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Abstract: Bearing elements are vital in induction motors; therefore, early fault detection of
rolling-element bearings is essential in machine health monitoring. With the advantage of fault
feature representation techniques of time–frequency domain for nonstationary signals and the advent
of convolutional neural networks (CNNs), bearing fault diagnosis has achieved high accuracy,
even at variable rotational speeds. However, the required computation and memory resources of
CNN-based fault diagnosis methods render it difficult to be compatible with embedded systems,
which are essential in real industrial platforms because of their portability and low costs. This paper
proposes a novel approach for establishing a CNN-based process for bearing fault diagnosis on
embedded devices using acoustic emission signals, which reduces the computation costs significantly
in classifying the bearing faults. A light state-of-the-art CNN model, MobileNet-v2, is established
via pruning to optimize the required system resources. The input image size, which significantly
affects the consumption of system resources, is decreased by our proposed signal representation
method based on the constant-Q nonstationary Gabor transform and signal decomposition adopting
ensemble empirical mode decomposition with a CNN-based method for selecting intrinsic mode
functions. According to our experimental results, our proposed method can provide the accuracy for
bearing faults classification by up to 99.58% with less computation overhead compared to previous
deep learning-based fault diagnosis methods.

Keywords: fault diagnosis; bearing fault; machine health monitoring; acoustic emission signals;
signal decomposition; convolutional neural network; embedded systems

1. Introduction

Bearings are vital components in rotating machinery as they reduce the friction coefficient of the
moving process. Due to harsh working environments, bearings are frequently deteriorated and make
up more than 50% of machinery faults [1,2]. Unfortunately, serious bearing faults cause the rotating
machines to waste maintenance time and costs and could trigger a chain of dangerous reactions [3–5].
Manual testing for the bearings makes it difficult to determine the best time for the maintenance.
By contrast, real-time monitoring enables timely actions for bearing faults, resulting in improved
reliability of the rotating machines.

The data-driven approach using acoustic emission (AE) signals has been proven to provide the
advantage of capturing bearing health information from low-energy signals in realistic working
conditions such as early developed damages, slow rotating machinery, and severe vibration
environments [6–10]. AE-based methods are expected to replace the conventional methods using
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vibration signals [3,11] or current signals of electrical motors [12–14] in the maintenance field.
In this work, we introduce a novel data-driven AE-based diagnosis method for bearing faults.

Fault features in bearings are difficult to identify because of time and frequency shifting
characteristics. Therefore, resource-conserving approaches based on traditional signal processing
methods, such as wavelet packet transforms and envelope analysis processing, are difficult to provide
high diagnosis accuracy [15,16]. In recent years, several diagnosis methods for bearing faults have
been proposed to tackle this problem based on artificial intelligence, especially convolutional neural
networks (CNN) [17]. CNNs can be practical, automatic feature extraction tools for obtaining
meaningful information of bearing faults. Hasan et al. proposed a scheme for bearing fault diagnosis
based on the images from AE signals and a transfer learning to share the knowledge among data
domains for achieving a high diagnosis accuracy under various operating conditions [18]. The bearing
diagnosis method proposed by Tra et al. for compound faults under variable speeds used generic CNN
architecture based on Lenet-5 [19] and enhanced the CNN training process using the stochastic diagonal
Levenberg–Marquardt algorithm [20,21]. These methods represent AE signals by two-dimensional
images and use CNN for feature extraction.

In general, the CNN-based approach consumes significant computational resources and memory
capacity compared with conventional signal processing methods. For example, to represent
10,000 sampled signal points by a spectrogram in the time–frequency domain to create an image,
the standard short-time Fourier transform (window length = 256; hop size = 64; number of FFT
points = 256) consumes 89,158 multiplier–accumulator units (MACs) in MATLAB. In comparison,
state-of-the-art CNN architectures such as EfficientNet-B0 [22] consume 0.195B of MACs to obtain
the prediction results after inferring the input image. Recent CNN-based diagnosis methods using
extremely deep CNN architectures can achieve high reliability even in complex operating conditions
but are only suited for the industrial PC system. Compared with typical industrial-PC-based solutions
for controlling bearings hazards, embedded platforms offer advantages of small size, portability,
low cost, and low power consumption, thereby accommodating the industrial operating environments.
Nevertheless, due to limited resources, embedded systems cannot perform complex algorithms to
achieve high accuracy for bearing fault diagnosis in complex operating conditions (e.g., variant motor
speeds in a wind turbine system [23] and changing loads). Simple CNN architectures for bearing
fault diagnosis require fewer system resources, but they cannot guarantee high reliability and stability
in diagnosis, particularly when noisy conditions are involved. This motivated us to study a new
CNN-based method for the classification of bearing faults on embedded systems.

To obtain an accurate prediction process while maintaining the low cost of system resources
for embedded systems, we propose a new bearing fault diagnosis process. We propose a new
approach leveraging the advantages of the state-of-the-art CNN model, MobileNet-v2, which utilizes
modern CNN design techniques for mobile devices and embedded systems. To reduce the required
computation resources in our proposed diagnosis method, a pruning technique is applied to remove
unnecessary trained network components after the training process. Eventually, our proposed CNN
model can provide a high diagnostic accuracy with little computation resources, which is suitable for
embedded systems. Moreover, based on the observation that the input image size significantly affects
the computation complexity of the CNNs, we also decompose raw AE signals to remove less critical
components. Our method helps small-size images to represent the features of bearing faults from
AE signals. Decomposition is processed by ensemble empirical mode decomposition (EEMD) and
our proposed CNN-based method to select intrinsic mode functions (IMFs). Spectrogram images are
created by using the constant-Q transform (CQT) to utilize the time–frequency domain representation
ability for the nonstationary signals. Experimental results show that our proposed method provides
high diagnostic accuracy for bearing fault signals in complex conditions of variable rotational speeds.
The remainder of this paper is organized as follows: Section 2 describes the proposed bearing fault
diagnosis method for embedded systems. Section 3 presents our experimental methods, and Section 4
discusses experimental results. Finally, Section 5 provides a conclusion.
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2. Proposed Bearing Fault Diagnosis Method

Figure 1 shows an overview of the proposed bearing fault diagnosis method. The proposed fault
diagnosis method for bearings comprises two primary phases: offline and online. The offline phase is
related to the CNN model establishment, whereas the online phase uses the established CNN model to
perform the bearing fault diagnosis on embedded systems. The proposed fault diagnosis method for
embedded systems is based on two main principles: (1) reducing the input size of the CNN model
and (2) pruning unnecessary components of a trained CNN model. To minimize the size of input
images, we propose a new representation method for bearing status information. First, due to AE
signals’ nonstationary characteristics, we use a time–frequency domain transform (CQT: constant-Q
transform) to create spectrogram images of AE signals. Moreover, when small images are used
to represent the signals, a prior process for eliminating redundant signal components is necessary
to avoid the sparsity of useful information (the images are resized by bilinear interpolation before
feeding the CNN model). Redundant signal components can be noises, not containing bearing status
information. Therefore, representing only the most useful features can reduce the feature extraction
workload of the CNN model, which requires a small number of parameters, thereby reducing the
number of FLOPs and inference time. To enable pruning unnecessary components of a trained CNN
model, instead of designing shallow CNN architectures with primary convolution and pooling layers,
we use an up-to-date CNN architecture. The adopted practical CNN model can extract the features
from spectrogram images effectively. After the training, with accumulated knowledge regarding the
training data, the pruning is performed to remove unnecessary parts of the trained model to reduce
the required system resources while ensuring a high prediction accuracy.
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Figure 1. Proposed bearing fault diagnosis method for embedded systems.

The offline phase in the proposed fault diagnosis method comprises two stages: selecting useful
intrinsic mode function (IMF) orders and establishing the bearing fault diagnosis model for embedded
systems. In the first stage, we perform ensemble empirical mode decomposition (EEMD) [24] to
decompose the raw signals into components, which are a series of IMFs. A useful IMF for bearing fault
diagnosis must satisfy two conditions: (1) the selected IMF should exhibit a high correlation with the
original signals, and (2) the selected IMF must consist of the features related to bearing fault status.
Therefore, we first use a correlation coefficient (CC) scores to obtain IMF orders satisfying the first
condition. The IMFs that satisfy the first condition are known as related IMFs (RIMFs). Subsequently,
our proposed method uses a high-performance CNN model (EfficientNet-B0) to determine the RIMFs
consisting of bearing status features rapidly. Note that the CNNs used to select the RIMFs will no
longer be required for the online phase on embedded systems. Therefore, they do not affect the amount
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of workload in the online phase. At the end of the first stage, the IMF orders that are useful for
bearing fault diagnosis can be determined. These useful IMF orders will be added up to construct
the new signals to be used in the second stage as well as the online phase, thereby establishing the
bearing diagnosis model. All of the other raw signals are decomposed according to the determined
IMF orders and then transformed into the spectrograms by applying the constant-Q nonstationary
Gabor transform [25]. Next, the spectrogram images are applied to image normalization techniques
and used as training data for a state-of-the-art CNN model designed for mobile devices and embedded
systems, i.e., MobileNet-v2 [26]. In the MobileNet-v2 training step, gradient centralization is used
as an optimizer to accelerate the training process and improve the final generalization performance.
After the training process is completed, the model is compressed by the auto-compress pruner. The auto
compress pruner approach in designing the CNN model for fault diagnosis can be a good solution
for embedded systems by reducing the size of the CNN model and the number of FLOPs. It can also
improve the accuracy of the CNN model by pruning redundant parts of weight values, which are the
meaningless constraints on the CNN model. At the end of the offline phase, a light-trained CNN model
is generated for bearing fault classification in embedded systems. In the online phase, each signal
segment from the testing subset is selected and transformed in the same manner as in the second step
of the offline phase. After the spectrogram images are created in the online phase, they are resized to
be compatible with the required input size of the light-trained CNN model. Finally, the light-trained
CNN model automatically infers the bearing status corresponding to the AE input signals, enabling
the accurate diagnosis for the bearing faults in embedded systems.

2.1. Nonstationary Gabor Frames and CQT

Some empirical formulas illustrate the correlation between defect frequencies of acquired signals
from the bearing failures and rotating speed [27]. This correlation implies that the defect frequencies
change with time under the condition of variable rotational speeds. That leads to the nonstationary
characteristics of the signals containing bearing fault information. The time–frequency signal processing
appears like a natural extension of the time and frequency domain processing, using the representations
of signals in a space that can display the information from nonstationary signals in a more informative
manner [28].

Gabor analysis [29] is widely used in signal processing applications, particularly for nonstationary
signals. Nonstationary Gabor frames enable a perfect reconstruction. In standard Gabor analysis,
a window of fixed size tiles the time–frequency plane, where a Gabor frame is a collection of windowing
functions of various sizes that are used to tile the time–frequency plane. Nonstationary Gabor frames
are useful for analyzing the types of signals, i.e., fixed-sized time–frequency windows. Unlike the
short-time Fourier transform, the windows used in the CQT [25] have adaptable bandwidths and
sampling densities. In the frequency space, the windows are centered at logarithmically spaced
center frequencies.

In the proposed method for bearing fault diagnosis, Constant-Q Transform (CQT) is applied
to produce the spectrograms representing the status of bearings, as shown in Figure 2. In the CQT,
the bandwidth and sampling density in the frequency domain are varied [30]. The windows are
constructed and applied directly to the frequency domain. Different windows have different
center frequencies and bandwidths, but the center-frequency-to-bandwidth ratio remains constant.
Maintaining a constant ratio implies that (1) the resolution in time improves at higher frequencies,
and (2) the resolution in frequency improves at lower frequencies. The time shifts for each window
depending on the bandwidth, owing to the uncertainty principle.
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The CQT depends on the following: (1) window functions gk, which are real-valued, even
functions. In the frequency domain, the Fourier transform of gk is defined in the interval [−Fs/2, Fs/2];
(2) the sampling rate ωs; (3) the number of bins per octave, b; (4) the minimum and maximum
frequencies, ωmin and, ωmax respectively.

2.2. Extracting IMFs by EEMD

The empirical mode decomposition (EMD) [31,32] algorithm was first proposed by a group of
researchers from NASA to address the method to decompose a specific signal into simpler components
without a priori information regarding the linearity or stationarity of the signal. The simpler components
are known as intrinsic mode functions (IMFs), which satisfy two conditions: (1) the number of extrema
and the number of zero crossings must be equal or differ by one at most; and (2) the mean envelope
determined by the lower and upper envelopes must be zero. The EMD is a continuous process that
selects the number of IMFs sequentially from the original signal. The EMD is sensitive to noises, so it
seems to be unstable. Ensemble empirical mode decomposition (EEMD) [24] algorithm is proposed
as an improved version of the EMD. The EEMD can overcome the sensitivity of noise effectively by
utilizing noise as an assisted tool for analysis. The general idea of this algorithm is that white noise has
a uniform distribution providing EMD a relatively homogeneous reference scale distribution. Due to
the scale variety of background-white noise, the signals at different scales are mapped appropriately
automatically to guarantee the continuity of each IMF in the time domain. Averaging multiple
IMFs can eliminate the effects of white noise because the mean of background white noise is zero.
In the EEMD, the original signal is added to sufficient groups of white noise realizations that have
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the same mean and variance values as the original signal. Moreover, then, the algorithm performs
multiple decompositions. Each original signal added to a specific group of noise is decomposed by the
EMD to obtain various groups of IMFs. The final decomposition is then computed as the average of all
these decompositions [32].

Concerning the implementation of EEMD, two parameters are considered: (1) Nstd, which is
the ratio between the standard deviation value of the added white noise and the standard deviation
value of the original signal, (2) NE, which is the number of groups of noise to be added to the
original signal. In this study, the first parameter Nstd was set to 0.2, according to the suggestion in [33],
which demonstrated that the signals dominating at high frequencies might be affected by smaller noise
amplitudes, and vice versa. In addition, after conducting some experiments, it was discovered that NE
(the number of noise groups) set to 200 was sufficient.

2.3. Choosing Useful IMFs

As mentioned above, our approach for obtaining useful IMFs from a series of IMFs decomposed
by applying the EEMD comprises two steps. The first step is calculating the correlation coefficients
between the assigned IMFs and the original signals by using Equation (1)

λ =

N∑
n=1

[x(t)c(t)]√
N∑

n=1
x(t)2 N∑

n=1
c(t)2

(1)

where x(t) is the original signal, c(t) is an IMF, and N is the total number of sampling points. Top IMFs
having high correlation coefficient (CC) scores compared with the remaining ones are selected into the
RIMF group. Moreover, then, we create the datasets whose quantity is equal to the number of RIMFs.
Each dataset comprises the signals extracted in a specific RIMF order. These AE signals are acquired
from the bearings with single faults (ORD, IRD, RD). Thus, each dataset delegates only one RIMF,
and useful IMFs from RIMFs can be selected by evaluating the features in the datasets. A RIMF is
selected if its corresponding dataset shows a good performance in the task of classifying single bearing
faults (the signals in these datasets are represented as the spectrograms by CQT before being evaluated
by a CNN). In this study, a high-performance CNN model, Efficient-Net B0 [22], is used to evaluate the
feature representation ability of those datasets.

2.4. Establishing CNN Model for Embedded Systems Using MobileNet-v2 and Pruning

MobileNet-v2 is considered an efficient CNN model for mobile devices (or embedded systems)
with potential characteristics of small size, low latency, and low power [26]. Its architecture is optimized
to achieve high accuracy while minimizing the number of parameters and computational resources,
which is suitable for mobile devices. It is constructed based on the concept of MobileNet-v1, which is
assembled from depth-wise separable convolution blocks (a type of factorized convolution that reduces
computational costs compared with standard convolutions). The upgraded version, MobileNet-v2,
comprises some new features: (1) linear bottlenecks between layers and (2) shortcut connections
between bottlenecks. The bottlenecks encode the information between inputs and outputs; lower-level
concepts such as pixels encapsulates effectively to higher-level descriptors such as image class. Residual
connections act as shortcuts to enable a faster training process and get better performance.

The architecture is constructed from basic building blocks, which is a bottleneck depth-separable
convolution with residuals. The architecture of MobileNet-v2 comprises an initial fully convolutional
layer with 32 filters, followed by 19 residual bottleneck layers. This study tailored the architecture
to different performance points by using variable input image resolutions and scaling rates (width
multiplier), which are tunable hyperparameters and compromise the desired accuracy. The role of
the scaling rate α is to thin a network uniformly at each layer. For a specified layer and scaling rate α,
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the number of input channels M becomes αM, and the number of output channels N becomes αN.
After this, αM and αN are rounded to ensure that all layers have a divisible channel number that is
divisible by 8 (the smallest number of channels is 8).

The disadvantage of state-of-the-art CNN architecture is that the model size increases significantly,
which deteriorates memory storage and computational resources. Pruning is a practical model
compression technique applied to the CNNs for reducing storage and computational resources while
accelerating the model inference time [34]. However, previous pruning techniques require an amount of
manual labor to determine the parts of trained weights and other hyperparameters that are redundant.
Therefore, automatic determination processes have been proposed to effectively identify meaningless
parts without high costs. Auto-compression is a practical algorithm that can be applied to recent
popular backbone CNN architectures [35]. It can prune a model at a high rate while maintaining
the same prediction accuracy. Moreover, its significant inference speedup renders it compatible with
embedded-system-based deep learning applications in terms of real-time performance ability.

The generic flow of an automatic process is (1) action sampling, (2) quick action evaluation,
(3) decision making, and (4) actual pruning and result generation. The auto-compression technique [35]
is based on this flow and improves some stages to achieve the target of a maximum decrease in the
number of FLOPs and a minimum reduction of accuracy. The improvement of the auto-compression
algorithm is attributed to three primary reasons. The first is the combination of filter pruning and
column pruning instead of only using filter pruning. The second is the use of a core algorithm related to
the purification step of the alternating direction method of multipliers (ADMM)-based weight pruning
algorithm. The third is the enhancement of a classical heuristic search technique known as simulated
annealing instead of a deep reinforcement learning (DRL)-based framework to affect step (1) (action
sampling) and step (3) (decision making) in the genetic flow.

With an initial trained CNN for fault classification, the auto-compression framework for structured
weight pruning can be performed in two phases. Phase I is a structured prune based on ADMM,
and Phase II is the purification. Each phase contains a number of rounds, and each weight pruning
result of the previous round is used as an input for the next round. The two phases of the process
are similar. The algorithm for each of these phases is illustrated by the flowchart in Figure 3 [35]. In the
algorithm, the input is the trained CNN model based on MobileNet-v2 for bearing fault classification;
∆E is the increase in evaluation cost (accuracy loss); the temperature T gradually decreases during the
search process according to the factor η.
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After completing the compression process, the model can be retrained with the new weight
structure to fine-tune the weight and obtain better accuracy. Optimization techniques are crucial for
efficiently training deep neural networks (DNNs), particularly CNNs. Gradient centralization (GC) [36]
is a simple and effective optimization technique for the DNNs that operates directly on gradients by
centralizing the gradient vectors to yield a zero mean. It can accelerate the training process and improve
the final generalization performance of DNNs. GC is simple to implement and can be easily embedded
into existing gradient-based DNN optimizers with only a few lines of code. Furthermore, it can be
used directly to fine-tune pre-trained DNNs. GC can be regarded as a projected gradient descent
method with a constrained loss function. The Lipschitzness of the constrained loss function and its
gradient is better, affording a more efficient and stable training process [37]. GC has been demonstrated
to consistently improve the performance of DNN learning, particularly in image classification tasks,
which is of the same characteristics as the task of bearing fault diagnosis in this study.

3. Experimental Implementation

The experimental testbed is satisfied with the requirements serving for bearing diagnosis
experiments and widely used in previous studies [38–40]. Briefly, the system is assembled by
one drive-end and one non-drive-end shaft. The driving force is transmitted via the shafts by the
connection of a gearbox. Each of those shafts is fastened onto the foundation by 2 bearing FAG
NJ206-E-TVP2. The non-drive-end shaft is connected to an adjustable blade, acting like a load of the
system via a pulley, as shown in Figure 4.
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Seven bearing fault types were created: outer race defect (ORD), inner race defect (IRD),
roller defect (RD), inner and outer race defect (IORD), outer race and roller defect (ORRD), inner race
and roller (IRRD), and inner race, outer race, and roller (IORRD), as depicted in Figure 5.
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The data acquisition system consists of a wideband AE sensor attached to a non-drive-end bearing.
AE signals from the sensor are acquired by PCI-2-based system at a sampling rate of 150 kHz. The AE
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sensor (PAC WSα) has an operating frequency range from 100 to 900 kHz, ±1.5 dB directionality,
−62 dB peak sensitivity, and the resonant frequency is 650 kHz. Moreover, the PCI-2 board is able to
acquire signals at the highest sampling rate of 10 MHz when using one channel; its dynamic range
is more prominent than 85 dB. The ADC resolution is 18 bits with a sampling rate of up to 40 MHz.
The acquired AE signals from one no-defect (ND) state and seven defective bearings in case of the
bearing have the smallest crack size (length = 3 mm, width = 0.6 mm, depth = 0.3 mm), were used to
create the dataset used in our experiments. Previous related research shows that small crack sizes on
bearings make it challenging to detect faults [38–40].

The dataset was categorized into three subsets: the training, validation, and testing subsets.
The training and validation subsets were used for the training; the testing subset was used for
evaluating our model performance. The samples in the training subset are independent of the
rotational speed to the validation and testing subsets, as shown in Table 1. The total number of samples
used for the training process (80% for training subset and 20% for validation subset) was calculated by
NClasses ×NSamples ×NSpeed = 4800 samples, where NSpeed = 6, NClasses = 8, NSamples = 100 (NSamples is the
total number of signal samples at a specific bearing condition and specific shaft speed).

Table 1. Dataset for bearing fault diagnosis.

Single and Compound Bearing
Failures

Rotational
Speed (rpm)

Crack Size

Length
(mm)

Width
(mm)

Depth
(mm)

Dataset

Training subset 300, 400, 500

3 0.60 0.30Validation subset,
Testing subset 250, 350, 450

4. Experimental Results and Discussion

Initially, each signal in the training subset was decomposed by the EEMD. Nine IMFs were obtained
for each signal segment after stopping because the energy ratio was higher than the max–energy-ratio
criterion. The few first IMFs contain the most meaningful information, so their correlation coefficient
to the original signals may be higher compared with the remaining ones. Table 2 shows the correlation
coefficients between the first nine IMFs and the original signal. We observed that the top-3 IMFs had a
strong correlation with the original signal compared with the others. Therefore, the top-3 IMF orders
were RIMFs, which were then used as individual signals to evaluate their extent in conveying the
bearing fault features.

Table 2. Correlation coefficients between the first nine intrinsic mode functions (IMFs) and the
original signal.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9

CC score 0.8655 0.7048 0.0865 0.0002 0.00008 0.0001 0.00003 0.0001 0.0004

For the first RIMF comprising 30 signal samples, each type of single fault was used for the
training and testing of Efficient-Net to obtain the average classification accuracy (ACC) score. Similarly,
the second and third RIMFs were evaluated. Table 3 shows that the first two IMFs achieved high
ACC scores. This means that they comprised useful features for classifying bearing faults. Therefore,
the first two IMF orders (IMF1 and IMF2) were used to create spectrogram images in the next steps.

Table 3. Average classification accuracy (ACC) scores of related IMFs (RIMFs).

IMF1 IMF2 IMF3

ACC score 0.942 0.933 0.253
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4.1. Ability of the Proposed Method in Reducing the Size of Representation Image

In common, to evaluate the performance of a diagnosis method, sensitivity in the classification
task seems like one of the most important indicators. For this reason, we can see the comparisons based
on sensitivity in previous related studies. Hence, we used the sensitivity value as the primary index to
evaluate and compare our method with previous methods. Sensitivity is calculated using Equation (2):

Sensitivity =
NTrue_Positive

NTrue_Positive + NFalse_Negative
× 100(%) (2)

where NTrue_Positive is the number of correctly classified samples from a particular class, and NFalse_Negative
is the number of incorrectly classified samples from a particular class.

The average classification accuracy (ACA) was measured using Equation (3) to determine the
average classification performance of each dataset:

ACA =

∑
Sensitivity∑

NClasses
(3)

where
∑

Sensitivity is the sum of class-wise accuracy for a specific dataset.
In the first experiment, we set the scaling of MobileNet-v2 at 0.1 (called 0.1 × MobiletNet-v2)

without using any pruning technique to analyze the relationship between the accuracy of the model and
the required system resources when the size of input images changes. The results in Table 4 show that
the proposed method achieved high prediction accuracy in classifying eight classes of bearing states
(seven types of single and compound faults and one normal state) under variable rotational speeds.
Furthermore, the results indicate that using larger image sizes can yield higher prediction accuracies.
This is because the model trained on smaller images will learn fewer features than one trained on
larger images. Meanwhile, the model using smaller images can be trained and tested for each sample
faster. In other words, it uses fewer computational resources. Therefore, the essential features in
the representation images can be maintained via a prior decomposition. This approach utilizes the
advantage of signal processing algorithms in reducing computational resources. We observed that
when the input images were resized from 96 × 96 to 64 × 64 or 32 × 32, the number of the MACs
decreased significantly from 6,005,248 to 2,674,688 and 676,352, respectively. Meanwhile, the prediction
accuracy decreased slightly and reached a high value between 99.58% and 99.79%. The number of
training epochs increased from approximately 50 to 100 when the training model with an image size
of 96 × 96 was changed to one with 32 × 32. This means that the small-input model required more
training time, but it did not affect the testing process in the online phase.

Table 4. Results of training proposed model with various image sizes.

Input Image Size (pixel) MACs Parameters Average Accuracy No. of Epochs

96 × 96 6,005,248 96,408 100.00% 50

64 × 64 2,674,688 96,408 99.79% 70

32 × 32 676,352 96,408 99.58% 100

4.2. Compression Ability Via Proposed Scaling and Runing Model

We conducted an experiment to consider the effects of changing the scaling rate and pruning rate
(sparsity rate) of the model to analyze the changes in accuracy and required resources. The sparsity rate
is the parameter to determine the degree of auto pruning. Throughout our experiments, the parameters
for auto compress pruner are set as depicted in Table 5.
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Table 5. Configurations for auto compress pruner.

ADMM-Based Structured Pruning

Initial penalty parameter ρ = 1 × 10−4

Training epochs for the optimization of ADMMPruner: 5

Number of iterations of ADMM Pruner: 5

Optimizer: gradient centralization (GC)

Simulated Annealing (SA)

Cooling factor: η = 0.9

Initial perturbation magnitude to the sparsities: 0.35

Start temperature of the simulated annealing process: 100

Stop temperature of the simulated annealing process: 20

First, we used 0.2 × MobileNet-v2. The results in Figure 6a show the efficiency of the model,
both in terms of accuracy and system resources. A sparsity rate of 0 means that the original 0.2 ×
MobileNet-v2 was used. In that case, the average accuracy was 99.79%. Next, we consecutively pruned
0.2 ×MobileNet-v2 with sparsity rates from 0.1 to 0.3. We observed that when selecting an appropriate
sparsity rate, the prediction accuracy of the CNN model was improved as well because the meaningless
constraints between neurons in the network were removed. Specifically, for the case where the sparsity
rate was 0.1, the accuracy of bearing fault diagnosis reached 100%. After the accuracy reached the peak
of the prediction accuracy, if we continue to increase the sparsity rate, both the system resource and
accuracy will decline gradually in a tradeoff manner. Next, we conducted a similar experiment using
0.1 ×MobileNet-v2. The results are shown in Figure 6b illustrate the same trend as that of the previous
model scale. It is noteworthy that both the number of MACs and the number of parameters decreased
significantly compared with the model scale of 0.2 while maintaining high accuracy. With a sparsity
rate of 0.1, the accuracy reached a peak of 99.79%, the number of MACs decreased to 663,800, and the
number of parameters was reduced to 84,208.

Sensors 2020, 20, x 11 of 16 

 

Table 5. Configurations for auto compress pruner. 

ADMM-Based Structured Pruning 

Initial penalty parameter ρ = 1e-4 
Training epochs for the optimization of ADMMPruner: 5 
Number of iterations of ADMM Pruner: 5 
Optimizer: gradient centralization (GC) 

Simulated Annealing (SA) 

Cooling factor: η = 0.9 
Initial perturbation magnitude to the sparsities: 0.35 
Start temperature of the simulated annealing process: 100 
Stop temperature of the simulated annealing process: 20 

First, we used 0.2 × MobileNet-v2. The results in Figure 6-(a) show the efficiency of the model, 
both in terms of accuracy and system resources. A sparsity rate of 0 means that the original 0.2 × 
MobileNet-v2 was used. In that case, the average accuracy was 99.79%. Next, we consecutively 
pruned 0.2 × MobileNet-v2 with sparsity rates from 0.1 to 0.3. We observed that when selecting an 
appropriate sparsity rate, the prediction accuracy of the CNN model was improved as well because 
the meaningless constraints between neurons in the network were removed. Specifically, for the case 
where the sparsity rate was 0.1, the accuracy of bearing fault diagnosis reached 100%. After the 
accuracy reached the peak of the prediction accuracy, if we continue to increase the sparsity rate, both 
the system resource and accuracy will decline gradually in a tradeoff manner. Next, we conducted a 
similar experiment using 0.1 × MobileNet-v2. The results are shown in Figure 6-(b) illustrate the same 
trend as that of the previous model scale. It is noteworthy that both the number of MACs and the 
number of parameters decreased significantly compared with the model scale of 0.2 while 
maintaining high accuracy. With a sparsity rate of 0.1, the accuracy reached a peak of 99.79%, the 
number of MACs decreased to 663,800, and the number of parameters was reduced to 84,208. 

 
(a) 

 
(b) 

Figure 6. Results of after training and pruning model at different sparsity rates and scaling rates: 
(a) 0.2×MobileNet-v2 (scaling rate = 0.2), (b) 0.1×MobileNet-v2 (scaling rate = 0.1). 

854336 830916 808314 790620

200664 177586 155426 138038

99.79%
100.00%

99.58%

99.17%

98.50%

99.00%

99.50%

100.00%

0
200000
400000
600000
800000

1000000

0 0.1 0.2 0.3

Ac
cu

ra
cy

Qu
an

tit
y

Sparsity Rate

MACs Parameters Average Accuracy

676352 663800 653164 643532

96408 84208 73952 60708

99.58%
99.79%

99.58%

99.17%

98.50%

99.00%

99.50%

100.00%

0

200000

400000

600000

800000

0 0.1 0.2 0.3

Ac
cu

ra
cy

Qu
an

tit
y

Sparsity Rate

MACs Parameters Average Accuracy

Figure 6. Results of after training and pruning model at different sparsity rates and scaling rates:
(a) 0.2 ×MobileNet-v2 (scaling rate = 0.2), (b) 0.1 ×MobileNet-v2 (scaling rate = 0.1).
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We continued to reduce the scale of MobileNet-v2 until the lowest system resource was determined
while maintaining the prediction accuracy. Finally, the best scale was determined to be 0.01.
Next, pruning was applied in the same manner as in the two previous experiments. Table 6 shows
that the proposed method is better than the previous modern methods not only in terms of prediction
accuracy but also in reducing computational resources and memory requirements. After pruning at
the best sparsity rate, the model maintained the accuracy of 99.58%, whereas the required resources
were less compared with when using LeNet5-based architectures, which are simple CNN models.
Two simple CNN-based fault diagnosis methods of Tra et al. [20,21] are used in our comparison.
Those methods use the representation of AE signals in the frequency domain to stack each segment
on top of each other (two-dimensional energy distribution maps (EDMs)). The author utilized CNN
architectures based on Lenet-5 for the feature extraction task. After this, the method [21] uses a
hybrid ensemble MLP–SVM classifier to classify bearing faults from extracted features. Meanwhile,
in the method proposed in [20], classification was performed by using a common MLP. In addition,
a stochastic diagonal Levenberg–Marquardt algorithm was used to enhance the training process.
The confusion matrix in Figure 7 illustrates the bearing fault diagnosis for each bearing state class in
the case of using 0.01 ×MobileNet-v2. As shown, all of the classes yielded highly accurate predictions.

Table 6. Diagnosis performance of the proposed method at a scaling rate of 0.01 and consumed system
resources compared with existing methods.

0.01 ×MobileNet-v2 MACs Parameters Average Accuracy

Original 602,096 46,056 99.58%

Sparsity rate: 0.1 596,816 41,304 99.58%

Sparsity rate: 0.2 592,776 37,668 99.38%

Sparsity rate: 0.3 589,174 34,788 98.95%

LeNet5-based methods MACs (LeNet5) Parameters (LeNet5) Average Accuracy

Method [21] 668,272 72,376 98.74%

Method [20] 668,272 72,376 94.20%
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In addition, we proved that the proposed method is suitable for an embedded system by measuring
the actual inference time of the classification task when implementing the algorithm on a specific
embedded system named Raspberry Pi 3 (Quad-Core 1.2 GHz Broadcom BCM2837 64-bit CPU,



Sensors 2020, 20, 6886 13 of 15

1 GB RAM) [41]. The results in Table 7 show that it is feasible to implement our proposed method on
a generic embedded system operating in a short inference time. In the case of 0.01 ×MobileNet-v2,
the inference time was shorter than 100 ms.

Table 7. Inference time on Raspberry Pi 3 of convolutional neural networks (CNN) at various
scaling rates.

Models Inference Time Per Sample on Raspberry Pi 3 (ms)

0.2 ×MobileNet-v2 (original) 120

0.1 ×MobileNet-v2 (original) 100

0.01 ×MobileNet-v2 (original) 90

4.3. Consistency Ability in Noisy Environments

The stability of a bearing fault diagnosis method is crucial because of the presence of noise in
real operating environments. We conducted an experiment to evaluate the consistency ability of the
proposed method at a scaling rate of 0.01 in noisy environments. First, the original bearing signal was
added to white noise in different ratios from 10% to 30% of the signal amplitude. The average accuracy
decreased according to the noise level. Although the results in Table 8 show that the proposed method
is more sensitive to noise compared with the previous methods using large input image sizes [38],
the accuracy remained high, i.e., 95.63–96.25%. EEMD contributed positively to the acquired IMFs after
decomposing in reducing white noise compared with the original EMD. Therefore, we can conclude
that the proposed method is reliable at low noise levels.

Table 8. Results of compound bearing fault diagnosis in various noise ratios.

Noise Levels ACC

10% 96.25%

20% 96.04%

30% 95.63%

5. Conclusions

We proposed a practical approach to design a CNN-based bearing fault diagnosis process for
embedded systems. The efficiency yielded by our proposed method was attributed to the advantages of
signal processing methods and the absence of the disadvantages of modern CNN architectures when it
was applied to limited-resource systems. The advantages of signal processing methods were illustrated
when representing nonstationary signals containing the bearing status at variable rotational speeds.
In addition, EEMD and CNN-based IMF selection were suitable for simplifying signals and extracting
useful components even in low noise environments, contributing to the decreased image input size
of the CNN model. The pruning approach applied for the state-of-the-art MobileNet-v2 at various
scaling rates proved that reducing system resources based on knowledge regarding the trained model
is effective for bearing fault diagnosis. The results of our experiments indicated that using the
proposed method, the maximum attainable accuracy in compound bearing fault diagnosis was 99.58%,
with the consumed system resources less than those of the LeNet5-based method. The implementation
of the CNN model on the Raspberry Pi 3 embedded system demonstrated the feasibility and reliability
of the proposed method for use in industrial embedded systems for compound fault diagnosis under
variable rotational speeds.
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