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Abstract: Automated lying-posture tracking is important in preventing bed-related disorders,
such as pressure injuries, sleep apnea, and lower-back pain. Prior research studied in-bed lying
posture tracking using sensors of different modalities (e.g., accelerometer and pressure sensors).
However, there remain significant gaps in research regarding how to design efficient in-bed lying
posture tracking systems. These gaps can be articulated through several research questions, as follows.
First, can we design a single-sensor, pervasive, and inexpensive system that can accurately detect lying
postures? Second, what computational models are most effective in the accurate detection of lying
postures? Finally, what physical configuration of the sensor system is most effective for lying posture
tracking? To answer these important research questions, in this article we propose a comprehensive
approach for designing a sensor system that uses a single accelerometer along with machine learning
algorithms for in-bed lying posture classification. We design two categories of machine learning
algorithms based on deep learning and traditional classification with handcrafted features to detect
lying postures. We also investigate what wearing sites are the most effective in the accurate detection
of lying postures. We extensively evaluate the performance of the proposed algorithms on nine
different body locations and four human lying postures using two datasets. Our results show that a
system with a single accelerometer can be used with either deep learning or traditional classifiers to
accurately detect lying postures. The best models in our approach achieve an F1 score that ranges
from 95.2% to 97.8% with a coefficient of variation from 0.03 to 0.05. The results also identify the
thighs and chest as the most salient body sites for lying posture tracking. Our findings in this article
suggest that, because accelerometers are ubiquitous and inexpensive sensors, they can be a viable
source of information for pervasive monitoring of in-bed postures.

Keywords: lying posture tracking; traditional machine learning; ensemble classification; deep recurrent
neural network models; long short-term memory sequence classification model

1. Introduction

Keeping track of in-bed lying postures and the transitions between them provide useful clinical
information regarding the patients’ mobility [1,2], risk of developing hospital-acquired pressure
injuries [3], hidden death in epilepsy [4], experiencing obstructive sleep apnea, circadian rhythm
disorders [5], risk of sudden infant death [6], and quality of sleep [7]. The in-bed posture of the patients,
especially in hospitals, is usually monitored manually and through visual observation, which is a labor-
and cost-intensive task. Therefore, researchers have proposed monitoring in-bed postures continuously
and non-obtrusively while using wearable sensors. Two specific medical applications of objective
and continuous monitoring of in-bed posture tracking using wearable sensors are: (a) pressure
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injury risk assessment and prevention, (b) positional sleep apnea therapy. Prolonged lying on a
specific posture can increase the risk of pressure injuries in people with compromised mobility
and bed-bound patients [8]. Pressure injuries are a significant, yet potentially preventable event,
and the proposed approach for pressure injury prevention is the regular repositioning of patients
(e.g., repositioning every 2 h). Objective lying posture tracking using a wearable could enable its
integration as a new variable in a continuous pressure injury risk assessment. It could also be
used to make informed decisions regarding patient repositioning and help to assure compliance
with repositioning guidelines. Sleeping posture influences the frequency of apneas and hypopneas
in 50–60% of individuals with obstructive sleep apnea [9]. Positional sleep apnea therapy can
reduce apnea/hypopnea episodes by preventing sleeping in a lying posture. A shirt with a foam
or a tennis ball on the backside is a common solution for positional sleep apnea therapy that
prevents sleeping in a supine position. Although sensor-based solutions are available for positional
sleep apnea therapy (e.g., Philips NightBalance), improvement in lying posture tracking when
considering both algorithm and wearable sensor positioning can reduce false alarms and improve user
acceptance. Automatic in-bed lying posture tracking systems have been developed using data that were
collected from sensors of different modalities, such as accelerometers [10–12], load cell sensors [13],
pressure sensors [14,15], infrared cameras [16], electrocardiogram waveforms [17], and multi-modal
systems [18–20]. Pressure mats and load sensor systems impose a high cost to the end-users and
often require calibration. The camera-based systems usually encounter setup and privacy issues from
the end-users and are more difficult to analyze than the wearable sensors [21]. Other works have
utilized multiple wearable sensors on different body locations for continuous lying-posture detection,
which imposes discomfort to the end-users and impedes long-term monitoring. To address these
issues, we develop a traditional machine learning (ML) model for lying posture detection while using
a single accelerometer sensor, which is is an ensemble of decision tree classifiers with hand-engineered
time-domain features.

Deep learning (DL) has emerged as the leading approach in the field of computer vision,
voice recognition, and natural language processing in recent years. Deep neural networks are known as
learners of high-level features for a specific problem domain. This makes DL models suitable models for
human posture estimation. Moreover, DL models tend to reduce the overhead of feature engineering
compared to traditional machine learning models [22]. To date, no studies have explored the possibility
of utilizing deep neural networks for acceleration-based lying posture tracking. We develop a deep
learning model for lying posture detection while using a single accelerometer sensor to investigate the
possibility of replacing traditional feature-based machine learning models with deep neural networks;
therefore, reducing the burden of feature-engineering. Our deep learning model, adaptive long
short-term memory network (AdaLSTM), is a long short-term memory network (LSTM) that uses an
adaptive learning rate method with a decaying learning rate schedule.

More specific contributions of this paper are as follows. We (1) investigate the efficacy of a single
accelerometer for lying-posture tracking while using feature engineered machine learning models
and deep LSTM networks; (2) identify the set of optimal time-domain features for accurate lying
posture detection using traditional ML; (3) compare traditional machine learning with deep learning in
recognition of lying postures; (4) evaluate nine different body sites to determine the most appropriate
site to attach the accelerometer for accurate lying posture tracking.

2. Background & Related Studies

Human posture detection is an active research area. There have been many studies to explored
models to distinguish human lying and sitting postures [23–25]. In this section, we discuss the
previous studies on lying posture tracking while using wearable accelerometer sensors. We divide
these studies based on the number of wearable sensors into (1) multi-sensor and (2) single-sensor lying
posture tracking.
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2.1. Multi-Sensor Lying Posture Tracking

A study in [12] conducted by Kwasnicki et al. proposed a lightweight sensing platform for
monitoring sleep quality and posture using three wearable accelerometer sensors that were placed on
both arms and the chest. They applied a K-nearest neighbor, naive Bayes, and decision tree classifiers
on the mean and variance of each axis of the signal from all three accelerometer sensors. Their models
achieved 99.5% average accuracy in detecting the four major lying postures (i.e., lying supine, prone,
and laterals). In another study fallmann et al. proposed a lying posture detection algorithm using three
accelerometer sensors on the chest and the legs. Their algorithm first, classified the postures using the
acceleration-moving variance method, into stable and non-stable time windows, then classified the
features into the postures prone, supine, and laterals. Their model achieved an average accuracy of
83.6% [26]. Moreover, Wrzus et al. [10] developed a 99.7% accurate classification model using chest
and thigh accelerometry data based on the angular orientation of the upper body along the vertical
axis to classify lying postures.

The above-mentioned algorithms that rely on data from multiple sensors attached to the different
locations on the user’s body cause discomfort and limit usability, especially for long-term monitoring
during sleep. Moreover, the possibility of sensor rotation during sleep might alter the angular axes of
the sensors relative to each other, therefore decrease the accuracy of the orientation-based lying posture
tracking. In this paper, we proposed lying posture detection algorithms that only use data from a single
accelerometer sensor, which can be placed on one of the nine different body locations, including chest,
thighs, ankles, arms, and wrists. Therefore, the proposed models using a single accelerometer are more
comfortable to the end-users are favored over those using multi-sensor.

2.2. Single-Sensor Lying Posture Tracking

Monitoring lying postures while using a single sensor improves the usability and wearability of
the system comparing to the multi-sensor framework. These advantages in single-sensor monitoring
become more evident in older adults and users with cognitive impairment, who might face difficulties
to recall and follow the protocols [27]. Moreover, single-sensor lying posture tracking is preferred by
the clinical team and caregivers of hospitalized patients, since these patients are usually required to be
connected to several monitoring devices and IV lines [28].

In a study conducted by Razjouyan et al. in [29], the authors developed a lying posture detection
algorithm based on a single accelerometer sensor on the chest of the user. They used a logistic
regression model on 43 time-domain features that were extracted from the magnitude of tri-axial
accelerometer signal. The proposed model achieved 87.8% accuracy in detecting the lying postures
supine, prone, and laterals for 21 users. In another study [11] by Zhang et al., the authors assessed
the possibility of using a single accelerometer sensor on the chest to detect the lying posture during
sleep. They used linear discriminant analysis (LDA) classifier on the mean value of each axis of
the acceleration signal. They achieved an overall accuracy of 99% for classifying lying postures
(lying supine, prone, and laterals). However, the authors of this study did not assess the effect of sensor
location on the accuracy of lying posture tracking. In another study, Chang et al. developed a system
that captured information regarding sleep events using a smartwatch. Their system distinguished
sleep postures supine, prone, and laterals at an average precision of 96%. Their proposed algorithm
detected the sleeping postures by combining the position of both hands and classification of features
using a template-based Euclidean distance matching approach [30]. However, the performance of
such a model is highly dependent on the quality of pre-defined hand positions and sleep posture
templates. Furthermore, the possible sensor rotations during sleeping might affect the accuracy of
hand position recognition; and therefore affect the lying posture detection. Moreover, Jeng et al. [31]
proposed a sleep position detection algorithm that achieved 90% accuracy in detecting postures supine,
prone, and laterals while using the data that were collected from an accelerometer sensor on the wrist
of the users. Their proposed model applied a support vector machine classifier with a linear kernel
and a random forest of 100 trees on the mean value of the signal.
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3. Methodologies

Figure 1 shows the overall architecture of the proposed ML and DL lying posture tracking.
The overall training process includes two steps of data preparation and model development.
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Figure 1. The process of training feature-based ensemble trees and Deep LSTM classifiers. Symbol Lkn
represents the fully connected unit n at layer k. Symbol k refers to the number of the fully connected
layers and symbol m shows the number of the output classes.

3.1. Data Preparation

We define an episode of data as a sequence of signals collected from one subject while performing
a run of a specific posture (e.g., lying supine). The raw accelerometer signal and lying posture labels
are fed into the data processing unit. The extracted episodes consist of four major lying postures,
such as lying on the back (supine), lying on the front (prone), and lying on sides (right and left laterals)
that are more common across hospitalized patients and healthy individuals. The processing unit
normalizes the signal to remove possible subject-based variations and segments it into different lying
posture episodes based on the labels.

3.2. Traditional Lying Posture Tracking

The proposed traditional lying posture tracking consists of two main steps: (1) feature preparation
in which an exhaustive set of features are extracted from each input episode; and, (2) ensemble model
learning, which trains an ensemble of 100 decision trees on the features and lying posture labels.

3.2.1. Feature Preparation

We extract 48 time-domain features (16 features from each axis of the accelerometer signal) from
a sliding window over each episode of data (lying supine, prone, and on the left side) with a 50%
overlap. We set the window size to the minimum episode length in the training dataset (e.g., 96 samples
equal to 3.8 s). The selected features, shown in Table 1, are proven to be useful in human posture
and activity recognition applications, such as amplitude, mean, standard deviation, and angle of the
signal [32,33]. The three indices for each feature in Table 1 refer to features extracted from three axes
of the accelerometer signal. We compute a set of meta-features fi = { f 1

i , f 2
i , ..., f 48

i } for ith episode by
averaging all of the extracted features from multiple windows over that episode.
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Table 1. Extracted time-domain features. S = (Sx, Sy, Sz) is a vector of the tri-axial accelerometer
readings, where, Sx, Sy, and Sz are vectors of accelerometer readings in vertical, lateral, and horizontal
directions, respectively. Si = (Six, Siy, Siz) shows a reading of tri-axial accelerometer at timestamp i.
E(.) represents the expected value of the input variable. Functions min(.), max(.), mean(.), median(.),
tan−1(.), size(.) compute the minimum, maximum, average, median, inverse tangent, and size of an
input vector.

Feature Description Computation for Signal S Number

AMP Peak amplitude max(S)−mean(S) 1–3
MED Median median(S) 4–6

MEAN Mean value µ = ∑N
i=1 si
N 7–9

MAX Maximum value max(S) 10–12
MIN Minimum value min(S) 13–15

VAR Variance v = ∑N
i=1 |si−µ|2

N−1 16–18

STD Standard deviation σ =

√
∑N

i=1 |si−µ|2
N−1 19–21

RMS Root mean square ∑N
i=1 s2

i
N 22–24

P2P Peak to peak max(S)−min(S) 25–27
ZCR Zero crossing rate size({si |si==0,i=1,2,..,N})

N 28–30
ENT Entropy −∑N

i=1 silog(si) 31–33

SKN Skewness s = E(S−µ)3

σ3 34–36

KRT kurtosis k =
E(S−µ)4

σ4 37–39

MAG Mean Magnitude M =
∑N

i=1

√
si x2+siy2+siz2

N 40
ENG Energy e = ∑N

i=1 s2
i 41

RNG Range r = max(S)−min(S) 42–44
ANG Angle a = max(tan−1( Sz

S2
x+S2

y
)) 45

MAD Mean absolute deviation m = ∑N
i=1 |si−µ|

N 46–48

3.2.2. Ensemble Model Learning

A total of 48 features are obtained from the previous step. We train an ensemble of 100 decision
trees on the features and lying posture labels. We choose the bagging technique as the ensemble
method for reducing the variance of the decision tree and overfitting to the existing data. A decision
tree is selected as the weak learner because of the high dimension of the input features. As shown
in Figure 1, we fit 100 decision trees on 100 random subsets of the original dataset with a randomly
selected subset of features in order to minimize the correlation between individual trees. The final
prediction is the majority voting on the decision of the individual trees [34]. This model is also referred
to as a random forest classifier [35].

3.3. Deep Lying Posture Tracking

Recurrent Neural Networks (RNNs) are a type of deep learners that are well-suited to model
sequential data. However, RNNs fail to learn long-term dependencies in the data due to the
problem of vanishing/exploding gradients. The Long Short-term Memory (LSTM) network has
been introduced to address this issue and capture long-term dependencies from the sequential time
series data [36]. LSTM networks have shown promising results on time series classification tasks [37,38].
LSTM captures long-distance dependencies from sequential data through the integration of memory
cells and RRNs [39]. Bidirectional long short-term memory (bi-LSTM) networks were introduced as
an extension to the LSTM networks. The bi-LSTM architecture consists of two LSTMs that train in
two directions; therefore, it is capable of extracting long-term data dependencies in both forward and
backward directions and learn from both past and future data [40].

At each time-step, t, a bi-directional LSTM network maintains two hidden layers, one for the
forward propagation and another for the backward propagation. At time-step t, each intermediate
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LSTM unit from layer (i) receives the hidden state of the previous layer at the current time-stamp
h(i−1)

t , and state of the same layer at the previous time-step h(i)t−1 in forward propagation and next

time-step h(i)t+1 in the backward propagation, as shown in Equations (1) to (4). Both forward hidden

sequence,
−→
ht , and backward hidden sequence

←−
ht are computed independently based on Equations (1)

and (2). The final hidden state sequence ht is computed by combining the forward and backward
hidden state sequences in Equation (3). The final classification result, ŷ, is combination of the results
that are produced by both forward and backward hidden layers, as shown in Equations (3) and (4).

−→
h (i)

t = f (
−→
W (i)−→h (i−1)

t +
−→
V (i)−→h (i)

t−1 +
−→
b (i)) (1)

←−
h (i)

t = f (
←−
W (i)←−h (i−1)

t +
←−
V (i)←−h (i)

t+1 +
←−
b (i)) (2)

ht = U[
−→
h (L)

t ;
←−
h (L)

t ] (3)

ŷt = g(ht + c) (4)

At each layer (i),
−→
W (i) and

←−
W (i),

−→
V (i), and

←−
V (i) are matrices of scalar weight values between 0

and 1 corresponding to
−→
h (i−1)

t ,
←−
h (i−1)

t ,
−→
h (i)

t−1,
←−
h (i)

t+1, respectively. Symbols
−→
b (i) and

←−
b (i) refer to the

bias vectors of scalar values for the forward and backward propagation ,respectively. The symbol U is
the weight matrix that corresponds to ht. Symbols f and g are the activation function that is applied to
the output of each LSTM unit (e.g., sigmoid function) and the final hidden state ht, respectively.

In the next section, we define lying posture prediction from the sequences of raw sensor data as
an optimization problem, and then design a deep learning architecture using Bi-LSTM networks as
the solution.

Problem: we have N sequences of variable lengths where each sequence Xi is assigned a label
Yi = (yi1, yi2, ..., yik) using max-likelihood classification, where yij shows the likelihood of jth class
for ith sequence. Given these, the problem is to estimate a set of labels Ŷ = {ŷ1, ŷ2, ..., ˆyN}, such that
the difference between the actual and estimated label sets is minimized. We compute this difference
as the cross-entropy of the estimated labels Ŷ and actual label Y for summed over the sequences in
Equation (5). Because the input sequences might adopt different length, we use a set of scalar weights
M = {m1, m2, ..., mi}, where mi is the length of sequence Xi, to penalize the error that is based on the
length of the sequence.

−
N

∑
i=1

K

∑
j=1

miyij log ŷij (5)

where the error is a weighted (e.g., length of sequences) sum of the cross-entropy between the actual
and estimated labels. The objective of the sequence classification model is to minimize Equation (5).

Deep Learning Architecture: to solve this problem, we design an Adaptive LSTM (AdaLSTM),
an LSTM Network with an adaptive learning rate method with a decaying learning rate schedule.
AdaLSTM receives the sequences of raw accelerometer sensor data as the input and estimates one
label for each sequence. As shown in Figure 1, the input episodes/sequences of raw accelerometer
data are fed to a Bi-LSTM layer with ten hidden units. The training process of the bi-LSTM includes
back-propagation processes in two directions in order to minimize the error. Three fully connected
layers multiply the output of the Bi-LSTM layer (e.g., a sequence of tri-axial accelerometer data) by the
matrix of weights and add it by the vector of bias. The output of the fully connected layer is fed to
a softmax layer that is a multi-class generalization of the logistic sigmoid function. We compute the
cross-entropy loss for multi-class classification that is based on the likelihood of the softmax function.
We set the maximum number of the epochs equal to 100. We set the initial learning rate and decay
rate of the squared gradient moving average to 0.01 and 0.99, respectively. To shorten the amount of
padding in the mini-batches and make the training more suitable for CPU, we chose the mini-batches
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to be short sequences of size 27. The Adam optimizer [41] is used for training the neural network
through backpropagation.

4. Experimental Evaluation

4.1. Datasets & Preprocessing

We perform training and validation of the models on two publicly available datasets: (1) Class-Act
dataset [42], which contains three major lying postures, including supine, prone, and left side from
22 subjects, and (2) Daily & Sports Activities Dataset (DAS) [43] that contain two major lying postures,
including supine and right side from eight participants.

4.1.1. Class-Act: Datasets from a Human Posture/Activity Classification

Class-Act is a human posture and activity classification dataset from 22 healthy participants
(seven females and 15 males, ages between 20 and 36) [42]. The participants wore nine accelerometer
sensors that were sampled at 30 Hz on nine different body locations, including the chest, left and right
thigh, left and right ankle, left and right arm, left and right wrist during the activities, as shown in
Figure 2a. Class-Act was collected based on three pre-defined protocols with different combinations
of activities or postures in a controlled manner. The activities were walking, sitting, standing, lying
supine, lying prone, lying on the left side, kneeling, and crawling. Figure 2b shows the prevalence
of the extracted episodes for only lying postures. The duration of different episodes for lying supine,
prone, and on the left side were 12.2 ± 3.6, 11.9 ± 3.6, and 12.10 ± 3.3 s, respectively.

Accelerometer 

sensor

(a) Sensor Positioning (b) Label Prevalence
Figure 2. (a) Visualization of accelerometer sensor positioning, and (b) activity prevalence for
Class-Act dataset.

4.1.2. Daily and Sports Activities Dataset (Das)

The DAS dataset contains data from eight subjects (four females and four males, ages between
20 and 30) that performed 19 activities of daily living for five minutes each [43]. The participants
wore five inertial sensor units embedding a tri-axial accelerometer on the chest, right and left wrist,
and right and left thigh. The sensors were calibrated in order to acquire data at a sampling frequency
of 25 Hz. We only used lying supine and lying on the right side posturea in this study. The dataset
contains eight episodes of lying supine and eight episodes of lying on the right side. Each episode has
a length of 7500 samples (300 s).

4.1.3. Integrated Dataset

We combined the lying posture episodes for the shared sensor locations (i.e., chest, right and left
wrists, and right and left thighs, as shown in Figure 3a) between the Class-Act and DAS datasets in
order to validate the models in distinguishing between the four major lying postures including lying
on the back, front, right side, and left side. Prior to the combination, we segmented each episode of
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lying supine and lying on the right side from the DAS dataset (length of 300 s) into 15 episodes of 20 s
to be consistent with the average episode length from the Class-Act dataset. The result of this step was
120 episodes of lying supine and 120 episodes of lying on the right side. In the second step, to create
a relatively balanced dataset, we randomly selected 80 episodes of lying on the right side and eight
episodes of lying supine from the episodes of the DAS dataset that were extracted in the previous step.
Finally, we combined the episodes of lying on the right side and lying supine from the DAS dataset
with all of the lying episodes from the Class-Act dataset. As shown in Figure 3b, the integrated data
set contained 75 episodes of supine (i.e., 26.1%), 57 episodes of prone (i.e., 19.8%), 75 episodes of the
left side (i.e., 26.1%), and 80 episodes of the right side (i.e., 27.8%) for the chest, right and left wrists,
and right and left thighs.

(a) Sensor Positioning (b) Label Prevalence
Figure 3. (a) Visualization of accelerometer sensor positioning, and (b) activity prevalence for the
integrated dataset.

4.2. Comparison Metrics and Implementation Details

We validated the proposed models based on leave-one-subject-out (LOSO) validation in order
to minimize overfitting to a specific subject or a specific pattern of performing a lying posture.
We report accuracy, F1 score, and balanced accuracy as evaluation metrics of the proposed models.
Moreover, we perform the coefficient of variation (CoV) analysis [44] to compare the proposed
algorithms against the state-of-the-art.

Accuracy is defined as the average effectiveness of the classifier over all the class labels.

Accuracy =
∑l

i=1
TPi+TNi

TPi+TNi+FPi+FNi

l
(6)

where l is the number of class labels. F1 score is defined as the harmonic average between Precision
and Recall.

F1 =
2× (Recall × Precision)

Recall + Precision
(7)

where Precision refers to the average agreement of the actual class labels and classifier-predicted labels
and Recall is the average effectiveness of the classifier to identify each class label. Precision and Recall
are computed by the following equations.

Precision =
∑l

i=1
TPi

TPi+FPi

l
, Recall =

∑l
i=1

TPi
TPi+FNi

l
(8)

BalancedAccuracy is defined as the average of the true positives and true negatives for each
class label.

BalancedAccuracy =
∑l

i=1
TPi
Pi

+ ∑l
i=1

TNi
Ni

2× l
(9)
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where l refers to the number of classes in the classification task. For each class i (e.g, lying supine),
Pi is the number of samples with positive label, Ni is the number of the samples with negative labels
(i.e., all classes other than the positive class lying supine), TPi refers to the positive samples that are
correctly classified as belonging to class i, while FPi refers to the negative samples that are incorrectly
classified as belonging to class i. TNi refers to the negative samples that are correctly classified as
belonging to negative class and FNi refers to the positive samples that are incorrectly classified as
belonging to negative class [45,46].

The coefficient of variation (CoV) analysis [44] is performed for each model over different body
locations that are based on the equation below.

CoV =
σ

µ
(10)

where σ and µ are respectively the standard deviation and average of the F1 score in lying posture
detection over different folds.

5. Results

In this section, we extensively evaluate the performance of the ensemble tree and AdaLSTM
classifiers independently and against each other. We report the validation metrics, including accuracy,
F1 score, and balanced accuracy for both of the classification models. We further perform a coefficient of
variation (CoV) analysis in order to compare the performance of the models against the state-of-the-art.

5.1. Raw Data Inspection

Before our main analysis, we investigate the variations in the pattern of the raw accelerometer
sensor data across different subjects and different lying postures on the Class-Act dataset. We visually
inspect the data by computing the mean and standard deviation of the acceleration data over all the
episodes of data that were collected from different subjects while maintaining different lying postures.

These patterns show two issues with the Class-Act dataset: (1) the accelerometer data captured
from one of the subjects was not converted to gravity (g) and was stored in analog format. (2) The data
collectors labeled multiple episodes of different lying posture as the same posture for one of the
subjects. Figure 4 visualizes the changes in three-axis acceleration for each lying posture on the
Class-Act dataset after resolving the issues that are mentioned above (e.g., correcting sensor output
and labels). The solid line demonstrates the mean, and the shaded area shows the standard deviation
for different episodes in a specific lying posture. The results show that the y-axis (vertical) always
reports values that are near 0 g. In contrast, the x-axis (lateral) shows a mean value near −8.0 g for
lying on left side posture, while it almost always reports a mean near 0 g for the other two postures.
Moreover, the z-axis (horizontal) reports the mean accelerations around +9.2 g and −7.8 g for supine
and prone postures, respectively, but 0g for lateral posture. Therefore, that lateral axis (x-axis) appears
to be sensitive to the lying on side posture, and the horizontal axis (z-axis) appears to be sensitive to
the supine and prone postures. These numbers can be justified, because, while the user is lying on
one-side, the x-axis of the accelerometer sensor on the chest is parallel to gravity, therefore reporting
values around g (±10). The same result occurs when the user lies on the back (supine) or front
(prone), except the z-axis, becomes parallel to the g, and reports values near ±10 g. These values
could be negative or positive, depending on the direction of the body (supine, prone, and lateral lying
postures). Consequently, we expect these two axes to be more informative in classification compared
with the y-axis.
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Figure 4. Mean and standard deviation of the magnitude of the accelerometer sensor data for different
lying postures over all the subjects.

5.2. Traditional Machine Learning

In this section, we validate the feature-based ensemble tree classifier in detecting three major
lying postures (supine, prone, and left side) using the Class-Act dataset, including 12 subjects and nine
sensor locations.

5.2.1. Feature Engineering

Figure 5 shows the feature importance of lying posture tracking, as determined by the ensemble
tree classifier that is trained on the data from the chest, left thigh, and wrist sensors. The importance
of the features is one of the outputs of the ensemble tree classification. The y-axis in this figure is
the estimation of feature importance from the ensemble tree by summing over the changes in the
mean squared error because of splits on every feature and dividing the sum by the number of the
branch nodes in the tree [47]. The x-axis shows features 1 to feature 48 as in Table 1. Based on the
results, features 4, 7, 10, and 13 are the sets with the highest importance. Table 1 shows that these
features are the median, mean, maximum, and minimum of the vertical axis (e.g., x-axis) of the tri-axial
accelerometer sensor. Moreover, features 6, 9, 12, and 15 are the second important set of features.
Based on Table 1. These predictors refer to features median, mean, maximum, and minimum of the
z-axis of the tri-axial accelerometer signal. These results match the observations on the sensitivity of
the lying on the left side to the x-axis and lying supine and lying prone postures to the frontal axis
(e.g., z-axis) in Figure 4.
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Figure 5. Importance of the extracted features from sensor data for lying posture tracking.
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5.2.2. Lying Posture Detection

Table 2 reports the average and standard deviation of accuracy, balanced accuracy, and F1 score of
lying posture detection using the ensemble tree classifier using leave-one-subject-out (LOSO) validation.
Overall, the body locations, such as the chest and the thigh, which are less susceptible to nocturnal
movement during sleep, demonstrate high performance in lying posture detection, while sensor
locations such as the arms and the wrists are poor in lying posture detection. More specifically,
the ensemble tree classifiers trained on the data collected from the chest, thighs, or ankles achieve
89.8–96.2% accuracy, 82.9–94.4% balanced accuracy, and 82.8–93.6% F1 score. While these values drop
when the sensor is placed on the upper body parts, such as the arms and the wrists (78.6–89.5%
accuracy, 62.9–84.0% balanced accuracy, and 60.9–81.6% F1 score).

Table 2. Performance (%) of the ensemble tree classification in lying-posture detection for nine different
body locations on the Class-Act dataset using leave-one-subject-out (LOSO) validation.

Location Accuracy
Balanced
Accuracy

F1 Score

Left Thigh 94.5± 6.9 91.3 ± 10.3 90.7 ± 11.8
Right Thigh 96.2 ± 8.1 94.4 ± 12.0 93.5 ± 14.4
Left Ankle 94.9 ± 8.5 92.1 ± 12.8 91.4 ± 15.6

Right Ankle 89.8 ± 13.5 82.9 ± 19.9 82.8 ± 22.7
Chest 96.2 ± 9.1 93.6 ± 13.7 93.6 ± 16.2

Left Arm 78.6 ± 11.7 62.9 ± 15.1 60.9 ± 16.6
Right Arm 89.5 ± 12.1 84.0 ± 18.3 81.6 ± 21.7
Left Wrist 78.6 ± 12.5 67.1 ± 19.1 64.1 ± 21.7

Right Wrist 80.7 ± 14.1 79.7 ± 21.3 67.9 ± 23.8

The performance decline in the upper body parts originated from inter-subject variations in
the placement of the arms and the wrists and nocturnal movements of them, such as bending and
rotating while maintaining the same lying posture. The trend in the standard deviation of accuracy,
balanced accuracy, and F1 score across different subjects is also in concordance with the hypothesis that
more within-subject variation (e.g., 11.7% to 23.8% standard deviation in accuracy, balanced accuracy,
and F1 score) is observed when the sensor is worn on the wrists and the arms when comparing to
the chest, thighs, and ankles (e.g., 6.9% to 22.7% standard deviation in accuracy, balanced accuracy,
and F1 score). Moreover, Figure 6 visualizes the confusion matrix of lying posture classification using
an ensemble tree classifier on the Class-Act dataset. The confusion matrices for the classifying the
thighs, chest, and ankles data show more promising results than the arms and wrists. In particular,
the classifiers trained on the left thigh, right thigh, and chest misclassify 8.1%, 5.6%, and 5.6% of the
lying episodes. The misclassification rate increases to 7.6% and 39.0% for the left ankle and left arm
locations, and 15.2%, 15.7%, and 28.9% for the right ankle, right arm, and right wrist locations.

5.3. Deep Sequence Learning

In this section, we evaluate the performance of the AdaLSTM classifier in detecting three major
lying postures. Specifically, we compare the performance of the trained model on nine different
on-body locations from the Class-Act dataset.

Table 3 shows the mean and standard deviation of accuracy, balanced accuracy, and F1 score of
the model while using the Class-Act dataset, including nine sensor locations. AdaLSTM achieves
94.5–98.9% average Accuracy, 92.4–98.4% average balanced accuracy, and 91.5–98.2% average F1 score
when applied to the data that were collected from the sensor worn on the chest, thighs, or ankles.
However, the performance drops to 64.8–86.8% average accuracy, 64.9–79.0% average balanced
accuracy, and 62.9–75.7% average F1 score, for the cases where the sensor was on the arms and wrists.
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The within-subject standard deviation in the accuracy, balanced accuracy, and F1 score is higher when
the sensor is placed on the arms and the wrists (9.2–24.8%) when comparing to the thighs and chest
(5.2–15.6%). Such results could be justified according to the findings from a study by Skarpsno et al.,
which showed the duration of nocturnal movements while sleeping in the arms and upper back was
higher than the thighs in 2107 subjects [48]. AdaLSTM is the most accurate when applied to the
data collected from the sensor on the left thigh (98.9% ± 8.2 accuracy, 98.4% ± 5.2 balanced accuracy,
and 98.2%± 6.2 F1 score). The model on the left wrist achieves the lowest performance (64.8% ± 22.9%
accuracy, 64.9% ± 24.8% balanced accuracy, and 62.9% ± 23.2% F1 score).
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Figure 6. Confusion matrix of the ensemble tree classifier in classifying lying postures into supine,
prone, and left side for the thighs, ankles, chest, arms, and wrists locations using Class-Act dataset.

Table 3. Performance (%) of the sequence classification using AdaLSTM in lying-posture detection for
nine different body locations on the Class-Act dataset using LOSO validation.

Location Accuracy
Balanced
Accuracy

F1 Score

Left Thigh 98.9 ± 8.2 98.4 ± 5.2 98.2 ± 6.2
Right Thigh 95.9 ± 7.3 93.4 ± 11.8 91.5 ± 15.6
Left Ankle 97.9 ± 4.2 96.8 ± 6.3 96.9 ± 6.4

Right Ankle 94.5 ± 6.3 92.4 ± 9.4 91.7 ± 10.7
Chest 98.3 ± 7.1 97.4 ± 7.1 97.3 ± 7.3

Left Arm 77.6 ± 11.7 68.8 ± 14.1 66.3 ± 16.5
Right Arm 86.8 ± 9.2 79.0 ± 14.5 75.7±17.3
Left Wrist 64.8 ± 22.9 64.9 ± 24.8 62.9 ± 23.2

Right Wrist 66.8 ± 26.7 67.6 ± 26.2 66.9 ± 28.9

Figure 7 shows the confusion matrices of the AdaLSTM classifier trained on the data from the
thighs, ankles, arms, and wrists using the Class-Act dataset. The models trained on the chest, left thigh,
right thigh, left ankle, and right ankle confuse 2.5% 1.5%, 6.1%, 3.0%, and 8.1% of the lying episodes.
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However, the number of misclassified episodes increases to 33.5%, 19.8%, 30.9%, and 29.4% for the
left arm, right arm, left wrist, and right wrist classifiers. We note that the higher misclassification rate
when the sensor is on the left arm than the right arm sensor is due to the confusion of the left side and
prone postures.
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Figure 7. Confusion matrix of the AdaLSTM classifier in classifying lying postures into supine, prone,
and left side for the thighs, ankles, chest, arms, and wrists locations using Class-Act dataset.

5.4. Deep Learning vs. Traditional Machine Learning

In this section, we investigate the possibility of replacing feature-based machine learning models
with deep recurrent neural networks (RNNs). For this purpose, we validate the proposed and
state-of-the-art deep learning and feature-based classifiers in order to detect four major lying postures
from the integrated dataset.

Figure 8 compares the mean and CoV of F1 score and accuracy metrics between AdaLSTM
and ensemble tree classifiers. These classifiers are evaluated while using the Class-Act dataset,
including 22 subjects and nine sensor locations on the body. AdaLSTM achieves 2–10% higher accuracy
and 3–9% higher F1 score than the Ensemble tree classifier when applied to the data collected from the
sensor on the chest, the thighs, or the ankles, as shown in Figure 8a. The gap between the performance
of the two classifiers increases to 3–15% in accuracy when tested on the data that were collected from
the arms or the wrists. Because CoV represents the ratio of variation to the mean of a metric, lower CoV
values show a more promising classification performance. AdaLSTM achieves lower CoV values over
all the sensor locations, therefore, it adopts a better generalization to cross-subject variations when
comparing to the ensemble tree classifier, as shown in Figure 8b. This gap between the performance of
the models demonstrates that deep RNNs are more capable of capturing higher-level patterns in noisy
data with high variance across subjects, such as the data that were collected from the sensor on the
wrists, or the arms.

In addition, we performed Kruskal’s statistical test between the CoV values of the AdaLSTM
and ensemble tree classifiers in order to identify any significant difference between the median of the
two groups. Kruskal’s test on the CoV of F1 score and accuracy show a p-value of 0.100 and 0.006,
respectively. These results could not reject the null hypothesis; therefore, they show no significant



Sensors 2020, 20, 5953 14 of 22

difference between the performance of the two classifiers. Note that both 0.100, and 0.007 are marginally
bigger than the α = 0.005, which suggests evaluation on a larger dataset.
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Figure 8. Comparison between the mean and CoV of F1 score (%) of the ensemble tree and AdaLSTM
classification models for nine body locations on the Class-Act dataset using LOSO validation.

5.5. Comparison with the State-Of-The-Art

We compare the performance of the proposed models against the state-of-the-art in lying posture
detection while using a single accelerometer sensor. The proposed and competing models are described,
as follows.

• ET is the proposed feature-based classifier, which is an ensemble of decision trees trained on
48 time-domain features.

• AdaLSTM is the proposed deep learning model, which is an adaptive long short-term memory
network with Adam optimizer and decaying learning rate.

• LDA, as proposed by Zhang et al., is a linear discriminate analysis (LDA) classifier trained on the
mean value of the signal [11].

• SVM, as proposed by Jeng et al., is a multi-class linear kernel support vector machine classifier
trained on the mean value of the tri-axial accelerometer signal [31].

• LSTM is a long short-term memory network with the same structure as the AdaLSTM, but with a
fixed learning rate of 0.01.

5.5.1. Class-Act Dataset

Table 4 compares the F1 score mean and CoV of the proposed models AdaLSTM and ET against the
state-of-the-art deep learning and feature-based models on the Class-Act dataset. The class-act dataset
contains data from three major lying postures, including supine, prone, and left side, and nine different
sensor locations. Because CoV shows the ratio of variation to mean for a metric, a lower F1 score CoV
value represents a more promising model. The linear feature-based classifiers including LDA and SVM
obtain >88.3% F1 scores and <0.26 CoV when applied to data from the thighs, ankles, and chest;
however, their performance significantly drops to 50.7–82.2% F1 score and 0.22–0.36 CoV when
the sensor is moved to the arms or wrists. The competing deep learning model, LSTM, maintains
83.7–92.5% mean F1 score for the thighs, ankles, and chest locations, and 51.6–75.5% mean F1 score for
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the arms and wrists location. AdaLSTM outperforms the competing deep learning and feature-based
classifiers over all the body locations except for the right thigh, right arm, and left wrist. It achieves
91.5–98.2% mean F1 score and 0.06–0.17 CoV for the thighs, ankles, and chest body locations. It shows
the most promising result when applied to the sensor on the left thigh with 98.2% F1 score and 0.06 CoV.
These results demonstrate the power of deep learning and salient of the left thigh in detecting the
lying postures for a new subject. We note that neural networks with simpler structures such as LSTM
with a fixed learning rate in this paper could not extract useful features and patterns from the raw
data automatically from limited data; therefore, choosing the proper parameters for the deep learning
models is a crucial factor in their performance.

Table 4. Comparison between the mean value and coefficient of variation for F1 score of detecting
three lying postures for different sensor placements and classifiers including Ensemble Trees (ET),
Linear Discriminator Analysis (LDA), LSTM with fixed learning rate (LSTM), and Adaptive LSTM
(AdaLSTM) while using Class-Act Dataset. We show the highest F1 score value, and lowest CoV metric
that models could achieve for each location for LOSO validations in bold.

Location ET LDA SVM LSTM AdaLSTM

Mean Value (%)

Left thigh 90.7 95.4 95.4 92.5 98.2
Right thigh 93.5 96.1 93.2 84.8 91.5
Left ankle 92.1 88.3 94.8 90.2 96.9

Right ankle 82.9 90.0 89.5 83.7 91.7
Chest 97.0 94.8 90.1 88.3 97.3

Left arm 60.9 58.1 53.3 53.7 66.3
Right arm 81.6 82.2 76.1 75.5 75.7
Left wrist 64.1 55.0 50.7 51.6 64.0

Right wrist 67.9 65.5 59.2 54.1 69.4

Coefficient of variation

Left thigh 0.13 0.15 0.13 0.22 0.06
Right thigh 0.15 0.16 0.17 0.28 0.17
Left ankle 0.17 0.18 0.16 0.24 0.06

Right ankle 0.27 0.18 0.12 0.27 0.11
Chest 0.17 0.16 0.26 0.15 0.07

Left arm 0.27 0.33 0.29 0.36 0.24
Right arm 0.26 0.22 0.24 0.23 0.22
Left wrist 0.33 0.36 0.36 0.50 0.25

Right wrist 0.35 0.32 0.29 0.36 0.31

Figures 6 and 7 show the confusion matrix of the ET and AdaLSTM classifiers for the sensor on
the thighs and the wrists locations. Both of the classifiers mislabel a few of the episodes when applied
to data from the sensor on the thighs, as shown.

5.5.2. Integrated Dataset

Table 5 shows the mean F1 score and CoV values of lying posture detection on the dataset of
four major lying postures, including supine, prone, left side, and right side, and five sensor locations,
including thighs, wrists, and chest. The results are leave-one-subject-out validated because it is a more
realistic validation scenario for the application of human lying posture tracking.

As shown in Table 5, ET and AdaLSTM classifiers achieve a promising range of F1 score across all
of the body locations (i.e., 63.3% for the right wrist to 97.3% for the chest). ET classifier obtains the
highest mean F1 score when the sensor is placed on the right thigh (i.e., 97.3%), left wrist (i.e., 65.9%),
and right wrist (i.e., 78.6%) locations among all of the algorithms. The linear classifiers, such as
LDA [11] and SVM [31] achieve higher F1 score than the proposed models in this paper when applied
to data that werecollected from the sensor on the left thighs and the chest. The linear relationship
between the lying posture and accelerometer readings causes the superiority of state-of-the-art for
these locations. On the other hand, extra movements of the hands during lying introduce noise and
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non-linearity to the data that were collected by the sensor placed on these locations; therefore, the F1

score values of linear classifiers drop to 42.1–74.3% for the left and right wrists.
Moreover, the proposed models show lower F1 score variation to mean ratio when comparing

to the state-of-the-art techniques. Ensemble tree classifier achieves CoV of 0.13 and 0.39, for the right
thigh and the left wrist, respectively, and AdaLSTM achieves CoV of 0.12 for the chest. While the CoV
of the linear models, including LDA and SVM, increases to the range 0.32–0.50 for the left and right
wrist locations. The fact that AdaLSTM was not superior to the ET classifier in all of the scenarios
when validated on the integrated dataset could potentially originate from the differences in recording
protocols (e.g., sensor positioning) in the new episodes from the DAS dataset when comparing to the
results from the previous section.

Table 5. Comparison between the mean value and coefficient of variation for F1 score of detecting
four lying postures for different sensor placements and classifiers including Ensemble Trees (ET),
Linear Discriminator Analysis (LDA), Support Vector Machine (SVM), LSTM with fixed learning rate
(LSTM), and Adaptive LSTM (Ada-LSTM) for leave-one-subject-out validation using integrated dataset.

Location ET LDA SVM LSTM AdaLSTM

Mean Value(%)

Left thigh 90.6 94.6 91.4 92.9 93.7
Right thigh 97.3 96.9 91.4 93.2 94.0

Chest 95.4 95.4 96.7 90.7 95.0
Left wrist 65.9 42.1 58.4 54.1 63.3

Right wrist 78.6 66.7 74.3 42.1 69.2

Coefficient of variation

Left thigh 0.19 0.14 0.25 0.09 0.21
Right thigh 0.13 0.15 0.20 0.16 0.17

Chest 0.13 0.13 0.24 0.25 0.12
Left wrist 0.39 0.50 0.50 0.53 0.42

Right wrist 0.34 0.38 0.32 0.40 0.39

6. Discussion

We compared the performance of lying posture tracking while using a single accelerometer on
nine different body locations in this study. When the ensemble tree classifier is trained on the data
that were collected from the sensors on the chest and thighs the lying posture tracking achieves the
highest performance and the least cross-subject variations, while classifiers for the wrists and the arms
show the least performance and highest within-subject variations. These results demonstrate that
individuals might devise arbitrary and dissimilar hand movements during the same lying posture.
Figure 9 compares the confusion matrices of the ensemble tree classifiers trained on the data from
the chest, thighs, and wrists from the integrated dataset. The chest, left thigh, and the right thigh
classifiers confuse 3.8%, 6.6%, and 2.1% of the lying episodes, respectively, while this ratio increases to
28.8% for the left wrist and 20.3% for the right wrist sensor. The confusion between lying postures,
such as the supine and prone postures in the wrists’ sensors, is caused by the wrist rotations while
lying. In particular, the left side posture is mainly confused with the supine when the sensor is on the
left wrist and confused with the supine when the sensor is on the right wrist. Moreover, the majority
of the confusions between the left side and prone postures occur when the sensor is on the right wrist,
and confusion between the left side and supine posture occurs when the sensor in on the left wrist.
These results are mainly due to the similar sensor position during the postures that are confused
with each other. For example, the left wrist holds similar positions when the user lays on the back
(i.e., supine) and lays on the left side, depending on the rotation of the wrist. Additionally, the right
wrist might adopt the same position when the user lays on the front (prone) and lays on the right side.
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Figure 9. Confusion matrix of ensemble tree classifier in classifying lying postures into supine, prone,
and left side for the thighs, ankles, arms, and wrists locations.

We further investigated the possibility of replacing traditional machine learning with deep
learning. Our study showed that deep RNNs such as LSTM can replace the traditional machine
learning classifiers as long as adequately designed. Figure 10 shows the confusion matrices for lying
posture detection using AdaLSTM on data that were collected from the sensor on the chest, the thighs,
and the wrists. These results follow a similar trend as the ensemble tree classifier. 3.1%, 4.2%, and 2.1%
of the lying episodes are misclassified when the sensor is worn on the chest, the left thigh, and the
right thigh, respectively. While the misclassification rate increases to 20.3% and 12.2% for the left
wrist and the right wrist classifiers, respectively. The AdaLSTM confuses 30.0%, and 39.9% less
lying episodes when compared to the ensemble tree classifier when the sensor is placed on the left
wrist and the right wrist, respectively. These results show the ability of the deep RNNS to capture
non-linear relations in the data based on the non-linear operations on a higher level of abstraction.
Besides, deep RNNS, such as AdaLSTM, do not require feature-engineering. One major drawback of
deep learning is the inability to interpret extracted features through the deeper layers of the network.
Moreover, these models are computationally expensive and they require large training datasets to
achieve promising results [39].

The fact that end-to-end deep learning neural networks could not improve the performance
significantly when comparing to the feature-based classifiers demonstrates the lack of sufficient data
as a limitation to this study [22]. We believe adding more data to the training dataset will further
improve the performance of AdaLSTM especially for the data from the sensor on the wrists and the
arms of the users. We are planning to address this issue in two directions: (1) conduct an extensive
multi-modality data collection from a large number of participants performing different lying postures,
including main postures and their other variations. Prior research has shown that combining data from
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different sensor modalities with the appropriate fusion technique will improve the human activity and
posture recognition accuracy as integrating independent features will provide a better view of the task.
Specifically, deep neural networks could potentially learn more informative features from the data with
higher dimension and size [49,50]; and, (2) produce signal-/feature-level synthesis data using data
augmentation techniques, such as rotation, permutation, time-wrapping, scaling, magnitude-wrapping,
jittering [51], sequence to sequence learning techniques [52], and generative adversarial networks [53].
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Figure 10. Confusion matrix of AdaLSTM classifier in classifying lying postures into supine,
prone, and left side for the thighs, ankles, arms, and wrists locations.

7. Conclusions

We implemented a traditional machine learning classifier, ensemble tree, with time-domain
features and a deep recurrent neural network, AdaLSTM, with the decaying learning rate to detect
four major lying postures, including supine, prone, left side, and right side, while using a single
tri-axial accelerometer sensor. We identified amplitude, mean, minimum, and maximum values of the
lateral and vertical axes as the optimal set of time-domain features in traditional machine learning
for accurate lying posture tracking while using a single accelerometer sensor. We determined the
optimal wearing sites of a single accelerometer sensor (thighs and chest) to accurately detect lying
postures. Finally, we evaluated the performance of the proposed models against deep learning and
state-of-the-art feature-based lying posture tracking methods while using two publicly available
human posture and activity datasets. The proposed AdaLSTM using data from the left thigh and
AdaLSTM on the chest locations achieved the highest F1 scores (98.2% for the left thigh and 93.5%
for the chest) and lowest coefficient of variations (0.06 for the left thigh and 0.07 for the chest) when
compared to the other models and sensor locations for the Class-Act dataset. The proposed ensemble
tree classifier achieved 97.3% F1 score and 0.15 CoV when applied to the data from the sensor on the
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right thigh, and AdaLSTM obtained 95.0% F1 score and 0.12 CoV when applied to the data from the
chest sensor from the integration of Class-Act and DAS datasets. These results demonstrated the
thighs and chest as the optimum location for accurate lying posture tracking while using a single
accelerometer.
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