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Abstract: Large intelligent surfaces (LIS) promises not only to improve the signal to
noise ratio, and spectral efficiency but also to reduce the energy consumption during the
transmission. We consider a base station equipped with an antenna array using the maximum ratio
transmission (MRT), and a large reflector array sending signals to a single user. Each subchannel is
affected by the Rayleigh flat fading, and the reflecting elements perform non-perfect phase correction
which introduces a Von Mises distributed phase error. Based on the central limit theorem (CLT), we
conclude that the overall channel has an equivalent Gamma fading whose parameters are derived
from the moments of the channel fading between the antenna array and LIS, and also from the LIS
to the single user. Assuming that the equivalent channel can be modeled as a Gamma distribution,
we propose very accurate closed-form expressions for the bit error probability and a very tight
upper bound. For the case where the LIS is not able to perform perfect phase cancellation, that
is, under phase errors, it is possible to analyze the system performance considering the analytical
approximations and the simulated results obtained using the well known Monte Carlo method. The
analytical expressions for the parameters of the Gamma distribution are very difficult to be obtained
due to the complexity of the nonlinear transformations of random variables with non-zero mean and
correlated terms. Even with perfect phase cancellation, all the fading coefficients are complex due to
the link between the user and the base station that is not neglected in this paper.

Keywords: large intelligent surfaces; massive MIMO systems; maximum ratio transmission;
Von Mises distribution; Rayleigh fading

1. Introduction

The future of mobile digital communications in the age of the internet of things (IoT) requires
to optimize the energy consumption for transmission, improve the signal to noise ratio (SNR) at the
receiver, increase the spectral efficiency, and propose communication protocols, channel estimation
methods and beamforming strategies suitable for the adopted system model.

Many solutions have been proposed as alternatives to the sixth generation of mobile communications.
Zhang et al. [1] make an excellent review of the literature on these emerging techniques,
citing among them large intelligent surfaces (LIS), holographic beamforming (HBF), angular orbital
momentum (OAM) multiplexing, laser and visible-light communications (VLC) [2] and the advent
of quantum computing which is increasingly present in large technology companies like Google and
allows unmatched performance and security for quantum communication systems. Nawaz et al. [3]
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investigate the use of quantum machine learning strategies to improve the performance of the processes
involved in the network structure since we mess with many parallel operations involving large arrays
and tensors with data loaded and that through quantum computing can be mapped into large tensors
product spaces where operations are handled by quantum processors that take advantage of the
phenomenon of quantum superposition to achieve large communication rate and encryption security.

The proposal to make use of large intelligent surfaces (LIS) to improve transmission quality in
massive MIMO systems is recent and has been gaining visibility in the literature as a concrete solution
for the sixth generation (6G) of mobile communications and has presented a competitive performance
in comparison with classic methods like relaying switches.

One of the great challenges for the implementation of the LIS is to estimate the channel and obtain
the distribution of the fading coefficient. Wang et al. [4] propose channel estimation methods for
multiuser massive MIMO systems assisted by LIS and present alternatives to decrease the training
time necessary to have complete knowledge of the channel coefficients. Tataria et al. [5] discuss
practical aspects of real-time implementation of LIS, especially in terms of processing and applications
in radio frequency (RF) communications. Elbir et al. [6] present a deep learning framework for channel
estimation, considering the massive MIMO scenario using mm-Wave.

Yu et al. [7] propose the use of LIS to improve the coverage of a cellular IoT in the so-called
beyond fifth-generation (B5G). The LIS project aims to minimize the energy consumption and study
the impact of channel parameters on spectral efficiency.

Ye et al. [8] propose techniques to minimize the symbol error rate (SER) by optimizing the phase
shifts and the precoder for a MIMO reconfigurable intelligent surface (RIS) considering a finite alphabet
of symbols. Among the strategies proposed are to fix the phase shifts and obtain the optimal precoder
or to fix the precoder and find the phase shifts, that solution is useful to reduce the dimensionality of
the optimization task and also the performance of the proposed RIS strategy is compared with a relay
system and we see the advantage of using the techniques proposed by the authors.

Wu et al. [9] develope a mmWave point-to-point communication system assisted by multiple
intelligent subsurfaces with passive reflecting elements, and antenna arrays on the transmitter and
receiver. The authors derived the system achievable rate and have found the optimal precoding
and power allocation for the LIS phase shift design. He et al. [10] investigate the theoretical limits
and Cramér-Rao bounds for the LIS performance in a MIMO 5G system dealing with mmWave and
considering the existence of a direct path (NLoS and LoS).

Dardari [11] derives analytical expressions for the channel gain and the spatial degrees-of-freedom
(DoF) for the optimal LIS design considering MIMO systems. The analysis is based on electromagnetic
theory and employs only geometric arguments. Jung et al. [12] consider that a MIMO system assisted
by LIS can be modeled as an LoS after phase cancellation. The authors also analyze the theoretical
limitations of the practical system’s performance considering spatially correlated Rician channels and
demonstrate that the NLoS component can be neglected when the number of antennas increases.

Yan et al. [13] present a multiuser MIMO (Mu-MIMO) system in which intelligent electromagnetic
reflectors perform passive beamforming. The authors also propose to design a receiver with two
estimation modules. One for the signal transmitted by the base station and the other, to estimate the
additional On/Off information associated with the reflectors that modulate the digital signal arriving
at them.

Badiu et al. [14] shows that the perfect estimation of the reflection angles at the LIS array is
unfeasible, so we have to model the phase errors due to the estimation and discretization errors.
The authors claim that the overall channel, including the LIS, can be modeled as Nakagami-m
distributed, for phase errors having a generic distribution.

Cavers [15] defines maximal ratio transmission (MRT), establishing that the base station applies a
vector of complex weights to compensate the downlink channel by canceling the phase and perform a
signal reinforcement. He also shows a generalization for the effects of fading when the system has
multiple users, although there is no exact generic solution for the optimal precoder in this scenario.
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Makarfi et al. [16] propose to apply reconfigurable intelligent surfaces to expand coverage and
improve the signal-to-noise ratio of a vehicular network, which can be seen as a case study of the
IoT area using this new massive MIMO solution. The authors explore the idea of using smart
radio environments for IoT problems and discuss some relevant aspects beyond 5G to establish
communication between vehicles.

Qian et al. [17] present a MIMO system that uses LIS and has an array of antennas on the
transmitter and receiver. The signals suffer uncorrelated Rayleigh fading in each channel. The authors
obtain good approximations and performance studies based on analytical derivations of the statistical
moments associated with the largest eigenvalues of the Wishart matrices related to the LoS and NLoS
component. Without losing generality, they assume that the largest eigenvalues have a Gamma
distribution and their moments are a function of the number of LIS elements and the number of
antennas in the array.

Björnson et al. [18] discuss how the correlation matrix of the LIS elements can be computed under
certain conditions, considering Rayleigh fading channels with a direct path between the signal and
the final user. In this study, the authors make a more geometric analysis of the problem considering a
rectangular panel formed by several reflectors and their constructive parameters, thereby establishing
a relationship between the degrees of freedom of the LIS and the rank of the autocorrelation matrix
of the reflector panel. Asymptotic analyzes of the SNR variation and channel hardening are also
performed when the number of antennas and reflectors increase.

In this work, we investigate the performance of system employing LIS, also known as large
reflective surfaces (LRS), taking into account Rayleigh channels and phase errors due to imperfect
channel phase cancellation. This work is very general since it considers a direct link between the base
station with multiple antennas and the single user. We investigate the system performance and quality
of the proposed approximations for channel distribution in terms of the Kullback-Leibler divergence
metric. We also present analytical expressions for the bit error probability and a very tight upper
bounds for different scenarios in terms of the Von Misses parameter.

Note that the phase estimation errors is modeled as zero mean Von Mises distribution [14],
which has a concentration parameter, κ, that helps us model the accuracy of the estimation. Large values
of the Von Mises κ implies small errors, when κ → ∞ the zero mean Von Mises probability density
function is impulsive at zero, and for κ = 0 the probability distribution is the uniform distribution.

Analytically obtaining the equivalent fading distribution and the bit error probability is
quite intricate due to the considerable sums and transformations of random variables with
distinct distributions.

This paper tries to cover some gaps in the literature, with regard to obtaining analytical solutions
in the form of simple algebraic expressions involving the channel parameters and the Von Mises
parameter, in this way we were able to simplify the analysis of a very generalist system model that may
include the direct link with the user, may have one or more antennas at the base station and we maintain
the validity of the analysis even when the phase correction algorithm is not efficient. Badiu et al. [14]
use the central limit theorem to solve a simpler scenario with one Rayleigh NLoS channel and a rician
LoS channel, but considering a single antenna transmitter. Björnson et al. [18] propose asymptotic
approaches in a scenario that takes into account the correlation of the LIS elements but is also restricted
to the context with a single antenna transmitter which simplifies the analytical solutions.

For organizational purposes, we summarize what is covered in each section. In Section 2,
we define the mathematical notation used in the next chapters, in Section 3, the problem is well
described mathematically. Section 4 discusses about the effect of phase correction errors. In Section 5,
we propose an approximation for the SNR distribution and the error probability. In Section 7,
we present the Monte Carlo simulations and the analytical results. Finally, in Section 8, we make our
final considerations about the system performance. For easier reading of this paper, the analytical
calculations of the mean and variance of the fading coefficient and the Von Mises trigonometric
moments are left for the Appendix C.
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2. Notation

The mathematical notation adopted in this paper considers E|X|, var(X), and cov(X) as the
expected value, variance, and covariance of the random variable X, respectively. The function Ip(κ)

is the modified Bessel function of first kind and order p, and Q(.) is the Gaussian error function.
The operation A ◦ B is the Haddamard tensor product between the tensors A and B. The term XH

represents the Hermitian of the complex matrix X (transposed conjugate) and z ∈ C is an element of
the set of complex numbers.

3. System Model

In this section, we describe the mathematical model adopted in this paper and present the rationale
to justify the models used for the channel, the distribution of the fading coefficients in the direct (LoS)
and indirect (NLoS) links, in addition to the probability distribution associated with the error of phase
accomplished by the LIS when performing the beamforming.

This paper considers a multiple-input single-output (MISO) system between a base station (BS)
equipped with an antenna array composed of M antennas and a single-antenna user as shown in
Figure 1. The signal path passes through the LIS environment dividing the system fading in an LoS
component between the BS and the user. There are two indirect paths, between each antenna and the
LIS reflector, and between each reflector and the user, these indirect links form a composite channel
between the base station and the user.We suppose that the LIS is far from the BS, and the user is also
far from the LIS. So, the fading coefficients are modeled as uncorrelated Rayleigh.
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...

...

...

BS equipped with 
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LIS equipped
with N elements
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Figure 1. System Model.

In this formulation the signal received by the user can be written as

y =
(

hH
LISΦHGH + hH

BS

)
x + ζ, (1)

where hLIS ∈ CN×1 is the Rayleigh channel between the LIS and the user, G = [g1 . . . gN ] ∈ CM×N is
the Rayleigh channel between the BS and the LIS, hBS ∈ CM×1 is the complex normal fading of the
direct path between the antenna array and the user (LoS component), x ∈ CM×1 is the transmitted
symbol after precoding and Φ = diag(

[
e−jφ1 . . . e−jφN

]
) ∈ CN×N is a diagonal matrix representing

the response of the LIS where φn ∈ [0, 2π], ∀n is the adjustable phase-shift produced by the nth LIS’s
element. The variable ζ ∼ CN (0, 1) is the additive white Gaussian noise (AWGN) term. The Tx signal
x is defined as x = us where u ∈ CM×1 is the precoding vector and s ∼ CN (0, 1) is the data symbol.
The precoding vector u is applied by the antenna array at the BS before the transmission.

Considering the MRT criterion, the optimal precoder is given as [19]

u =
√

p
wH

‖w‖ (2)

where
√

p is the precoder gain and w is the overall channel defined as

w = hH
LISΦHGH + hH

BS. (3)
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Let ηki and θi be the phases of gki and hLIS
i , respectively. Therefore, we can rewrite each channel

fading coefficient as

wk =
N

∑
i=1
|gki|

∣∣∣hLIS
i

∣∣∣ ej(φi−θi−ηki) + hBS
k (4)

From (4), we see that the best situation occurs when the composite fading coefficient is perfectly
corrected by the LIS and we can state that φi = θi + ηki. But this scenario is unfeasible because perfect
channel state information is not a very realistic assumption. Therefore, both cases are approached:
(i) the case where the LIS is able to perform perfect phase cancellation, and; (ii) the case where imperfect
cancellation is assumed.

Considering the first case, the composite channel can be written as

wk =
N

∑
i=1
|gki|

∣∣∣hLIS
i

∣∣∣+ hBS
k . (5)

Let CBS,k = Re{hBS
k } and = SBS,k = Im{hBS

k }. Then, the square of the fading vector norm can be
written as ‖w‖2 = wHw and

‖w‖2 =
M

∑
k=1

( N

∑
i=1
|gki|

∣∣∣hLIS
i

∣∣∣+ CBS,k

)2

+ S2
BS,k

 . (6)

To evaluate the system performance and understand the relationship between the bit error rate
and the energy per bit applied by the transmitter, we need to know how the fading coefficients of
the overall channel are distributed. Therefore, we need to obtain the statistical moments and the
distribution of ‖w‖2.

4. Von Mises Distributed Continuous Phase Estimation Errors

Since the phase adjustments performed by the intelligent reflectors are imperfect and cannot
completely cancel the channel phase, a term associated with the phase error appears in the equation of
the composite channel phase.

Consider that φi = θk + ηki + δki is the phase correction performed by the LIS, so the fading
coefficients for each antenna is

wk =
N

∑
i=1
|gki|

∣∣∣hLIS
i

∣∣∣ ejδki + hBS
k (7)

where the term δki is the phase error, here supposed as Von Mises distributed with probability
density function

f∆(δ) =
1

2π I0(κ)
eκ cos δ. (8)

Therefore, we have that
w = (|G| ◦ ∆) |hLIS|+ hH

BS, (9)

This error model considers a matrix ∆ ∈ CM×N in which we have the Von Mises phase errors and
the Haddamard product is an elementwise product between the phase errors and each channel
fading magnitude.

In this case, the moment generating function (MGF) of the Von Mises distribution is useful to
obtain the trigonometric moments that are needed to obtain the mean and variance of the fading
coefficients. For a random variable δ Von Mises distributed, the MGF can be calculated by

E
[
ejpδ
]
= αp + jβp, (10)
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where αp =
Ip(κ)

I0(κ)
and βp = 0 are defined in terms of the modified Bessel function of first kind.

5. Approximated Gamma Fading Distribuition

Since each fading coefficient wk is the summation of independent and equally probable random
variables, we can apply the central limit theorem (CLT). So, for large values of N each wk is
approximately complex Gaussian. The term ‖w‖2 is the sum of squared Gaussian random variables
whose generalized distribution is the Gamma distribution. Let V ∼ Γ(α, β) be a Gamma-distributed
variable with shape parameter α and rate parameter β, therefore its probability density function is
given as

fV(v; α, β) =
βαvα−1e−βv

Γ(α)
(11)

Note that the mean of the Gamma random variable V is given by E[V] = α
β , and the variance

as var[V] = α
β2 [20]. We can compute the mean and variance of ‖w‖2, denoted here as µ‖w‖2 and

σ2
‖w‖2 , respectively, and match with E[V] and var[V]. Using this rationale, the following can be written:

µ‖w‖2 = α
β and σ2

‖w‖2 = α
β2 . Solving this linear equation system, we get that

α‖w‖2 =
µ2
‖w‖2

σ2
‖w‖2

, β‖w‖2 =
µ‖w‖2

σ2
‖w‖2

(12)

therefore, with the mean and variance of ‖w‖2, we can generate its Gamma approximated probability
density function. Although the idea might seem very simple, the mean and variance of the channel
norm are very difficult to be obtained. For the sake of clarity, we detail these calculations in Appendix A,
for the case where there are no phase errors. For this case, the mean µ‖w‖2 and variance σ2

‖w‖2 , are given

in (A17) and (A45), respectively. In the same way, for the case where phase error occurs, Appendix B
presents the mean µ‖w‖2 and variance σ2

‖w‖2 as in (A76) and (A91), respectively.

The trigonometric moments needed to perform the calculations are in the Appendix C.

Kullback–Leibler Divergence

To evaluate the accuracy of approximating ‖w‖2 as a Gamma random variable, we can use
Kullback-Leibler divergence [21]. The Gamma distribution will be compared with the simulation
obtained by the Monte Carlo method.

Although the distribution of the fading coefficient is continuous, for purposes of numerical
calculation, we estimate the PDF with a finite number of points and thus we also sample the Gamma
distribution and calculate the Kullback-Leibler divergence in its discrete form [21]

DKL (D1||D2) = ∑
x∈χ

d1(x) log
(

d1(x)
d2(x)

)
, (13)

where D1 and D2 are the simulated and the theoretical distributions, respectively, whose probability
distribution functions are d1(x) and d2(x) respectively and χ is the set of points available to represent
the distributions.

6. Error Probability Calculations

The error probability for the M-QAM modulation can be approximately obtained by [22]

PQAM
e (γ) = 1−

(
1− 2

(
1− 1√

M

)
Q

[√
3γlog2M
(M− 1)

])2

, (14)



Sensors 2020, 20, 6679 7 of 24

whereM is the size of the M-QAM constellation. Under Gamma fading, the mean error probability
can be calculated as

P̄QAM
e (γ) =

∞∫
0

PQAM
e (γv) f‖w‖2(v)dv, (15)

where γ = pγ0 and γ0 is the SNR at the receiver while P̄QAM
e is the mean error probability considering

the fading coefficient v and the Gamma pdf f‖w‖2(v).
Therefore the error probability can be expressed as

P̄QAM
e (γ) =

∞∫
0

PQAM
e (γv)

βαvα−1e−βv

Γ(α)
dv, (16)

where α = α‖w‖2 and β = β‖w‖2 are calculated by (12).
In [23], we have a useful approximation for the bit error probability on an M-QAM schema.

Considering coherent detection, we can state that

PQAM
e (γ) ≈ 4

log2M
Q

(√
3γlog2M
M− 1

)
(17)

By using the approximation in (17), we propose an upper bound for the bit error probability
for the transmission of M-QAM symbols under Gamma fading by applying the Chernoff bound
Q(x) < − 1

2 e−
1
2 x2

and solving the integral formula in (16). The proposed bound for error probability
can be calculated as

P̄QAM
e (γ) <

1.38629
(

2.16404γ log(M)
(M−1)β‖w‖2

+ 1
)−α‖w‖2

log(M)
(18)

The gamma approximation for the resulting fading coefficient is adequate and works even for
small values of N and M when we consider the scenario without phase errors, as in Figure 2, and in
the case where we have the Von Mises distributed phase errors as shown in Figure 3.
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Figure 2. Approximated Gamma Distribution of ‖w‖2 without phase errors.
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Figure 3. Approximated Gamma Distribution of ‖w‖2 with Von Mises κ = 2 errors.

As we can see in Figure 4 the Kullback-Leibler divergence decays with the number of reflectors at
the LIS and the distribution is well represented by the proposed gamma approximation.

5 10 15 20 25 30

Number of reflectors (N)

0

0.005

0.01

0.015

0.02

0.025

 PDF and the Theoretical PDF

Without phase errors
Uniform phase errors
Von Mises errors( =2)

Figure 4. Kullback–Leibler divergence for the fading squared magnitude.

7. Simulated Results

We have simulated the bit error probability and generated the fading coefficients of all LoS and
NLoS channels using the Monte Carlo method with 106 iterations. We have assumed that the phase
errors follow the uniform or the Von Mises distribution. To calculate the error probability, we have
solved numerically the integral in (16) and compared it with the Monte Carlo simulation.

Figure 5 shows the simulated bit error rate when there are no phase errors. As it can be observed,
the simulation is very close to the analytical bit error probability. Moreover, as the number of LIS
reflectors increases, the bit error probability decreases faster concerning the SNR. This result is valid
even for small values of N, for example, for N = 8.

On the other hand, when the phase error is uniformly distributed, as shown in Figure 6, the bit
error probability increases significantly compared to the scenario where there are no phase errors.
Again, we can observe that the analytical curve matches perfectly the simulated results, even for a
small number of antennas or a small number of elements at the LIS.

It is worth mentioning that a uniform phase error, as pointed out by [24], may mean that the
LIS’s channel estimation or phase correction was not so effective since large and small phase errors
are equiprobable.
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Figure 5. Error probability without phase errors.
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Figure 6. Error probability for uniformly distributed phase errors.

Comparing Figures 6 and 7, we can see that the error probability is smaller when κ > 0.
The occurrence of small errors is more probable than large errors (±π).
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Figure 7. Error probability for Von Mises distributed phase errors.

Figure 8 shows how the bit error probability behaves as the concentration parameter varies for
SNR of −25 dB. It is clear that the rate decreases as κ increases. Therefore, the κ parameter of the LIS
can be considered a qualitative parameter of the phase correction performed by the reflectors for a
specific channel estimation method.
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In Figure 9, we vary the size of the antenna array at BS and note that the bit error rate decreases
significantly when M increases. Furthermore, our approximation is valid for both large and small
values of M.
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Figure 9. Error probability varying the size of the antenna array.

Although the numerical calculation of the analytical expression of the bit error probability is
computationally fast, it may still be interesting to use a direct expression that does not involve solving
numerical integrals. The proposed upper bound is very close to the simulated results, as we can see
in Figure 10.
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Figure 10. Proposed upper bound for the error probability.
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Figure 11 shows the influence of the direct link in the bit error probability. In this figure, we have
assumed that the direct link is 10 dB and 30 dB larger than the two indirect links. As it can be seen,
when the direct link is strong, the error probability decays quickly with the increase of the SNR, on the
other hand, when the direct link is weak, the bit error probability requires a larger SNR to decrease.

-40 -35 -30 -25 -20

SNR (dB)

10-2

10-1

E
rr

or
 P

ro
ba

bi
lit

y

Simulated result without direct link
Theoretical result without direct link
Simulated result with direct link 20 dB
Theoretical result with direct link 20 dB
Simulated result with direct link 30 dB
Theoretical result with direct link 30 dB

Figure 11. Effect of the direct link in the bit error probability.

8. Final Considerations

This paper has presented how some parameters like number of antennas at BS and electromagnetic
reflectors at LIS, channel, and phase error distribution can influence on the performance of a massive
MIMO system assisted by LIS.

Assuming that there is the direct link between the user and the base station and phase errors
performed by the LIS, we have derived analytical expressions for the channel probability distribution
function and bit error probability. As conclusion, all the sum of the fading coefficients and phase
noise involved in the MIMO communication system assisted by LIS can be modeled as a Gamma
random variable.

We have proved the accuracy of our approximation through the Kullback-Leibler divergence
even when the phase error follows either the uniform or the Von Mises distribution with arbitrary
concentration parameter. In the absence of phase error, the divergence between the simulated
distribution and the proposed analytical approach decreases even faster with the increase of the
number of reflectors at the LIS.

Further studies may include expanding this analysis to more general fading distributions such as
Nakagami-m, which include the Rayleigh distribution as special case and can reasonably approximate
Rician fading channels for large values of m.
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Appendix A

Appendix A.1. Mean of wk Given in (5)

Departing from (5), the mean of the each total fading coefficient can be calculated as

E[wk] = E

[
N

∑
i=1
|gki|

∣∣∣hLIS
i

∣∣∣+ hBS
k

]
(A1)

The mean of the product of two random variables X and Y is given by var(XY) = var(X)var(Y) +
var(X)E[Y]2 + var(X)E[Y]2 [20], since |gki| and |hLIS

k | are independent and equally probable on the
summation variable. So,

E[wk] = N × E [|gki|] E
[∣∣∣hLIS

i

∣∣∣]+ E
[

hBS
k

]
(A2)

Since E
[
hBS

k
]
= 0,

E[wk] = N × E [|gki|] E
[∣∣∣hLIS

i

∣∣∣] (A3)

The terms |gki| and
∣∣hLIS

i

∣∣ are Rayleigh distributed, since the variables gki and hLIS
i are zero mean

with variances σ2
1 and σ2

2 respectively. Therefore

E [|gki|] = σ1

√
π

2
, E

[∣∣∣hLIS
i

∣∣∣] = σ2

√
π

2
. (A4)

Let wk = ck + jsk, where ck and sk are the in-phase and quadrature components of the fading
coefficient with respect to the antenna k. Also, let µck = E[ck] and µsk = E[sk] = 0. Then,

E [wk] = µck = N
π

2
σ1σ2. (A5)

Appendix A.2. Variance of wk Given in (5)

The variance of wk is given by

var(wk) = E [(ck + jsk)(ck − jsk)]− (E [(ck + jsk)])
2 = var(ck) + var(sk), (A6)

where

var(ck) = var

(
N

∑
i=1
|gki|

∣∣∣hLIS
i

∣∣∣+ CBS,k

)
, (A7)

and can be expanded as

var(ck) = var

(
N

∑
i=1
|gki|

∣∣∣hLIS
i

∣∣∣)+ var (CBS,k) + 2

(
E

[
CBS,k

N

∑
i=1
|gki|

∣∣∣hLIS
i

∣∣∣])2

, (A8)

The first term of (A8) can be written as

var

(
N

∑
i=1
|gki|

∣∣∣hLIS
i

∣∣∣) = Nvar
(
|gki|

∣∣∣hLIS
i

∣∣∣) (A9)

Note in (A9) that it is necessary to compute the variance of the product of two random variables.
Let X and Y, two independent random variables, then var(XY) = var(X)var(Y) + var(X)E[Y]2 +
var(Y)E[X]2 and then.

var
(
|gki|

∣∣∣hLIS
i

∣∣∣) = var (|gki|)× var
(∣∣∣hLIS

i

∣∣∣) + var (|gki|)
(

E
[∣∣∣hLIS

i

∣∣∣])2
+ var

(∣∣∣hLIS
i

∣∣∣) (E [|gki|])2 (A10)
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Since |gki| and
∣∣hLIS

i

∣∣ are Rayleigh distributed,

var (|gki|) =
4− π

2
σ2

1 , var
(∣∣∣hLIS

i

∣∣∣) =
4− π

2
σ2

2 (A11)

and so, after some simplifications, we have that

var
(
|gki|

∣∣∣hLIS
i

∣∣∣) =
16− π2

4
(σ1σ2)

2 (A12)

Since E [CBS,k] = 0 and the terms CBS,k and
N
∑

i=1
|gki|

∣∣hLIS
i

∣∣ are independent, then

var(ck) = N
16− π2

4
(σ1σ2)

2 + σ2
3 (A13)

therefore the variance of wk is given as

var(wk) = N
16− π2

4
(σ1σ2)

2 + 2σ2
3 . (A14)

Appendix A.3. Expected Value of ‖ w‖2

The expected value of ‖w‖2 can be calculated by

E
[
‖w‖2

]
= E

[
M

∑
k=1
|wk|2

]
= ME

[
|wk|2

]
(A15)

With E[wk] and var(wk), we can calculate E
[
|wk|2

]
as E

[
|wk|2

]
= var(wk) + (E [wk])

2. Therefore,
we have

E
[
|wk|2

]
= N

16− π2

4
(σ1σ2)

2 + 2σ2
3 +

(
N

π

2
σ1σ2

)2
, (A16)

so the mean of the overall channel fading coefficient is

µ‖w‖2 = E
[
‖w‖2

]
= M

(
N

16− π2

4
(σ1σ2)

2 + 2σ2
3 +

(
N

π

2
σ1σ2

)2
)

(A17)

Appendix A.4. Correlation between the Fading Coefficients

Since the real and imaginary parts of the fading coefficients, without phase errors, are uncorrelated,
we analyze only the correlation between the real parts as follows.

ρci ,ck =
E[cick]− E[ci]E[ck]√

var(ci)var(ck)
. (A18)

Since var(ci) = var(ck) and E[ci] = E[ck],

ρci ,ck =
E[cick]− µ2

ck

var(ck)
(A19)

where

E[cick] = E

[(
N

∑
l=1
|gil ||hLIS

l |+ CBS,i

)
×
(

N

∑
m=1
|gkm||hLIS

m |+ CBS,k

)]
, (A20)
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and simplifies to

E[cick] = E

[
N

∑
l=1

N

∑
m=1
|gil ||gkm||hLIS

l ||h
LIS
m |

]
+ E[CBS,iCBS,k] + E[CBS,i]

(
N

∑
m=1
|gkm||hLIS

k |+ CBS,k

)
+

E[CBS,k]

(
N

∑
l=1
|gil |

∣∣∣hLIS
i

∣∣∣+ CBS,i

)
. (A21)

Since E[CBS,i] = E[CBS,k] = 0, E [|gil |] = E [|gkm|], E
[
|hLIS

l |
]
= E

[
|hLIS

m |
]

so

E[cick] =
N

∑
l=1

N

∑
m=1

E
[
|gil ||gkm||hLIS

l ||h
LIS
m |

]
+ E[CBS,iCBS,k] (A22)

Since |gil | and |gkm| are independent, therefore

E
[
|gil ||gkm||hLIS

l ||h
LIS
m |

]
= E [|gil |] E [|gkm|] E

[
|hLIS

l |
]

E
[
|hLIS

m |
]
∀l 6= m (A23)

and
l = m⇒ E

[
|gil | |gkm|

∣∣∣hLIS
l

∣∣∣ ∣∣∣hLIS
m

∣∣∣] = E [|gil |] E [|gkm|] E
[
|hLIS

m |2
]

(A24)

since

E
[∣∣∣hLIS

m

∣∣∣2] = var
(
|hLIS

m |
)
+
(

E
[
|hLIS

m |
])2

, (A25)

so we have that

E
[∣∣∣hLIS

m

∣∣∣2] = 4− π

2
σ2

2 +
π

2
σ2

2 = 2σ2
2 (A26)

Therefore
N

∑
l=1

N

∑
m=1

E
[
|gil ||gkm||hLIS

l ||h
LIS
m |

]
= Nπσ2

1 σ2
2

(
1 +

(N − 1)π
4

)
(A27)

Since

E[CBS,iCBS,k] =

{
0 k 6= i

E[C2
BS,k] = σ2

3 k = i

Therefore

E[cick] =

Nπσ2
1 σ2

2

(
1 + (N−1)π

4

)
k 6= i

Nπσ2
1 σ2

2

(
1 + (N−1)π

4

)
+ σ2

3 k = i

Since E [ck] = E [wk] = N π
2 σ1σ2, we only need to consider the case i 6= k, because for i = k we

have that ρci ,ck = ρck ,ck = 1 therefore

ρci ,ck =
Nπσ2

1 σ2
2

(
1 + (N−1)π

4

)
−
(

Nπ
2 σ1σ2

)2

N 16−π2

4 (σ1σ2)
2 + σ2

3

∀i 6= k (A28)

by performing algebraic simplifications we have that

ρci ,ck =
Nπ (σ1σ2)

2

N(π + 4) (σ1σ2)
2 + 4

4−π σ2
3

∀i 6= k (A29)
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Appendix A.5. Variance of ‖ w‖2

Let Zk = |wk|2, so the variance of the sum of the correlated random variables Zk will be given by

var
(
‖w‖2

)
= var

(
M

∑
i=1

Zi

)
=

M

∑
i=1

var(Zi) + 2 ∑
1≤i<k≤M

cov (Zi, Zk) . (A30)

Since the variables have the same distribution and parameters therefore

var

(
M

∑
i=1

Zi

)
= M× var(Zi) + M(M− 1)× cov (Zi, Zk) , (A31)

so the pairwise covariance can be obtained by

cov (Zi, Zk) = E[ZiZk]− E[Zi]E[Zk] (A32)

where
E[ZiZk] = E[|wi|2|wk|2] = E[(c2

i + s2
i )(c

2
k + s2

k)] (A33)

and simplifies to
E[ZiZk] = E[c2

i c2
k ] + E[c2

i s2
k ] + E[s2

i c2
k ] + E[s2

i s2
k ] (A34)

Since
E[c2

i s2
k ] = E[s2

i c2
k ], (A35)

so,
E[ZiZk] = E[c2

i c2
k ] + 2E[c2

i s2
k ] + E[s2

i s2
k ] (A36)

Considering that ck and ci are correlated Gaussian random variables with the same mean and
variance, therefore we have that

E[c2
i c2

k ] =

∞∫
−∞

∞∫
−∞

x2y2 fci ,ck (x, y)dxdy (A37)

where fci ,ck (x, y) is the joint probability density function of the correlated Gaussian random variables
ci and ck.

E[c2
i c2

k ] = µ4
ck
+ 2µ2

ck

(
1 + 2ρci ,ck

)
σ2

ck
+
(

1 + 2ρ2
ci ,ck

)
σ4

ck
(A38)

E[c2
i c2

k ] =


k4

1σ4
12 + 2k2

1σ2
12

(
k1
2π a1a2σ2

12 + σ2
3

)
+ 2k3

1a1σ4
12 +

1
2 k2

1σ4
12a2

1 +
(

k1
2π a1a2σ2

12 + σ2
3

)2
i 6= k

k4
1σ4

12 + 6k2
1σ2

12

(
k1
2π a1a2σ2

12 + σ2
3

)
+ 3

(
k1
2π a1a2σ2

12 + σ2
3

)2
i = k

Therefore E[c2
i c2

k ] can be calculated by (A68), where k1 = N π
2 , a1 = 4 − π, a2 = 4 + π and

σ12 = σ1σ2.
Since ci and sk are independent and E[|s2

k |] = var(sk) so we have that

E[c2
i s2

k ] = E[c2
i ]E[s

2
k ] (A39)

Since
E[c2

i ] = var(ci) + (E[ci])
2 =

k1

2π
a1a2σ2

12 + σ2
3 + k2

1σ2
12,
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so we have that

E[c2
i ] = σ2

12

(
k1

2π
a1a2 + k2

1

)
+ σ2

3 ,

Since E[s2
k ] = var(sk) = σ2

3 , therefore

E[c2
i s2

k ] = σ2
123

(
k1

2π
a1a2 + k2

1

)
+ σ4

3 (A40)

where σ2
123 = σ2

1 σ2
2 σ2

3 .
The fourth order moment E[s4

k ] of a Gaussian random variable is well known in the literature and
can be calculated by

E[s4
k ] = (E[sk])

4 + 2(E[sk])
2var(sk) + 3(var(sk))

2 (A41)

Since E[sk] = 0, therefore
E[s4

k ] = 3σ4
3 (A42)

E[ZiZk] =

k4
1σ4

12 + 2k2
1σ2

12

(
k1
2π a1a2σ2

12 + σ2
3

)
+ 2k3

1a1σ4
12 +

1
2 k2

1σ4
12a2

1 +
(

k1
2π a1a2σ2

12 + σ2
3

)2
+ . . .

+2σ2
123

(
k1
2π a1a2 + k2

1

)
+ 3σ4

3 i 6= k

k4
1σ4

12 + 6k2
1σ2

12

(
k1
2π a1a2σ2

12 + σ2
3

)
+ 3

(
k1
2π a1a2σ2

12 + σ2
3

)2
+ 2σ2

123

(
k1
2π a1a2 + k2

1

)
+ 5σ4

3 i = k

(A43)

With the expected value E[ZiZk], the expected value of Zk = |wk|2 and the consideration that
E[Zi] = E[Zk] ∀i∀k, the covariance between Zi and Zk can be obtained by

cov (Zi, Zk) = E[ZiZk]− (E[Zk])
2 (A44)

Note that var(Zk) = cov(Zk, Zk), so the variance of ‖w‖2 can be obtained by

σ2
‖w‖2 = var

(
‖w‖2

)
= Mcov(Zk, Zk) + M(M− 1)cov(Zi, Zk) (A45)

By substituting the terms E[ZiZk] and E[Zk], given in (A43) and (A5), in the Equation (A45), we have
finally have the analytical expression of the variance in (A46).

σ2
‖w‖2 =

M
(

k4
2 + 2k2

2(k3 + σ2
3 ) + 2k1k2

4a1
1
2 k2

4a2
1 + (k3 + σ2

3 )
2 + 2σ2

3 (k3 + k2
2) + 3σ4

3 − (k3 + 2σ2
3 + k2

2)
2
)
+ . . .

M(M + 1)
(
k4

2 + 6k2
2(k3 + σ2

3 ) + 3(k3 + σ2
3 )

2 + 2(k3 + k2
2) + 5σ4

3 − (k3 + 2σ2
3 + k2

2)
2) (A46)

where

k2 = k1σ12, k3 =
k1

2π
a1a2σ2

12, k4 = k1σ2
12

Appendix B. Mean and Variance of the Overall Channel Fading Coefficient with Von Mises
Distributed Phase Errors

Appendix B.1. Mean of w̃k

Let w̃k = c̃k + js̃k be the fading coefficient with respect to the antenna k when phase errors occurs
at the LIS.
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To obtain the mean of w̃k we need to calculate the mean of c̃k and s̃k.
The mean value of the in-phase fading component c̃k is

E[c̃k] = N
π

2
σ12α1 (A47)

and the quadrature component mean E[s̃k] is

E[s̃k] = E

[
N

∑
i=1
|gki|

∣∣∣hLIS
i

∣∣∣ sin δki + S̃BS
k

]
(A48)

using the linearity of the expected value we can rewrite the equation as

E[s̃k] =
N

∑
i=1

E
[
|gki|

∣∣∣hLIS
i

∣∣∣ sin δki

]
+ E

[
S̃BS

k

]
(A49)

since β1 = 0, so

E[s̃k] = N
π

2
σ12β1 = 0 (A50)

Therefore we can calculate the mean of the overall fading coefficient, for the antenna k by using

E[w̃k] = E[c̃k] + E[s̃k] = N
π

2
σ12α1. (A51)

Appendix B.2. Variance of the In-Phase and Quadrature Components

To obtain the variance of w̃k we need to calculate the variance of c̃k and s̃k. The variance of the
quadrature component is

var(s̃k) = Nvar(|gki|
∣∣∣hLIS

i

∣∣∣ sin δki) + σ2
3 , (A52)

where

var(|gki|
∣∣∣hLIS

i

∣∣∣ sin δki) = var(|gki|
∣∣∣hLIS

i

∣∣∣)var(sin δki) + . . .

var(sin δki)
(

E[|gki|
∣∣∣hLIS

i

∣∣∣])2
+ var(|gki|

∣∣∣hLIS
i

∣∣∣) (E[sin δki])
2 (A53)

and simplifies to

var(|gki|
∣∣∣hLIS

i

∣∣∣ cos δki) = var(|gki|
∣∣∣hLIS

i

∣∣∣)var(cos δki) + . . .

var(cos δki)
(

E[|gki|
∣∣∣hLIS

i

∣∣∣])2
+ var(|gki|

∣∣∣hLIS
i

∣∣∣) (E[cos δki])
2 . (A54)

To compute the variance of the in-phase and quadrature components we need to calculate closed
expressions for the trigonometric moments of the Von Mises random variable.

The expected value of the sine of a Von Mises distributed phase error is given as

var(sin δki) = E[sin2 δki]− (E[sin δki])
2

=
1
2
(1− E[cos 2δki])− (E[sin δki])

2

=
1
2
(1− α2)− β2

1 (A55)

Since β1 = 0, so

var(sin δki) =
1
2
(1− α2) (A56)
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The expected value of the cosine of a Von Mises variable can be calculated by

var(cos δki) = E[cos2 δki]− (E[cos δki])
2 , (A57)

or, using a trigonometric substitution,

var(cos δki) =
1
2
(1 + E[cos 2δki])− α2

1, (A58)

In terms of the the characteristic function, we have

var(cos δki) =
1
2
(1 + α2)− (α1)

2 (A59)

So the variance of s̃k is

var(s̃k) = N
[

16− π2

8
σ2

12 (1− α2)
π2

8
σ2

12 (1− α2)

]
+ σ2

3 (A60)

and simplifies to
var(s̃k) = N

(
2σ2

12 (1− α2)
)
+ σ2

3 . (A61)

The variance of the in-phase fading coefficient will be

var(c̃k) = N
[

16− π2

4
σ2

12

(
1
2
(1 + α2)− α2

1

)
+ . . .

α2
1

16− π2

4
σ2

12 +

(
1
2
(1 + α2)− α2

1

)
π2

4
σ2

12

]
+ σ2

3 (A62)

and simplifies to

var(c̃k) = σ2
3 + N

[
2σ2

12(1 + α2)−
π2

4
α2

1σ2
12

]
(A63)

Appendix B.3. Mean of |w̃k|2

To compute the variance of the total fading coefficient we need the mean value of the squared
fading coefficients.

The mean of the squared in-phase component is given as

E[c̃2
k ] = σ2

3 + N
[

2σ2
12(1 + α2)−

π2

4
α2

1σ2
12

]
+
(

N
π

2
σ12α1

)2
. (A64)

The expected value of the squared quadrature component can be written as

E[s̃2
k ] = var(s̃k) = N

(
2σ2

12 (1− α2)
)
+ σ2

3 (A65)

Therefore, the mean squared magnitude of the overall fading with respect to the antenna k is given as

E[|w̃k|2] = N
[

2σ2
12(1 + α2)−

π2

4
α2

1σ2
12

]
+
(

N
π

2
σ12α1

)2
+ N

(
2σ2

12 (1− α2)
)
+ 2σ2

3 (A66)

and simplifies to
E[|w̃k|2] = 4N(1 + α2)σ

2
12 + 2σ2

3 (A67)
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Appendix B.4. Correlation between the Fading Coefficients

The real and imaginary parts of the fading coefficients are uncorrelated, however we need to
compute the correlation coefficient between the real parts.

The expected value of the product of two different in-phase coefficients can be written as

E[c̃i c̃k] = E

[(
N

∑
l=1
|gil ||hLIS

l | cos δil + C̃BS,i

)
×
(

N

∑
m=1
|gkm||hLIS

m | cos δkm + C̃BS,k

)]
(A68)

since all the variables have the same distribution and parameters, therefore if l 6= m, so all the
summation variables are independent, and in addition E

[
C̃BS,k

]
∀k and the variables C̃BS,i and C̃BS,k

are independent ∀i 6= k, therefore

E[c̃i c̃k] = E
[
C̃BS,iC̃BS,k

]
+

N

∑
l=1

N

∑
m=1

E
[
|gil ||gkm||hLIS

l ||h
LIS
m | cos δil cos δkm

]
(A69)

and

l 6= m⇒ E
[
|gil ||gkm||hLIS

l ||h
LIS
m | cos δil cos δkm

]
= E [|gkm|]2 E

[
|hLIS

m |
]2

E [cos δkm]
2 =(

σ1

√
π

2

)2 (
σ2

√
π

2

)2

α2
1 =

π2

4
σ2

12α2
1 (A70)

and also

l = m, i 6= k⇒ E
[
|gil ||gkm||hLIS

l ||h
LIS
m | cos δil cos δkm

]
= E [|gkm|]2 E

[
|hLIS

m |2
]

E [cos δim] E [cos δkm] =

π

2
σ2

1 (2σ2)
2 α2

1 = πσ2
12α2

1, (A71)

l = m, i = k⇒ E
[
|gil ||gkm||hLIS

l ||h
LIS
m | cos δil cos δkm

]
= E

[
|gkm|2

]
E
[
|hLIS

m |2
]

E
[
cos2 δkm

]
=

2σ2
1 2σ2

2
1
2
(1− α2) (A72)

therefore

E[c̃i c̃k] =



N(N − 1)
(

π2

4 σ2
12α2

1

)
+ N

(
πσ2

12α2
1
)

i 6= k

N
(

2σ2
1 2σ2

2
1
2 (1− α2)

)
+ σ2

3 + . . .

N(N − 1)
(

π2

4 σ2
12α2

1

)
i = k

and the correlation for i 6= k is given as

ρc̃i c̃k =
N(N − 1)

(
π2

4 σ2
12α2

1

)
+ N

(
πσ2

12α2
1
)
−
(

N π
2 σ12α1

)2

σ2
3 + N

[
2σ2

12(1 + α2)− π2

4 α2
1σ2

12

] (A73)

Appendix B.5. Mean of ‖ w̃‖2

The mean value of the total fading coefficient can be written as

µ‖w̃‖2 = E
[
‖w̃‖2

]
= E

[
M

∑
k=1
|w̃k|2

]
. (A74)



Sensors 2020, 20, 6679 20 of 24

Since the fading coefficients are identically distributed, then

µ‖w̃‖2 = ME[|w̃k|2], (A75)

and
µ‖w̃‖2 = 4NM(1 + α2)σ

2
12 + 2Mσ2

3 (A76)

Appendix B.6. Variance of ‖ w̃‖2

The variance of the total fading coefficient is given as

var
(
‖w̃‖2

)
= var

(
M

∑
k=1
|w̃k|2

)
. (A77)

Let Z̃k = |w̃k|2, therefore

var
(
‖w̃‖2

)
= var

(
M

∑
i=1

Z̃i

)
= M× var(Z̃i) + M(M− 1)× cov

(
Z̃i, Z̃k

)
, (A78)

Since
cov

(
Z̃i, Z̃k

)
= E

[
Z̃iZ̃k

]
− E

[
Z̃i
]

E
[
Z̃k
]

, (A79)

the expected value of the product of the squared magnitude of two diffent fading coefficients is

E[Z̃iZ̃k] = E[c̃2
i c̃2

k ] + 2E[c̃2
i s̃2

k ] + E[s̃2
i s̃2

k ] (A80)

The term E[c̃2
i c̃2

k ] can be calculated by (A81)

E[c̃2
i c̃2

k ] =



2k5
(
σ2

3 + k6 − k5a3
)
+
(
σ2

3 + k6 − k5a3
)2

+
8
π k3

5a3 (N + 1)− 3k4
5 +

( 2
π k5a3 (N + 1)− k2

5
)2 i 6= k

k4
5 + 6k2

5
(
σ2

3 + k6 − k5a3
)
+ 3

(
σ2

3 + k6 − k5a3
)2 i = k

(A81)

where k5 = N π
2 σ12α1, k6 = 2Nσ2

12(1 + α2) and a3 = π
2 σ12α1. Since E[s̃k] = 0, thus the forth order

moment of the quadrature component is

E[s̃4
k ] = 3(var(s̃k))

2 = 3
(

N
(

2σ2
12 (1− α2)

)
+ σ2

3

)2
= 3

(
k7 + σ2

3

)2
(A82)

where k7 = 2Nσ2
12(1− α2).

We need to obtain the term E
[
c̃2

i s̃2
k
]

without considering the CLT, because the correlation
coefficient between c̃ and s̃ is zero. But the terms c̃2

i and s̃2
k are not independent and the approach that

use the integral of the product to obtain the expected value is hard to solve analytically.
Considering the definition, we have that

E
[
c̃2

i s̃2
k

]
= E

( N

∑
l=1
|gil ||hLIS

l | cos δil + C̃BS,i

)2

×
(

N

∑
m=1
|gkm||hLIS

m | sin δkm + S̃BS,k

)2
 (A83)

Expanding the power and the product of the two terms we can find the expression (A84).
Considering that E

[
C̃BS,i

]
= 0, E

[
S̃BS,k

]
= 0, E

[
S̃2

BS,k

]
= E

[
S̃2

BS,k

]
= σ2

3 so (A84) simplifies to (A85).
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The three summation terms of (A85) are obtained by (A86), (A87) and (A88) that can be obtained by
analyzing the different possible values of the summation indexes that can made the indexed terms
dependents or independents.

E
[
c̃2

i s̃2
k

]
= E

( N

∑
l=1
|gil ||hLIS

l | cos δil

)2 ( N

∑
m=1
|gkm||hLIS

m | sin δkm

)2
+ E

( N

∑
l=1
|gil ||hLIS

l | cos δil

)2

S̃2
BS,k

+

2E

( N

∑
l=1
|gil ||hLIS

l | cos δil

)2 ( N

∑
m=1
|gkm||hLIS

m | sin δkm

)
S̃BS,k

+ 2E

[(
N

∑
l=1
|gil ||hLIS

l | cos δil

)
C̃BS,i S̃2

BS,k

]
+

+ 2E

( N

∑
l=1
|gil ||hLIS

l | cos δil

)
C̃BS,i

(
N

∑
m=1
|gkm||hLIS

m | sin δkm

)2
+ E

C̃2
BS,i

(
N

∑
m=1
|gkm||hLIS

m | sin δkm

)2
+

4E

[(
N

∑
l=1
|gil ||hLIS

l | cos δil

)
C̃BS,i

(
N

∑
m=1
|gkm||hLIS

m | sin δkm

)
S̃BS,k

]
+ E

[
C̃2

BS,i S̃
2
BS,k

]
+

2E

[
C̃2

BS,i

(
N

∑
m=1
|gkm||hLIS

m | sin δkm

)
S̃BS,k

]
(A84)

E
[
c̃2

i s̃2
k

]
= E

( N

∑
l=1
|gil ||hLIS

l | cos δil

)2( N

∑
m=1
|gkm||hLIS

m | sin δkm

)2
+
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( N

∑
l=1
|gil ||hLIS

l | cos δil

)2
 σ2

3 + E

( N

∑
m=1
|gkm||hLIS

m | sin δkm

)2
 σ2

3 + σ4
3 (A85)

E

( N

∑
l=1
|gil ||hLIS

l | cos δil

)2
 = E

[
N

∑
l=1

N

∑
t=1
|gil |||git||hLIS

l ||h
LIS
t | cos δil cos δit

]
=

2Nσ2
12(1 + α2) + (N2 − N)

(π

2

)2
σ2

12α2
1 (A86)

E

( N

∑
m=1
|gkm||hLIS

m | sin δkm

)2
 = E

[
N

∑
d=1

N

∑
m=1
||gkd||gkm||hLIS

d ||h
LIS
m | sin δkd sin δkm

]
= 2Nσ2

12(1− α2) (A87)

E
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|gil ||hLIS

l | cos δil

)2( N

∑
m=1
|gkm||hLIS

m | sin δkm
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∑
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∑
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N

∑
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LIS
t ||hLIS

d ||h
LIS
m | cos δil cos δit sin δkd sin δkm

]
(A88)

E
[
c̃2

i s̃2
k
]
=

(N − 1)k10 + 3(N2 − N)k9 + 2k10 + (N3 − 3N2 + 2N)k9 +
(

k6 +
(N−1)

N k5 + k7

)
σ2

3 + σ4
3 i 6= k

(N − 1)k8 +
9
2 (N2 − N)k11 + 4k10 + (N3 − 3N2 + 2N)k9 +

(
k6 +

(N−1)
N k5 + k7

)
σ2

3 + σ4
3 i = k

where
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k8 = 2Nσ4
12(1− α4), k9 = 2

(π

2

)2
σ4

12α2
1(1− α2), k10 = 4Nσ4

12(1− α2
2), k11 =

(π

2

)2
σ4

12α1(α1 − α3) (A89)

E[Z̃i Z̃k] =


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(A90)

Thus the covariance cov(Z̃i, Z̃k) can be obtained by (A79), where E
[
Z̃iZ̃k

]
is given by (A90),

remember that E
[
Z̃i
]
= E

[
Z̃k
]

and E
[
Z̃k
]
= E

[
|w̃k|2

]
that can be calculated by (A67), also consider

that var
(
Z̃k
)
= cov

(
Z̃k, Z̃k

)
and the variance of the overall fading coefficient is given by (A91).
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‖w̃‖2

)
=

M(M− 1)

[
2k5

(
σ2

3 + k6 − k5a3

)
+
(

σ2
3 + k6 − k5a3

)2
+

8
π

k3
5a3 (N + 1)− 3k4

5 +

(
2
π

k5a3 (N + 1)− k2
5

)2

+

2
(
(N − 1)k10 + 3(N2 − N)k9 + 2k10 + (N3 − 3N2 + 2N)k9 +

(
k6 +

(N − 1)
N

k5 + k7

)
σ2

3 + σ4
3

)
+

2
(

σ2
3 + k6 − k5a3 + k2

5

) (
k7 + σ2

3

)
+
(

k7 + σ2
3

)2
−
(

2k6 + 2σ2
3

)2
]
+

M
[

k4
5 + 6k2

5

(
σ2

3 + k6 − k5a3

)
+ 3

(
σ2

3 + k6 − k5a3

)2
+ 2

(
σ2

3 + k6 − k5a3 + k2
5

) (
k7 + σ2

3

)
+

2
(
(N − 1)k8 +

9
2
(N2 − N)k11 + 4k10 + (N3 − 3N2 + 2N)k9 +

(
k6 +

(N − 1)
N

k5 + k7

)
σ2

3 + σ4
3

)
+

3
(

k7 + σ2
3

)2
−
(

2k6 + 2σ2
3

)2
]

(A91)

Appendix C. Trigonometric Moments of a Von Mises Random Variable

Since the Von Mises distribution is symmetric about zero, therefore the expected values of odd
functions applied to a Von Mises distributed random variable will be zero, therefore

∀n, m ∈ Z E[sin2n+1 δ cosm δ] = 0, (A92)

on the other hand, the expected value of a power of even trigonometric functions must be expanded in
trigonometric Fourier series, or simply transformed in a superposition of cosine and sine functions
using trigonometric transformations to allow us to use the characteristic function definition.

Since E[cos pδ] = αp, we have that

E[cos2 δ] = E
[

1
2
(1 + cos 2δ)

]
=

1
2
(1 + α2) , (A93)

E
[
cos3 δ

]
= E

[
1
4
(3 cos δ + cos 3δ)

]
=

1
4
(3α1 + α3) , (A94)

and

E[cos4 δ] = E
[

1
8
(3 + 4 cos 2δ + cos 4δ)

]
=

1
8
(3 + 4α2 + α4) . (A95)
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We can write the power of a sine function in terms of the cosine function by applying the algebraic
transformation sin2 δ = 1 − cos2 δ, and this substitution is useful only when the power is even.
The expected value is zero for every odd power of sin δ.
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