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Abstract: With the development of wireless networking technology, current Internet-of-Things
(IoT) devices are equipped with multiple network access interfaces. Multipath TCP (MPTCP)
technology can improve the throughput of data transmission. However, traditional MPTCP path
management may cause problems such as data confusion and even buffer blockage, which severely
reduces transmission performance. This research introduces machine learning algorithms into
MPTCP path management, and proposes an automatic learning selection path mechanism based
on MPTCP (ALPS-MPTCP), which can adaptively select some high-quality paths and transmit data
at the same time. This paper designs a simulation experiment that compares the performance of
four machine learning algorithms in judging path quality. The experimental results show that,
considering the running time and accuracy, the random forest algorithm has the best performance in
judging path quality.
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1. Introduction

With the extensive application of the Internet-of-Things (IoT) network technology and users’
increasing interest in various applications of IoT, the IoT traffic volume has increased significantly
in the global Internet traffic [1,2]. At the same time, the development of various wireless access
technologies (such as Wi-Fi, WiMax, LTE, etc.) has promoted modern IoT devices to be equipped
with multiple network interfaces and attached with multiple heterogeneous access functions [3].
These devices can meet the data transmission requirements in the IoT environment through multiple
network links, and are supported by the emerging multipath Transmission Control Protocol (MPTCP)
technology [4].

Intelligent multi-homed devices can simultaneously schedule application data through multiple
independent end-to-end available paths under the support of MPTCP, so as to achieve bandwidth
aggregation, load balancing and dynamic switching, and automatically convert data from the most
crowded and easily interrupted path to the better quality path [5]. Many studies have shown that
concurrent multipath transmission based on MPTCP can effectively improve throughput performance
and Quality of Service (QoS) [6,7]. Figure 1 is a schematic of the MPTCP transport process.
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Figure 1. Schematic diagram of MPTCP transmission process.

MPTCP has many advantages when applied to concurrent transmission of heterogeneous
networks, but with the rapid development of the IoT, more and more devices are connected to
the Internet, leading to greater data exchange. In complex real-world environments, cyber attacks
are very common. The IoT environment is particularly vulnerable to distributed denial of service
(DDoS) attacks, which further brings privacy risks [8,9]. Frequent changes in network quality cause
network connections to have a negative impact on MPTCP performance, such as out-of-order
arrival of data packets and buffer congestion, especially for time-sensitive multimedia streaming
services [10–13]. The traditional transmission control mechanism based on static mathematical model
can no longer meet the complexity and accuracy requirements of the future IoT. In order to make
full use of the advantages of new communication technologies, researchers have carried out in-depth
researches on the application of machine learning technology, the proposal of new transport protocols,
privacy protection and the introduction of multipath functions at the transport layer. This shows that
it is necessary to study the transmission control protocols and algorithms with intelligent learning
and dynamic adaptive functions to automatically determine multipath quality and effectively manage
multipath quality.

This paper presents an automatic learning path selection mechanism based on MPTCP.
This mechanism can manage multiple paths based on decisions calculated from machine learning
models. In this simulation experiment, we embed datasets with different delay and packet loss
rates into a well-trained algorithm model to evaluate the performance of different machine learning
algorithms in judging multipath quality. We hope to select the most accurate and efficient machine
learning algorithm through research, and design a more intelligent path management scheme that can
be applied to the actual environment according to the research results. The research results of this
paper can provide new research ideas for related fields and help scholars to design a more optimized
MPTCP path management scheme.

The rest of this article is organized as follows. The second part briefly introduces the relevant
background of MPTCP path management. The third part introduces in detail our proposed
MPTCP-based automatic learning path selection mechanism and four classic machine learning
algorithms. The fourth part carries out simulation experiment design and performance evaluation.
We discussed related issues in the fifth part, and the final part summarizes the article and prospects for
future work.
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2. Background and Related Work

MPTCP fundamentally changes the data scheduling and transmission mode, which effectively
improves the transmission capacity and stability of the network. The path management function is to
detect and use multiple paths between two hosts. When MPTCP is used for concurrent transmission
over heterogeneous networks, the most important thing is how to effectively manage and utilize
multiple asymmetric paths to maximize system throughput performance. In the current Concurrent
Multipath Transport (CMT) solution, both the transport and retransmission strategies provided are
relatively simple [14]. The standard MPTCP scheduler splits packets in a uniform manner across
all available paths. In MPTCP connections, multiple paths will affect each other [15,16]. When the
quality difference between the multipath is large, some unnecessary retransmissions will be frequently
started and passed through the poor performance path, which may cause data confusion or even buffer
blockage, and further seriously reduce the transmission performance [17–19]. Therefore, the lack of
intelligent path management will cause various problems in the current MPTCP.

The network status changes in real time, and the current network status is always lagging based
on the feedback information. MPTCP multipath management mechanism and broadband fitting
algorithm based on traditional static mathematical model are difficult to meet the complexity and
accuracy requirements. In order to solve this problem, researchers in this field have tried some
research to design an intelligent path management scheme that can effectively control the use of paths.
Y. Lim et al. [20] proposed cross-layer path management, which is based on link layer state control
path usage. According to the state, the data transfer on the connected path is suspended and the
path is released. B. Hesmans et al. [21] proposed a control plane containing the path management
function to manage the use of different paths. R. K. Chaturvedi et al. [22] proposed a new MPTCP
Adaptive Efficient Packet Scheduler (AEPS), which can utilize the bandwidth of all available paths
to provide high throughput with the minimum completion time. Different from previous studies,
J. Chung et al. [23] adopted a machine learning mechanism to control the use of paths, and proposed
a new path management scheme called MPTCP-ML. The results show that MPTCP-ML is superior
to traditional MPTCP in detecting path quality. D. A. F. Saraiva et al. [8] provided solutions for
privacy protection and data protection in the context of Internet of Things. W. Li et al. [24] proposed a
learn-based multipath congestion control method called SmartCC, which can significantly improve
the total throughput and is superior to the latest mechanism in various performance indicators.
Z. Xu et al. [25] have proposed a control framework based on deep Reinforcement Learning (DRL),
which is superior to some famous MPTCP congestion control algorithms in throughput, without
sacrificing fairness. Through investigation, M. Polese et al. [26] identified three major research trends
related to transport protocols: (i) Application of machine learning technology; (ii) Development of
new transport protocols; (iii) The introduction of multipath functions.

Machine learning (ML) is an interdisciplinary subject. Figure 2 is a schematic of MPTCP multipath
transport combined with machine learning. Machine learning algorithms are generally considered
to be divided into unsupervised learning, supervised learning and reinforcement learning. We will
thoroughly analyze the characteristics of several typical machine learning algorithms and use machine
learning methods to learn and measure the transmission parameters of the path. By establishing a path
quality evaluation model, MPTCP senders can predict the transmission quality of each path as quickly
and accurately as possible. The machine learning method is an ideal alternative to the traditional static
mathematical model, because it can optimize the robustness of multipath transmission systems and
improve the quality of data transmission.

On the basis of previous researches, this paper further studies the path management scheme
combining MPTCP and machine learning. Through simulation experiments, we compare the
performance of different machine learning algorithms in judging the path quality, and select the
optimal algorithm to design the multipath management scheme according to the performance
evaluation results.
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Figure 2. MPTCP multi-path transmission control mechanism incorporating machine learning methods.

3. Design Overview of ALPS-MPTCP

Automatic learning path selection mechanism based on MPTCP (ALPS-MPTCP) uses machine
learning algorithms. This mechanism has intelligent learning capabilities, which can optimize the
robustness of the multipath transmission system, and achieve the purpose of reducing data out
of sequence and avoiding blockage in the receiving buffer. Like MPTCP, ALPS-MPTCP is located
below the application layer and above the TCP layer, and can provide a standard TCP interface for
the application layer. The ALPS-MPTCP system consists of three parts: signal strength detector,
path quality sampler and ML computing center. The signal strength detector performs signal strength
detection tasks before the mobile device accesses the network. After the device is connected to the
network, the path quality sampler collects the characteristic data of path quality every 100 milliseconds
and inputs it to the ML computing center. The ML computing center receives the data (such as
delay, packet loss rate, bandwidth) obtained from the sampler, and then uses intelligent computing to
predict the path quality and perform effective path management. It determines the path to be used
based on the quality of each data transmission path. If the path performance is poor, MPTCP-ML
will suspend data communication on the path instead of keeping it. Repeat the above process to
continuously determine the quality of each path. In addition, ALPS-MPTCP can be responsible for
path management, data packet scheduling, sub-flow interface and congestion control. By using the
data scheduler, the data flow can always go through the best path. Eventually, the data will reach
the MPTCP receiving end through the Internet, stored in the receiving buffer and handed over to the
upper layer. In short, these functions cooperate with each other. A multipath management system
based on machine learning will obtain the best available path between two hosts. The design principles
and optimization goals of ALPS-MPTCP can be summarized in five points: improving throughput,
fairness, balancing congestion, security and resilience.

We used four classic and easy-to-implement machine learning algorithms (k-NN algorithm,
random forest algorithm, k-Means algorithm, and reinforcement learning algorithm) to deal with the
problem of MPTCP performance degradation. Finding the most suitable path selection algorithm is a
key part of parallel multipath transmission. Different machine learning algorithms [27–33] may have
their own advantages for specific network environments, but the network environment is constantly
changing. We need to find the best-performing machine learning algorithm under different network
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environments and different service requirements, such as ensuring the real-time performance of data
transmission, and the stability and accuracy of data transmission.

3.1. k-Nearest Neighbor Algorithm(k-NN)

k-NN [27] is a typical supervised learning algorithm. It is one of the most widely used algorithms
in pattern evaluation. In supervised learning, each example is a pair of input objects (usually a vector)
and an expected output value (also called a supervised signal). Supervised learning algorithms can
analyze training data and generate an inference function that can be used to map new examples.
The best solution would allow the algorithm to correctly identify class tags when the tags are not
visible. k-NN is simple and easy to implement, but when the sample is unbalanced, the prediction bias
will become large.

In the k-NN algorithm, k represents the number of nearest neighbors that help predict the test
sample category. As for distance measurement, standard Euclidean distance is commonly used in k-NN
case to measure the distances between the training set samples and test set samples. The standard
Euclidean distance is defined below as [27]:

d(xi, xy) =
√

∑ (ar(xi)− ar(xj))
2. (1)

Similarly, k-NN calculates the most common categories of the k nearest neighbors to estimate the
categories of test instances in the test set. Defined as the following Equation (2) [27]:

c(x) = arg max
c/∈C

∑
i=1 to k

δ(c, c(yi)), (2)

where (y1, y2, y3, · · · , yk) are the k nearest neighbors of a specific test instance of the test dataset, k is
the number of the neighbors, C represents a limited set of class labels.

3.2. Random Forest Algorithm

Random forest has fast training speed and strong generalization ability [28]. Random forest
extracts multiple samples from the total sample set, builds a sub-dataset through a boot program,
and then trains the features in the sub-dataset to form a basic decision tree (Repeating the above
two steps to form a random forest). It can produce high-precision classifiers, but it cannot provide
continuous output. Figure 3 is a schematic diagram of the working mechanism of the random forest
algorithm [28]. Random forest contains multiple decision trees trained by Bagging ensemble learning
technology. When the sample to be classified is input, the final classification result is determined by the
output result of a single decision tree. Random forest solves the problem of decision tree performance
bottleneck, has good tolerance to noise and outliers, and has good scalability and parallelism for
high-dimensional data classification problems. Due to its good performance, the random forest
algorithm has been widely used in bioinformatics, finance, computer vision, speech recognition,
data mining and other fields.

First, we assume the given dataset as D = {xi, yi), xi ∈ Rk,yi ∈ {1, 2, · · · , c}, the random forest as
an M decision trees {g(D, θm), m = 1, 2, · · · , M}. A combined classifier will be made up after a full
process of learning. The classification result of the random forest output is determined by the major
votes of the classification result of each decision tree [28].
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Figure 3. The workflow of Random Forest algorithm.

3.3. k-Means Clustering Algorithm(k-Means)

k-Means algorithm is a classic unsupervised learning algorithm, which classifies the entire object.
The k-Means algorithm is a representative of the typical prototype-based objective function clustering
method [29]. It is the distance from the data point to the prototype as the objective function of
optimization, and the adjustment rule of iterative operation is obtained through the method of
function extreme value evaluation. The advantage of this algorithm is that it can handle large datasets,
thereby maintaining scalability and efficiency, but it can only be used when the average value of the
cluster can be defined, which may not be suitable for some applications.

For a given dataset containing n-dimensional data points X = {x1, x2, · · · , xi, · · · , xn},
where xi ∈ Rd and the number of data subsets to be generated k, k-Means algorithm organizes the data
into k partition N = {nk, i = 1, 2, · · · , k}. Each partition represents a category ck, and each category ck
has a category center µi. The k-Means algorithm selects the Euclidean distance as the similarity and
distance judgment criterion, and calculates the sum of the squares of the distances from the points in
the class to the cluster center µi [29].

J(nk) = ∑
xi∈nk

||xi−µk||2. (3)

The goal of clustering is to minimize the sum of squares of total distances J(N) =
k
∑

k=1
J(nk).

J(N) =
k

∑
k=1

J(nk) =
k

∑
k=1

∑
xi∈nk

||xi − µk||2 =
k

∑
k=1

n

∑
i=1

dki||xi − µk||2, (4)
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subject to dkn =

{
1, if xi ∈ ni
0, if xi /∈ nj

.

Obviously, according to the Least Squares method and the Lagrange principle, the cluster center
should be taken as the average of the data points of the category class.

The k-Means algorithm begins with an initial k-category division and then assign each data point
to each category to reduce the square of the total distance [29]. Because the total squared sum of
distances in the k-Means clustering algorithm tends to decrease as the number of categories k increases
(when k = n, J(N) = 0). Therefore, the sum of squares of the total distance can only obtain the
minimum value under a certain number of categories k.

3.4. Reinforcement Learning Algorithm

Reinforcement learning is having Agent to study in the form of “trial and error”, using the reward
and environment interacting to guide behavior [30]. The goal of the agent is to collect the biggest
reward. As an important machine learning method, Reinforcement Learning adopts the “attempt and
failure” mechanism in human and animal learning, emphasizes learning in interaction with the
environment, and uses evaluative feedback signals to optimize decision-making. The advantage of
this algorithm is using reward functions to make seemingly random function behavior manageable,
but the reward function is difficult to design.

Basic reinforcement is modelled as a Markov decision process. At each time t, the agent receives
the state s and a reward r from the environment. The agent then have to selects and executes an action
a from the set of available actions based on the state s and its experience of choosing action to optimize
long-term reward. As it’s a long-term problem, the consequence of its actions is quite of importance in
order to acting optimal even though the immediate reward might be negative.

Reinforcement learning algorithms can be divided into value function-based and strategy-based.
In reinforcement learning based on value functions, the most commonly used learning algorithm is Q
learning algorithm, and its iterative formula is as follows [30]:

Q(st, at)← Q(st, at) + α[rt+! + r max
a

Q(st+!, a)−Q(st, at)], (5)

where Q(st, at) is the state-action value at time t, the reward value is r, and α is the discount factor.

4. Performance Evaluation

4.1. Experimental Setup

The main equipment of our experiments includes the following:

(i) A wired server, located in JXNU (Jiangxi Normal University), the operating system is Fedora Core
6, the kernel version is 2.6.15. The server is connected to the JXNU network through the Ethernet
interface;

(ii) Two mobile clients, that is, two Android smartphones as the client of the Skype voice call.
We have introduced machine learning into MPTCP path management at the application layer,
taking advantage of portability and convenience of access to a variety of information from wireless
networks and mobile devices. The pre-built random forest algorithm, reinforcement learning
algorithm, k-Means algorithm, and k-NN algorithm are embedded in the measurement application.
In the simulation experiment, we used the characteristic parameters of LTE and Wi-Fi networks
provided by the International Telecommunication Union (ITU), including fixed broadband values
and interval values of delay and packet loss rate [31]. In order to ensure the fairness of the
experiment, a wireless routing node was set up on each mobile device, and the two wireless
routers used the same bandwidth. We generated random numbers within the parameter range to
simulate various path environments.
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4.2. Performance under the k-NN Algorithm

Figure 4 presents when the number of neighbors is 3, the accuracy of data results is the best, so we
select 3 as the number of neighbors in the k-NN algorithm designed. As can be seen from Figure 4,
the accuracy of k-NN algorithm in the training set is higher which average is 0.95, no matter how
many neighbors there are, but the accuracy in the test set is higher when the number of neighbors is 3.
When the number of neighbors increases, the accuracy decreases rapidly. So here we choose 3 as the
neighbor number parameter. Then, we fit the classifier using the training set.

Figure 4. Different N_neighbors under Different Accuracy.

Figure 5 shows the results of putting datasets with different delay and packet loss rates into the
K-NN algorithm model we trained. It can be seen that the k-NN algorithm has better performance in
distinguishing datasets with different delay and packet loss rates and judging path quality. To assess
the degree of generalization of our k-NN model, we used a scoring method with test data and test
label [32]. We see that our k-NN model has an accuracy of about 88%, which means that the model
correctly predicts the class for the 88% sample in the test dataset.

4.3. Performance under the Random Forest Algorithm

Figure 6 shows the application of the random forest algorithm. By increasing the number of trees,
we compare the performance under different packet loss rates and delays. The red part is the good
path, the blue part is the bad path. The figure shows their distribution. We can clearly see that the
five tree learning decision boundaries are very different. Each of them made some mistakes because
some of the training points drawn here were not actually included in the tree’s training set due to
bootstrap sampling.
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Figure 5. Performance under k-NN Algorithm.

Figure 6 also shows the result, the random forest overfits less than any of the trees individually
and provides a much more intuitive decision boundary. In the real application, we use many more
trees (often hundreds or thousands), leading to even smoother boundaries. From Figure 6, we can see
that random forest algorithm has a better performance in distinguishing data groups with different
delay and packet loss rate, and it can better distinguish good path from the bad path. To evaluate how
well our random forest model generalizes, we call the scoring method with test data together with
the test labels [33]. We see that our random forest model is about 97% accuracy, meaning the model
predicted the class correctly for 97% of the samples in the test dataset.

The random forest gives us an accuracy of 97%, better than the linear models or the single decision
tree, without tuning any parameters. We also can see by the experimental results, the random forest
model performance on the training set is nearly 100% accuracy.
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Figure 6. Performance with (a) 0 Tree, (b) 1 Tree, (c) 2 Trees, (d) 3 Trees, (e) 4 Trees, and (f)
5 Trees, respectively.

4.4. Performance under the k-Means Algorithms

Given new data points, k-Means algorithm model will assign each to the closest cluster center.
Figure 7 shows the analysis of the packet loss rate and delay under the k-Means algorithm. The red
part is the good path and the purple part is the bad path. From Figure 7, we use marked dataset to
compare with the prediction results of k-Means model to obtain the accuracy of k-Means algorithm.
We see that our k-Means model is about 72% accuracy, meaning the model predicted the class correctly
for 72% of the samples compare with the real dataset.

Figure 7. Performance under K-Means Algorithm.

4.5. Performance under the Reinforcement Learning Algorithms

Figure 8 shows the iterative changes of the reinforcement learning algorithm under different
number of samples. The three lines from top to bottom are: feature with 0.2; feature with 0.4;
feature with 1.0. When we use 10,240 samples, the accuracy of the reinforcement learning algorithm
model is greater than the other number of samples. So we can know the number of samples the
accuracy of the prediction is higher.
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Figure 8. Performance under Reinforcement Learning Algorithm.

Given new data points, category results are obtained by placing input dataset into the
reinforcement Learning algorithm model. In order to obtain the accuracy of the reinforcement
learning algorithm, we compare the predicted results of the marked dataset with those of the
reinforcement learning algorithm model. We see that reinforcement learning model is about 94%
accuracy, meaning the model predicted the class correctly for 94% of the samples compare with the
real dataset.

4.6. Performance Comparison of Different Algorithms

We obtained the running time and accuracy of four machine learning algorithms in judging
path quality from simulation experiments. Figure 9 compares the accuracy of the four algorithms.
Among them, the random forest algorithm has the highest accuracy, up to 97%.The accuracy of the
reinforcement learning algorithm is 94%. The accuracy of k-NN algorithm is 88%. The accuracy of
k-Means algorithm is 72%. In addition, Figure 10 compares the running time of the four algorithms.
The k-NN algorithm runs the fastest, with a running time of 0.39 s. The running time of the Random
forest algorithm is 0.44 s. The running time of the k-Means algorithm is 0.65 s. The running time of
the Reinforce learning algorithm is 1.48 s. The research results can provide references for choosing
effective machine learning algorithms in MPTCP path management. If some application scenarios
require high accuracy, it is recommended to use the random forest algorithm. If the running time
requirements are high, the k-NN algorithm is recommended. However, we usually consider these two
aspects together and try to find an optimal algorithm. We can see that the accuracy of the random
forest algorithm far exceeds the others, indicating that the least errors will occur when judging the
quality of the path. Moreover, the random forest algorithm has better performance in terms of running
time. With the development of science and technology, the computing performance of many hardware
devices is constantly improving, and the running speed is getting faster and faster. Therefore, we can
ignore the running time difference between the random forest algorithm and the k-NN algorithm. In a
nutshell, we comprehensively consider the running time and accuracy of different machine learning
algorithms when judging the path quality, and conclude that the random forest algorithm has the
best performance.
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Figure 9. Comparing the accuracy rate of four algorithms.

Figure 10. Comparing the running time of four algorithms.

5. Conclusions and Future Work

Motivated by the fact that the content-rich IoT traffic tends to be the most attractive application
in the future of the Internet, and more and more IoT devices are equipped with multiple network
access interfaces, nowadays, MPTCP-based multipath transmission has become a hot research topic.
This paper proposes an automatic learning path selection mechanism based on MPTCP (ALPS-MPTCP)
to manage the use of multiple paths based on the decisions calculated by the machine learning model.
In the simulation experiment, we choose delay and packet loss rate as parameters and use the training
set to train k-NN algorithm, random forest algorithm, k-Means algorithm and reinforcement learning
algorithm. At the same time, we use the test dataset to evaluate and compare the performance of
the four algorithms in path quality judgment. The experimental results show that the random forest
algorithm has the best performance in path quality judgment considering the running time and
accuracy. In future work, we will further study the application of the random forest algorithm in a
vast and complex actual environment. We will continue to improve our research to achieve the five
optimization goals, and try to apply the intelligent collaboration theory [34,35] and the fast learning
concept [36] to optimize the path management mechanism of MPTCP in the IoT environment. We hope
this work can provide some directions for researchers who apply machine learning algorithms to
optimize the MPTCP path management mechanism.
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