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Abstract: A long-range wide area network (LoRaWAN) is one of the leading communication
technologies for Internet of Things (IoT) applications. In order to fulfill the IoT-enabled application
requirements, LoRaWAN employs an adaptive data rate (ADR) mechanism at both the end device
(ED) and the network server (NS). NS-managed ADR aims to offer a reliable and battery-efficient
resource to EDs by managing the spreading factor (SF) and transmit power (TP). However,
such management is severely affected by the lack of agility in adapting to the variable channel
conditions. Thus, several hours or even days may be required to converge at a level of stable
and energy-efficient communication. Therefore, we propose two NS-managed ADRs, a Gaussian
filter-based ADR (G-ADR) and an exponential moving average-based ADR (EMA-ADR). Both of
the proposed schemes operate as a low-pass filter to resist rapid changes in the signal-to-noise
ratio of received packets at the NS. The proposed methods aim to allocate the best SF and TP to
both static and mobile EDs by seeking to reduce the convergence period in the confirmed mode
of LoRaWAN. Based on the simulation results, we show that the G-ADR and EMA-ADR schemes
reduce the convergence period in a static scenario by 16% and 68%, and in a mobility scenario by 17%
and 81%, respectively, as compared to typical ADR. Moreover, we show that the proposed schemes
are successful in reducing the energy consumption and enhancing the packet success ratio.

Keywords: LoRaWAN; adaptive data rate; mobility; Internet of Things; resource assignment;
convergence period

1. Introduction

Low-power wide-area networks (LPWANs) are a growing technology that target static and
mobile Internet of Things (IoT) applications requiring long-range, energy-efficient, and low data rate
communication [1]. A long-range wide area network (LoRaWAN) [2] is an LPWAN technology that
has been widely adopted as a substitute for IoT applications [3]. IoT applications can be categorized
into nine groups: smart metering, agriculture (e.g., crop monitoring), tracking (e.g., logistics and
pet location), smart grids, health, industrial, smart city, home automation, and vehicle telematics [4].
These applications have strict requirements, including the packet length, packet success ratio (PSR),
reliability, and mobility characteristics [5]. LoRaWAN provides effective solutions in order to meet a
wide range of IoT application requirements.

The LoRaWAN end devices (EDs) are classified as class A, class B, and class C [6]. Among them,
class A EDs deal with sensors and are implemented in IoT applications, owing to their energy efficiency
and bi-directional communications. Figure 1a shows a LoRaWAN network, where EDs describing IoT
nodes always transmit packets to a gateway (GW) while using spreading factors (SFs) ranging from
seven (SF7) to twelve (SF12) in the uplink (UL). The GW is connected through other communication

Sensors 2020, 20, 6466; doi:10.3390/s20226466 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-2153-993X
https://orcid.org/0000-0000-000-000X
https://orcid.org/0000-0000-000-000X
https://orcid.org/0000-0000-000-000X
http://www.mdpi.com/1424-8220/20/22/6466?type=check_update&version=1
http://dx.doi.org/10.3390/s20226466
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 6466 2 of 21

technologies (e.g., Cellular (3G/4G), Ethernet) to a centralized network server (NS) responsible for
functions such as traffic management [7]. The NS is deployed in a cloud computing environment
(rarely co-located near the GW [8]), accountable for collecting data from the GW and sending them
to appropriate applications. Therefore, in the case of delay-sensitive applications, edge and fog
computing solutions have also been studied in order to deploy LoRaWAN network components [9,10],
bringing services, such as advanced analytics and distributed storage, closer to the EDs [11]. In class A,
every UL transmission is followed by two receive windows, namely RX1 and RX2, for receiving
a downlink (DL) acknowledgment (ACK) from the NS, as highlighted in Figure 1b. RX1 uses
the same SF and channel set as the UL transmission, whereas the RX2 uses a dedicated channel
(i.e., 869.525 MHz) and a fixed SF (i.e., SF12) [12]. If an ACK is not received in both, receive windows,
a random delay, i.e., ACK_TIMEOUT, is added before a retransmission is conducted in order to avoid
consecutive collisions. To this end, an ED chooses a random time between 1 and 3 s and applies a
retransmission [13].
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Figure 1. A brief working of long-range wide area network (LoRaWAN): (a) underlying architecture
comprised of end devices (EDs), gateway (GW), network server (NS), and application server,
and (b) transmission procedure in confirmed mode.
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Moreover, the class A EDs of LoRaWAN employ an adaptive data rate (ADR) mechanism at
both the ED and NS [14]. The ED-managed ADR is only responsible for incrementing the SF. At the
same time, NS-managed ADR adjusts both the SF and transmit power (TP) after receiving M (M = 20
is used [15] for the experiments and discussion in this study) UL packets from the ED based on
the prevailing channel conditions. However, the performance of the ADR in terms of the PSR is
severely affected by the variable channel conditions [16]. Therefore, the typical ADR suffers from a
high convergence period, owing to the time-consuming process of both ED- and NS-managed ADRs.
The typical ADR scheme requires several hours to days to converge into a stable and energy-efficient
communication state when the NS starts monitoring the M packets. During the convergence period,
the typical ADR suffers from a massive packet loss caused by interference and packets arriving under
the pre-defined sensitivity at the GW. The convergence period for static EDs was studied under variable
channel conditions in [17], where it was revealed that ADR suffers from a high convergence period
when the link quality degrades, and EDs want to move from a lower to higher SF or TP to recover
their connectivity. Furthermore, the authors in [18] proposed some changes in a typical ADR, where it
was suggested to change the SF and TP of the individual ED after five UL packets (in a typical ADR,
this UL history is set to M packets) under a static ED environment. Therefore, in order to reduce the
convergence period and improve the PSR (for both static and mobile IoT EDs) in a confirmed mode,
we propose two NS-managed ADRs and claim the following contributions.

1. First, we propose a Gaussian filter-based ADR (G-ADR) to smooth the signal-to-noise ratio (SNR)
of M packets received at the NS. Through real-time experiments and computer simulations,
we show that the SNR of LoRaWAN packets received at an NS follows a Gaussian distribution.
By employing a Gaussian filter, G-ADR can optimally find both SF and TP parameters,
which results in a reduced convergence period and improved PSR.

2. Second, we propose another NS-managed ADR based on the exponential moving average
(EMA-ADR). Through computer simulations, we show that the smoothing process using the
EMA filter decreases the spikes of raw SNR values. Hence, EMA-ADR advances the PSR and
reduces the convergence period when compared to the typical ADR.

3. In addition, we show that both G-ADR and EMA-ADR, when jointly utilized with the initial SF
allocation method, significantly improve the convergence period and PSR.

The rest of the paper is organized, as follows: Section 2 provides an overview of the published
literature comprised of an enhancement and reduction of the convergence period in a typical ADR.
Section 3 elaborates on the proposed schemes. Section 4 presents the experimental results and an
analysis of the proposed schemes in comparison with the typical ADR. Section 6 presents some
concluding remarks.

2. Related Studies

Many studies have been conducted in order to solve the problems of typical ADRs in terms
of the convergence period, scalability, and PSR. In particular, the literature is focused on the
enhancement [19–22] and convergence period reduction of a typical ADR [17,18].

2.1. Enhancements in Typical ADR

In [19], an approach to avoiding unnecessary changes to the SF that occur at the NS-managed
ADR is presented. Their method offers a congestion classifier, which determines whether to switch
to a higher SF or adjust the back-off time to avoid massive congestion. The congestion classifier is
based on UL and DL packets. If the number of DL packets received by the ED is equal to the number
of UL packets, then no congestion is shown. Otherwise, the SF is reduced because a higher SF is
vulnerable to interference owing to a high time-on-air. When an ED fails to receive an ACK after
ADR_ACK_DELAY, it chooses a long back-off time. By contrast, it increases the SF to extend the
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network scalability and coverage. The authors showed that their method reduces the delay because
the ED maintains the SF and increases the back-off time when congestion occurs.

An ADR+ scheme was proposed in [20] in order to improve the ADR performance. The ADR+
scheme slightly modifies the NS-managed ADR by taking the average SNR of the last M packets
received. Thus, the ADR+ plays a vital role in increasing the consistency and energy efficiency of
EDs under variable channel conditions. ADR+ shows an improved performance in terms of PSR and
energy consumption when compared to a typical ADR.

It should be noted that a typical ADR is inadequate and inefficient when the EDs are mobile,
because it manages the SF and TP after the reception of M packets [21]. In addition, the typical ADR
does not consider the degradation of the received signal that is caused by the ED mobility, the presence
of building penetration loss, or moving objects. Therefore, Ref. [21] suggests a network-managed
enhanced ADR (E-ADR). The E-ADR is primarily based on the trilateration technique to estimate a
mobile ED’s next position with a pre-defined trajectory. An experiment using E-ADR as compared to a
typical ADR was conducted by applying five EDs and three GWs in a testbed scenario. The authors
claim that NS quickly defines SF and TP, which results in low energy consumption and packet loss.

In [22], the authors suggest another enhanced ADR with coding rate adaptation in the LoRaWAN
under the unconfirmed mode of LoRaWAN. The primary aim is to improve the tradeoff between the
PSR and energy consumption, which considers the coding rate and the capture effect, by taking the
average of M packets to fine-tune the link performance of the EDs. The method that is described in [22]
outperforms a typical ADR in terms of energy consumption and fairness.

By summary, the methods that are presented in [19–22] enhanced the performance of a typical
ADR. The congestion classifier-based method described in [19] is only focused on improving the
data rate adaptation. However, it ignores the TP adaptation because the energy consumption in
LoRaWAN is mainly based on the TP and the SF [23]. In [20], ADR+ was evaluated only in a small
environment for static EDs. E-ADR described in [21] was considered for mobile EDs; however, it is
solely based on a pre-defined trajectory of the ED. Finally, the method in [22] was compared to a
typical ADR in unconfirmed mode. Note that a typical ADR performance is significantly affected by
bi-directional communication supporting both the UL and DL. Keeping these facts in mind, we propose
two NS-managed ADRs to enhance ADR performance in terms of the convergence period, PSR,
and energy consumption.

2.2. Reduction of Convergence Period in Typical ADR

A performance assessment of the convergence period under different configurable parameters
was conducted in [17]. This study provides in-depth insight into the typical ADR under variable
channel conditions by highlighting limitations, such as the convergence period. The simulation results
showed that the ADR convergence period and energy consumption are primarily dependent on the link
conditions and number of EDs. It was revealed that the ADR suffers from a high convergence period
under variable channel conditions and when the EDs change their SF or TP to a higher value (such as
SF = 12 and TP = 14 dBm) to recover their connectivity with the GW. Furthermore, the convergence
period is more sensitive to ADR_ACK_DELAY than ADR_ACK_LIMIT (i.e., ADR_ACK_DELAY
and ADR_ACK_LIMIT are equal to 32 and 64 UL packets in the ED-managed ADR, respectively).
Their simulation results also revealed that the typical ADR convergence period introduces higher
energy consumption and more significant packet losses.

It was recently indicated that typical ADRs (both ED- and NS-managed) suffer from convergence
issues [18]. An ED-managed ADR is inefficient for lossy links, which results in considerable time to
converge to a constant and stable state. Meanwhile, the NS-managed ADR takes M packets to alter the
SF and TP, which makes it too time-consuming to determine a reliable configuration. Therefore, Ref. [18]
suggests some changes (such as decreasing M packets during SF and TP configuration adaptation) in
both ED- and NS-managed ADRs for enhancement. NS-managed ADR controls the ED-managed ADR
by computing the PSR of an individual ED before sending the DL packet (LinkADRReq) in response to
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ADRACKReq. Here, the PSR is compared to a predefined threshold (i.e., PSR < 80%). If the condition
holds, NS sends the LinkADRReq MAC layer command for the ED containing the SF and TP. Indeed,
it changes the SF and TP of the individual ED after five UL packets (in a typical ADR, this UL history is
set to M packets). The performance of both enhanced methods (ED- and NS-managed ADRs) has been
compared to typical ADRs, where the results show improved outcomes in terms of the convergence
period, energy consumption, and PSR. However, the performance evaluation of the enhanced methods
is limited to static EDs and it only a confirmed mode of communication. By contrast, we consider
mobility under intra-SF interference and different propagation loss models (such as log-distance and
shadowing losses).

3. Proposed ADR Schemes

Figure 2 shows an overview of the proposed NS-managed ADR schemes. Note that we do not
modify the ED-managed ADR method, but the NS-managed ADR operation is replaced with the
proposed methods.

I-SFA G-ADR

EMA-ADR

Proposed NS-managed ADR 
schemes

I-SFA

Figure 2. Overview of the proposed NS-managed ADR schemes.

As indicated in Figure 2, we use an initial SF allocation (I-SFA) scheme [24] during the deployment
phase jointly with the proposed methods. The primary aim of the I-SFA scheme is to allocate the SF to
the EDs during the initial deployment based on the received signal strength (Pr) at the GW (i.e., a GW
would receive from the ED). The I-SFA scheme does not follow a fixed-width SF assignment operation,
owing to the variable channel conditions that are caused by shadowing and fading. The working
procedure of the I-SFA scheme is shown in Figure 3, where each ED computes Pr at the GW. Based on
Pr, the SFs are allocated, such that Pr is always higher than each SF sensitivity (Sg, as shown in Table 1),
thereby lowering the interference and avoiding packet loss arriving from the EDs under the sensitivity
at the GW.

Table 1. Sensitivity and required signal-to-noise ratio (SNR) of EDs and GW with 125-kHz mode [25,26].

SF GW Sensitivity (Sg) [dBm] ED Sensitivity (Se) [dBm] SNR [dB]

12 −142.5 −137.0 −20
11 −140.0 −135.0 −17.5
10 −137.5 −133.0 −15
9 −135.0 −130.0 −12.5
8 −132.5 −127.0 −10
7 −130.0 −124.0 −7.5



Sensors 2020, 20, 6466 6 of 21

Start

Input: GW SF 

sensitivities (Sg) 
Output: SF 

assignment to EDs

Compute Pr for 

every ED at GW
is Pr > Sg?

SF = 12

(out of range)

ED selects the 

best SF such that 

Pr >Sg

No

Yes

end

Figure 3. Working procedure of I-SFA scheme [24].

3.1. Gaussian Filter-Based ADR (G-ADR)

The signal strength that is received at the GW can be thought of as a Gaussian distribution [27].
For example, we show through real-time experiments and computer simulations that the SNR received
at the NS follows a Gaussian distribution using SF 7 and SF 12, as shown in Figure 4a,b, respectively.
Therefore, we propose the use of a Gaussian filter in order to estimate the value of the SNR to accurately
compute SF, TP, or both because these parameters (SF and TP) are dependent on the SNR. Through a
computer simulation, we computed the received signal strength based on a link measurement model,
which considers various aspects, such as TP, shadowing, fast fading, and antenna gains, as shown
in [6]. The steps that are involved in the proposed G-ADR scheme are as follows:
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Figure 4. The probability density function (PDF) of the SNR of M packets received at the network
server using real-time experiment and computer simulation: (a) PDF of SNR using SF7; (b) PDF of SNR
using SF12, and (c) deployment of two EDs with SF7 and SF12.
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1. When the NS receives an UL packet with the ACK bit enabled in the frame header of the
ADRACKReq MAC command, the NS starts tracking the SNR of the M received packets.
The G-ADR algorithm is initiated by computing the mean (µ) and variance (σ) using
(1) and (2) [28], respectively.

µ =
1
M

M

∑
i=0

SNRi, (1)

σ2 =
1

M− 1

M

∑
i=0

(SNRi − µ)2, (2)

where i is the ith packet among M, where M = 20.

Now, the probability density function (PDF) is expressed, as follows [28]:

f (SNR) =
1

σ
√

2π
e
−(SNR− µ)2

σ2 . (3)

2. The proposed G-ADR accepts the centralized SNR values that lie within the effective range
of µ + σ and µ − σ. The SNR value is estimated by averaging the values that are within the
effective range.

3. Finally, the G-ADR obtains the SNR required (SNRreq, a demodulation threshold based on the
current data rate (DR), as shown in Table 1) and computes the SNR margin (SNRmargin) and Nstep

while using (4) and (5) [17], respectively.

SNRmargin = SNRm − SNRreq(DR)−margindBm, (4)

Nstep = int
(SNRmargin

3

)
. (5)

In (5), Nstep represents the number of times the algorithm is executed [17]. When Nstep is 0, the ED
is already using the best possible configuration condition. If Nstep is greater than 0, it indicates that
there is still a reasonable margin to optimize the configurable parameters. First, the number of SFs
is decreased until it reaches a minimum limit (note that NS-managed ADR does not increase the
SF, and only the ED-managed ADR is responsible for increasing this number). Second, the TP is
decreased by 2 until it reaches a minimum limit (i.e., 2 dBm). Finally, when Nstep is negative, only the
TP is increased by 2 until the maximum limit is reached (i.e., 14 dBm). These parameter (SF and TP)
settings are transmitted to the corresponding ED while using the LinkADRReq MAC command as
unconfirmed (i.e., NS requires no ACK notification from the EDs). Algorithm 1 describes the detailed
operation of the G-ADR method.

3.2. Exponential Moving Average-Based ADR (EMA-ADR)

An EMA is a type of weighted moving average, which refers to a weighting factor for each SNR
value of M packets. In general, the SNR varies over time, even in a fixed environment, resulting in
an inaccurate SF and TP configuration [16]. The reasons why the SNR shows such high variability
in space and time include various noise factors, fading, interference, and attenuation. The EMA for
time-series data can be computed iteratively, as follows:

St =

{
Yt, t = 1

β.Yt + (1 - β). St−1, t > 1
. (6)

In (6), Yt represents the current SNR value at time t, St denotes the value of the EMA at any time
t, and β is a smoothing factor (0 < β < 1). Note that a larger value of β reduces the level of smoothing,
whereas a value of β close to zero has a greater smoothing effect and it is less responsive to recent SNR
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observations. Therefore, we used β = 0.7, because of the mobility feature (Ref. [29] uses β = 0.5 for
indoor positioning).

Algorithm 1: Proposed Gaussian filter-based adaptive data rate (G-ADR) scheme.
Input : TP = 2∼14, SF = 7∼12, M, SNRreq, devicemargin
Output : SF and TP
// computes
1. mean of the SNR of M received packets
2. Variance (σ2)
3. Standard deviation (σ)
4. LowPassFilter (LPF) = (µ - σ) and HighPassFilter (HPF) = (µ + σ)
for i← 0 to M do

SNR = getSNR(i)
if (SNR ≥ LPF and SNR ≤ HPF ) then

insert SNR into SNRlist
end

end
for i← 0 to SNRlist do

Sum
end
SNRm = Sum/ Size of SNRlist
// computes

. Network server LoRaWAN ADR
1. SNRreq = demodulation f loor (current data rate)
2. devicemargin = 10 . LoRaWAN default
3. SNRmargin = (SNRm - SNRreq - devicemargin)
4. steps = int (SNRmargin/3)
while (steps > 0 and SF > SFmin) do

SF = SF - 1
steps = steps - 1

end
while (steps > 0 and TP > TPmin) do

TP = TP - 2
steps = steps - 1

end
while (steps < 0 and TP < TPmax) do

TP = TP + 2
steps = steps + 1

end
NS transmits LinkADRReq

In terms of SF and TP estimation while using the measured SNR, an SNR smoothing process is
required. Therefore, we conducted an EMA filter-based smoothing of the SNR for several packets
received at the NS through a computer simulation, as shown in Figure 5. It can be seen that the
smoothing process reduced the spikes of the raw SNR values. In addition, the smoothing operation in
EMA smoothing can yield results with only the first two SNR observations [29].

It was recently shown in [20] that, by taking the average of M packets, one can improve the
results in terms of the PSR and lower the energy consumption when compared to a typical ADR.
Therefore, we propose using the EMA filter for SNR smoothing, which resists the rapid changes in the
SNR of M packets and acts as a local averaging function, and it is directly related to the β parameter.



Sensors 2020, 20, 6466 9 of 21

The proposed EMA-ADR can improve the performance in terms of the PSR, convergence period,
and energy consumption.
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Figure 5. Smoothed SNR using exponential moving average-based (EMA) filter.

4. Experimental Results and Analysis

In this section, we present a comprehensive performance assessment of the proposed schemes,
which are examined in comparison with typical ADR and ADR+ [20] in terms of the convergence
period, PSR, and energy consumption in both static and mobility scenarios in a confirmed mode.
The simulation experiments were performed while using an NS-3 [30].

4.1. Simulation Setup

We consider class A EDs (N), uniformly distributed around a single GW within a 6-km radius.
These EDs follow the frequency regulation of the European region, where the UL duty cycle of the
EDs and GW is limited to 1% and 10%, for the default channels, respectively. The GW and ED antenna
heights are set to 15 and 1.5 m, respectively. EDs mobility follows a random walk two-dimensional
(2-D) mobility model. EDs choose a random speed of between 0.5 to 1.5 m/s (in [31], 2 m/s is
used for outdoor positioning) and changes direction after every 1000 m [32]. Every ED transmits λ

packets/day during four days of the simulation time, where the results are generated using an average
of 10 simulations with different seeds. Table 2 presents the rest of the simulation parameters.

Table 2. Simulation parameters.

Parameter Value

Simulation time [days] 4
GW 1

λ 24 packets/day
Packet length [bytes] 51 [24]

UL packet transmission limit 8
Path loss exponent 3.76 [33]
Propagation model log-distance

Shadowing de-correlation distance = 110 m [34] and
variance = 6 dB [35]

ED movement speed [m/s] 0.5∼1.5
Transmit power [dBm] 2∼14

Frequency region EU-868
Channel bandwidth [kHz] 125

Coding rate 4/8
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4.2. LoRaWAN Network Environment

4.2.1. Initial Network Topology

During the initial deployment, SF = 12 is assigned to the EDs as the initial SF in all schemes [18].
In some cases, the initial SF allocation is based on I-SFA (in the case of only the proposed
methods). The initial simulation environments with SF = 12 and I-SFA deployment are shown in
Figure 6a,b, respectively.
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Figure 6. Initial network topology in the case of static EDs with N = 500: (a) starting SF = 12,
and (b) starting SF = I-SFA.

4.2.2. Final Network Topology

Figure 7 shows a top-down view of the network, with a single GW located at the center and the
location of individual EDs marked according to the final stable SF of each ED. In Figure 7, all of the
EDs start transmitting data in the UL using SF = 12, where the number of EDs is 500. Table 3 lists the
final SF assignment percentages of static EDs at convergence for those that are shown in Figure 7.

Table 3. Final SF assignment percentage of static EDs (with starting SF = 12, N = 500, uplink
period = 24 packets/day, and total simulation time = 4 days).

Scheme ADR ADR+ G-ADR G-ADR (I-SFA) EMA-ADR EMA-ADR (I-SFA)

SF 7 25.8% 14% 25.4% 24% 25.8% 25.2%
SF 8 8.4% 6.2% 6.4% 10% 10.8% 6.6%
SF 9 11% 7% 12.2% 13.6% 13.6% 12%
SF 10 16% 9.8% 14.4% 21.8% 24.2% 14%
SF 11 24% 11.8% 23.4% 19.8% 19.4% 23.4%
SF 12 14.8% 51.25% 18.2% 10.8% 6.2% 18.8%

4.3. Convergence Period Analysis

In this paper, we define the convergence period as the amount of time until the EDs in the network
reach a steady SF and PSR. The convergence period is highly dependent on both the initial SF and
number of EDs in the network [18].

4.3.1. Static EDs scenario

The convergence period and PSR of static EDs during a simulation period of 4 days is shown in
Figure 8. All of the schemes begin transmission with SF = 12 and TP = 14 dBm, as indicated in Figure 8a.
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Figure 8a,b show the amount of time for the EDs to reach a steady SF and PSR (i.e., convergence
period), whereas both typical ADR and ADR+ require 20 h in converging to a stable state. The primary
reason for this high convergence period is that the frequency of a typical ADR (NS-managed ADR) is
entirely arbitrary, which is activated after M UL packets. The changes in the ED-managed ADR occur
in time in steps of ADR_ACK_DELAY × uplink_period [18]. This is a time-consuming process and,
thus, yields a high convergence period. In general, an ED-managed ADR is intended to maximize DL
traffic flexibility, restricted by the duty cycle limitations that are imposed by LoRaWAN. This helps the
EDs to reestablish reliable communication links by steadily increasing the SF (SF < 12). This flexibility
increases the convergence period in the worst case. For example, an ED is presently employing a lower
SF than needed to deliver a packet to the nearest GW successfully.
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Figure 7. Final network topology in the case of static EDs with N = 500 and starting SF = 12: (a) typical
ADR; (b) ADR+; (c) G-ADR, and (d) EMA-ADR.

By contrast, G-ADR follows a similar trend with a convergence period of 14 h along with a better
PSR when compared to both a typical ADR and ADR+. Moreover, EMA-ADR outperforms the other
schemes in terms of both the convergence period (i.e., 3 h) and PSR. As the reason for the quick
convergence, the EMA filter resists against the rapid changes in the SNR of M packets and acts as a
local averaging function. Thus, the proposed EMA-ADR scheme attains a higher PSR that is related to
typical ADR and ADR+, as shown in Figure 8a. Figure 8b presents another scenario in which G-ADR
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and EMA-ADR are employed while using the I-SFA scheme. There is no convergence period when
I-SFA is jointly utilized with both G-ADR and EMA-ADR. This is because I-SFA assigns a suitable SF
to the EDs based on Pr. Table 4 highlights the detailed convergence periods of different EDs in hours
for static EDs.

Table 4. Convergence period in hours for static EDs (with starting SF = 12, uplink
period = 24 packets/day, and total simulation time = 4 days).

N ADR ADR+ G-ADR G-ADR (I-SFA) EMA-ADR EMA-ADR (I-SFA)

200 20 18 15 0 3 0
400 21 19 15 0 3 0
500 20 20 14 0 5 0
600 18 20 16 0 6 0
800 28 28 26 0 11 0

1000 40 39 37 0 19 0
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Figure 8. Convergence period and PSR of static EDs with N = 500: (a) initial allocation of SF with
12, and (b) initial allocation of SF with 12 (for ADR and ADR+) and initial SF allocation with I-SFA
(for G-ADR and EMA-ADR).
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4.3.2. Mobile EDs Scenario

Figure 9 shows the convergence period and PSR of mobile EDs, where both typical ADR
and ADR+ require 15 h and 14 h, respectively. Further, in Figure 9a, we can observe two types
of convergence period (in the case of typical ADR and ADR+), which are the initial convergence
period and convergence period caused by the mobility. The initial convergence period occurs owing
to a high SF (because all EDs initially start transmitting packets with SF = 12). However, after a
short period of stability, PSR decreases, and both typical ADR and ADR+ suffer from a convergence
period. This convergence period is caused when a mobile ED receives a LinkADRreq MAC command
containing SF and/or TP from the NS; the propagation environment might have been drastically
altered, resulting in massive packet loss [16,32].
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Figure 9. Convergence period and PSR of mobile EDs with N = 500: (a) initial allocation of SF = 12,
and (b) initial allocation of SF = 12 (for ADR and ADR+) and initial SF allocation with I-SFA (for G-ADR
and EMA-ADR).

In Figure 9a, G-ADR and EMA-ADR take 16 h and 3 h for the initial convergence period,
respectively, but do not suffer a second convergence period. This is because both of the proposed
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schemes employ filters, which helps to reduce the convergence period and improve the PSR. As shown
in Figure 9b, both G-ADR and EMA-ADR use I-SFA as an initial SF assignment during deployment.
Unlike a static scenario, both the proposed G-ADR and EMA-ADR with the I-SFA scheme have a
convergence period of 13 h and 3 h. In the case of G-ADR (with I-SFA), mobility has a considerable
impact on the convergence period because the newly adopted parameters (i.e., both SF and TP) do
not provide assurance and efficient communication. In such a case, the propagation environment
might have changed radically by the time LinkADRreq command reaches the mobile ED. Hence, a new
packet from this ED with recently adopted parameters can be lost. However, EMA-ADR (with and
without I-SFA) performs exceptionally well under the mobility conditions, resulting in a reduced
convergence period and high PSR. The detailed convergence periods of different mobile EDs in hours
are shown in Table 5.

Table 5. Convergence period in hours for mobile EDs (with starting SF = 12, uplink
period = 24 packets/day, total simulation time = 4 days).

N ADR ADR+ G-ADR G-ADR (I-SFA) EMA-ADR EMA-ADR (I-SFA)

200 22 21 15 16 3 0
400 23 20 17 15 6 0
500 15 14 16 13 3 3
600 13 14 14 13 3 3
800 20 21 22 15 4 3

1000 29 23 17 17 4 3

4.4. Average PSR Analysis

In this study, the PSR is defined as when both the confirmed uplink packet and the equivalent
downlink packet (i.e., ACK) are correctly received in one of the available transmission attempts [36].

4.4.1. Static EDs Scenario

The average PSR for a different number of static EDs is presented in Figure 10. Here, Figure 10
shows a decreasing trend in PSR with an increasing number of EDs in a confirmed mode due to high
interference among the SFs when packets are transmitted with a high SF. These higher SFs (e.g., 11 and
12) are weak to interference, owing to the high ToA, which negatively influences the capacity of the
communication channel [37–41]. Thus, retransmissions from the EDs are increased, which results in
substantial congestion and massive packet loss. However, the proposed EMA-ADR with and without
the I-SFA scheme outperforms the other schemes in terms of PSR because EMA-ADR frequently
changes the SF and TP parameters by employing a low-pass filter and averaging function. In addition,
for a similar scenario, as presented in Figure 10, Table 6 shows the average PSR improvement for
ADR+ and the proposed schemes when compared to a typical ADR.

Table 6. PSR improvement for static EDs.

N ADR ADR+ G-ADR G-ADR (I-SFA) EMA-ADR EMA-ADR (I-SFA)

200 - +12.5% +17.3% +19.7% +22.8% +24.3%
400 - +8.9% +17.7% +20.7% +23.8% +25.0%
600 - +5.5% +14.7% +19.5% +20.9% +22.7%
800 - +5.1% +12.9% +21.5% +21.0% +23.0%
1000 - +3.1% +11.2% +20.5% +22.5% +25.0%
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Figure 10. Average PSR of static EDs (uplink period = 24 packets/day, total simulation time = 4 days).

4.4.2. Mobile EDs Scenario

Figure 11 shows an analysis of the average PSR for a different number of mobile EDs. The mobility
of the EDs has a high impact on the PSR because the mobility causes frequent changes in the topology,
influencing the signal strength between an ED and a GW. As a result, the link budget used at the
previous location after the ED movement would no longer be valid. Thus, these EDs are required to
alter their SF due to the received signal strength variations. However, when the NS changes the SF and
TP (in a typical ADR and ADR+), these parameters are no longer valid owing to ED mobility. As a
result, a packet transmitted from these EDs is lost because of arriving under the sensitivity at the GW.
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Figure 11. Average PSR of mobile EDs (uplink period = 24 packets/day, total simulation time = 4 days).

Another reason for this massive packet loss in Figure 11 is due to the saturated receiver. Under this
situation, a packet transmitted by the ED reaches the GW with adequate power; however, all of the
available parallel reception paths are already busy in the reception of other incoming packets, resulting
in packet loss. A GW can decode as many overlapping packets as the number of paths listening
to that channel. In other words, when a packet arrives on a given channel, it will "lock" only one
receive path. By contrast, other reception paths remain available to receive other incoming packets.
Therefore, when a packet arrives at a channel, and there are no available receive paths, the packet is
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lost. Moreover, we adopt an assumption from [35] that if the GW is in a receive state and is asked by
the NS to forward a DL packet to an ED, it will give up the incoming packet reception and transmit the
DL packet. Both G-ADR and EMA-ADR (with and without I-SFA) manage a high PSR when compared
to a typical ADR and ADR+. Furthermore, for a scenario similar to that in Figure 11, Table 7 shows the
average PSR improvement for ADR+ and the proposed schemes when compared to typical ADR.

Table 7. PSR improvement for mobile EDs.

N ADR ADR+ G-ADR G-ADR (I-SFA) EMA-ADR EMA-ADR (I-SFA)

200 - 12.3 28.2 30.8 29.5 31.9
400 - 9.8 21.6 24.6 23.6 27.8
600 - 7.4 12.5 16.0 15.0 19.7
800 - 4.5 7.3 11.2 9.4 13.6
1000 - 1.8 3.8 8.6 6.1 12.7

4.5. Average Energy Consumption Analysis

In this study, we compute the energy consumption as the total energy spent by EDs during
the simulation time divided by successfully received packets. This study assumes a state-based
(i.e., transmit, receive, standby, and sleep) energy consumer module [23]. The energy consumption
in LoRaWAN mainly depends on the amount of time that is spent by a LoRa radio in a particular
state. In this study, we have utilized the energy consumer module, as shown in [42] and the Semtech
SX1272/73 datasheet with a supply voltage of 3.3 V [26].

4.5.1. Static EDs Scenario

In general, the energy consumption of all schemes in the confirmed mode shows an increasing
trend as the number of EDs increases, as shown in Figure 12. However, in the proposed schemes,
the energy consumption is lower than the typical ADR and ADR+, owing to the small number
of retransmissions. However, in typical ADR and ADR+, many EDs transmit packets with high
parameters, including SF = 12 and TP = 14 dBm. The maximum number of packets is lost due
to increased interference, resulting in EDs retransmitting packets with higher settings. Therefore,
high energy consumption is observed for typical ADR and ADR+, because the transmit energy
consumption is primarily based on the values of SF, TP, and ToA, and the retransmissions [23].
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Figure 12. Average energy consumption for static EDs (uplink period = 24 packets/day, total simulation
time = 4 days).
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4.5.2. Mobile EDs Scenario

Figure 13 shows the average energy consumption of the proposed schemes compared with typical
ADR and ADR+. Overall, the energy consumptions of the proposed G-ADR and EMA-ADR (with and
without I-SFA) are lower because of the higher PSR. Generally, the energy consumption of all schemes
shows an increasing trend as the number of EDs increases owing to multiple retransmission with high
SF and TP [32]. When packets are transmitted with higher SFs, it causes a high interference due to
the high ToA. Because higher SFs are highly susceptible to interference, they can negatively affect the
energy consumption [37–41].
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Figure 13. Average energy consumption for mobile EDs (uplink period = 24 packets/day, total simulation
time = 4 days).

5. The Adaptation of Proposed Schemes in a LoRaWAN Deployment

The typical ADR of LoRaWAN requires the operation of both the NS and the ED. In general,
to deploy the new ADR in the ED, the so-called firmware update process must be performed.
These firmware updates are usually performed through a wired connection, such as serial
communication, to the target ED. However, because of the nature of the massive LoRaWAN,
this method is challenging. Therefore, STM, one of the LoRa Mote makers, supports firmware update
over the air (FUOTA) [43,44]. FUOTA is an excellent approach to deploy the ADR algorithm to the
ED. However, our proposed methods (i.e., G-ADR and EMA-ADR) are the improved ADRs on the
network server-side and do not require ED update technology like FUOTA. Therefore, the proposed
ADRs can be deployed by updating the server itself as part of its maintenance work.

6. Conclusions

LoRaWAN allocates resources to the EDs (such as SF and TP) through NS-managed and
ED-managed adaptive data rate (ADR) methods. However, the ADR is severely affected by the lack of
agility to adapt to the variable channel conditions. Thus, it has a high convergence period and requires
several hours to days to converge to a stable and energy-efficient state of communication. During the
convergence period, the typical ADR suffers from a massive packet loss caused by interference and
packets arriving under the sensitivity at the GW. Therefore, to reduce the convergence period and
improve the PSR (for both static and mobile IoT EDs), we proposed two NS-managed ADRs (G-ADR
and EMA-ADR). Both of the proposed schemes operate as a low-pass filter to resist the rapid changes
in the SNR of M packets. Through NS-3 simulation experiments, we extensively analyzed the proposed
schemes as compared to a typical ADR and ADR+. We showed that a typical ADR and ADR+ both
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suffer from a high convergence period owing to the time-consuming process and poor adaptation of
the SF. In contrast to the typical ADR method, the proposed methods reduce the convergence period,
energy consumption, and enhanced the PSR for both static and mobile EDs. We further remark that
the proposed methods are highly suitable for IoT-based static and mobile applications requiring a low
convergence period, high PSR, and reliability without sacrificing a high energy consumption.
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