probability λi according
to the number of IoT devices in a group ND. In this result, we compare the slotted-ALOHA protocol
with the optimal medium access probability to that with a non-optimal medium access probability.
From Figure 4, it can be shown that the average number of time slots of the slotted-ALOHA protocol
with the optimal medium access probability maintains at a low level even though ND increases,
which indicates that IoT devices can exchange their information without high energy consumption.
This is because there are few collisions due to the optimal medium access probability.
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Figure 4. Average number of time slots to exchange λi.
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5.2. Effect of ρL

Figure 5a,b shows the effect of the location change probability ρL on the average location accuracy
ζA and the average energy outage probability ζE, respectively. A larger ρL allows IoT devices to change
their location more frequently. In this situation, from Figure 5a, it can be seen that the ζA of all schemes
decreases. This can be explained as follows. Larger ρL means that more location updates are needed to
maintain the same average location accuracy ζA. However, IoT devices sometimes cannot conduct
location updates due to their energy depletion, which leads the reduction of the average location
accuracy. However, in DGLU, IoT devices with a high energy harvesting probability update their
locations more aggressively than other IoT devices with a low energy harvesting probability especially
when ρL is high, and thus the ζA of DGLU can be maintained at a high level (i.e., approximately 80%)
without the increased energy outage probability as shown in Figure 5b. Note that, even when IoT
devices with a high energy harvesting probability update their locations more aggressively, their
energy is probably not depleted. Meanwhile, because ALWAYS always performs location update,
its location accuracy is highest at the expense of the high energy outage probability (see Figure 5a,b).
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Figure 5. Effect of the location change probability ρL. (a) Average location accuracy ζA. (b) Average
energy outage probability ζE.

5.3. Effect of Ph

Figure 6a,b shows the effect of the energy harvesting probability PH on the average location
accuracy ζA and the average energy outage probability ζE, respectively. From Figure 6a, it can be
observed that the ζA of DGLU increases with the increase in PH , whereas the ζA of the other schemes
is constant regardless of PH . This can be explained as follows. A large PH implies that the energy of
IoT devices is not depleted even when they frequently conduct location update. In DGLU, IoT devices
recognize this situation, and thus update their location frequently. However, the other comparison
schemes follow fixed location update policies regardless of PH . Thus, their energy outage probabilities
decrease (see Figure 6b).

Meanwhile, from Figure 6, it can be found that the ζA of LEADER is lowest. This can be explained
as follows. In LEADER, a group leader always updates its location. Thus, its energy can be depleted
with high probability, which implies the location management server cannot maintain the accurate
location information of any IoT devices.
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Figure 6. Effect of the energy harvesting probability PH . (a) Average location accuracy ζA. (b) Average
energy outage probability ζE.

5.4. Effect of θE

Figure 7 demonstrates the effect of the target energy outage probability θE on the average location
accuracy ζA. As θE increases, IoT devices can perform more location updates with less concern about
energy depletion. By taking this situation into account, IoT devices in DGLU conduct more location
updates, which explains the increased average location accuracy shown in Figure 7. On the other
hand, the other comparison schemes conduct location update in accordance with the fixed policy,
and therefore their average location accuracy is constant.
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Figure 7. Effect of the target energy outage probability θE on the average location accuracy ζA.

5.5. Effect of Nd

Figure 8 demonstrates the effect of the number of IoT devices in one group ND on the average
location accuracy ζA. As the number of IoT devices in one group increases, ζA of all schemes except
ALWAYS increases and converges to certain values. This is because large ND indicates low probability
that all IoT devices who decide to conduct the location update cannot do that due to the energy
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depletion (which causes the decrease of ζA). However, this probability becomes 0 when ND is more
than a certain number (which causes the convergence of ζA).
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Figure 8. Effect of the number of IoT devices in one group ND on the average location accuracy ζA.

6. Conclusions and Future Work

In this paper, we proposed a distributed group location update algorithm (DGLU). In DGLU,
geographically proximate IoT devices decide whether to update their location in a distributed manner
by means of a constrained stochastic game model. We introduced a best response dynamics-based
algorithm to obtain a multi-policy constrained Nash equilibrium. The evaluation results demonstrated
that DGLU can achieve an accuracy of location information that is comparable with that of the
individual location update scheme while guaranteeing a low energy outage probability. Moreover,
it can be demonstrated that the proposed algorithm is not high, and DGLU operates adaptively even
when the operating environments (i.e., the location change probability and the energy harvesting
probability) change. In our future work, we will develop a method to estimate the energy harvesting
probabilities of IoT devices for more sophisticated operation.
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