
sensors

Article

End-to-End Monocular Range Estimation for Forward
Collision Warning

Jie Tang and Jian Li *

College of Intelligence Science, National University of Defense Technology, Changsha 410073, China;
kakaxi314@nudt.edu.cn
* Correspondence: lijian@nudt.edu.cn

Received: 11 September 2020; Accepted: 16 October 2020; Published: 21 October 2020
����������
�������

Abstract: Estimating range to the closest object in front is the core component of the forward collision
warning (FCW) system. Previous monocular range estimation methods mostly involve two sequential
steps of object detection and range estimation. As a result, they are only effective for objects from
specific categories relying on expensive object-level annotation for training, but not for unseen
categories. In this paper, we present an end-to-end deep learning architecture to solve the above
problems. Specifically, we represent the target range as a weighted sum of a set of potential distances.
These potential distances are generated by inverse perspective projection based on intrinsic and
extrinsic camera parameters, while a deep neural network predicts the corresponding weights of
these distances. The whole architecture is optimized towards the range estimation task directly in an
end-to-end manner with only the target range as supervision. As object category is not restricted in the
training stage, the proposed method can generalize to objects with unseen categories. Furthermore,
camera parameters are explicitly considered in the proposed method, making it able to generalize to
images taken with different cameras and novel views. Additionally, the proposed method is not a
pure black box, but provides partial interpretability by visualizing the produced weights to see which
part of the image dominates the final result. We conduct experiments to verify the above properties
of the proposed method on synthetic and real-world collected data.

Keywords: end-to-end learning; range estimation; forward collision warning; convolutional neural
networks

1. Introduction

Range estimation, estimating distance from ego to the closest object in front, is the core component
of the forward collision warning (FCW) system. Based on the estimated range and time to collision
which can be computed by ranges in multi-frame, FCW can be made for automobile robot and
advanced driver assistant systems (ADAS) to avoid potential collisions [1–3]. Although radar or
LiDAR sensors can provide accurate range measurements, they are too heavy and expensive for
small robots and ADAS. Estimating range from a single monocular image is a convenient and cheap
solution, which is favored and widely adopted by commercial products, such as the famous Mobileye’s
ADAS (https://www.mobileye.com/our-technology/adas/). In addition to the usage in industrial
applications, predicting range from a monocular image is a challenging ill-posed problem with great
value for academic research.

Due to the ambiguity of distance estimation from a monocular image, especially on the global
scale [4], geometry relationship of perspective projection is often used to facilitate this estimation.
Two cues are mostly considered in traditional approaches. One is the known vehicle size, in which
the object category is constrained as a vehicle with a fixed size. According to the size of the detected
vehicle in the image, the target range can be inferred through perspective projection [5–7]. However,
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considering different subcategories of vehicles like car, SUV, bus, and truck, the size of a vehicle has a
large variance that could lead to a large error in the estimated range. The other cue is the planar road
surface assumption. Typically, an object is detected in the image and the original image is converted to
an Inverse Perspective Mapping (IPM) image to achieve distance along the forward direction [8–11].
Compared with the known vehicle size, planar road surface assumption is more general and presents
more accurate results [12]. In general, all these traditional approaches need to detect the object first
and then estimate the distance to this object by utilizing perspective projection with the chosen cue.

Recently, deep learning methods have achieved great success in the computer vision community.
For range estimation, prior works [13–15] have proposed object-specific end-to-end deep learning
frameworks. They follow the multi-task learning scheme to simultaneously detect objects and estimate
the corresponding range for each object by direct regression. Compared to separately hand-craft
designing or optimizing each step in traditional approaches, end-to-end manner of deep learning
methods can train all components jointly with the learned features adapting to the task of interest and
achieve superior performance. However, like traditional approaches, they can only estimate ranges
for objects from some limited given categories, which still does not fulfill the requirement of FCW to
respond to various objects (including unseen categories in the training stage).

In contrast to previous methods of mostly estimating ranges to all the specific objects in the image,
our method is class-agnostic and only yields range to the closest object in the preset collision region,
which is the real requirement of FCW. We express the target range as a weighted sum of a set of potential
distances. These distances are from a distance map generated by inverse perspective projection based
on intrinsic and extrinsic camera parameters, while the corresponding weights are from the weight
map produced by a deep neural network. Unlike prior work [13] where the range is directly regressed
with camera information ignored when deploying, camera parameters are explicitly embedded in our
distance map generation. As demonstrated by [16–18] that explicitly implementing camera parameters
into network can improve generalization capability, while conventional convolutional neural network
(CNN) based direct regression methods tend to overfit dataset that can not generalize to new cameras
and novel views. At the same time, the whole architecture of our method is differentiable, which also
enables the merits of end-to-end learning.

Towards this end, we propose a novel network structure to predict the corresponding weights
of the generated distances for range estimation. Specifically, following the planar road surface
assumption, we first utilize inverse perspective projection to generate a distance map, in which
each pixel representing the distance to a point on road surface. Then, the weight map is generated by
a U-Net structure with the same resolution as the distance map. Considering that the convolutional
layer can only provide spatially-agnostic operation in local, it is difficult for a CNN structure to
learn the point that what we want is the range to the closest object, when multiple objects are in front.
Therefore, we use fully convolutional networks as the encoder and decoder parts of the U-Net structure
and employ fully connected layers on the encoded features to provide spatially-specific operations
and global receptive field. Finally, we mask both the distance map and weight map to just remain
pixels in the preset collision region to estimate range as a weighted sum of distances. The whole
network is trained in an end-to-end manner with only the target range as supervision, which avoids
expensive object-level annotation such as class label and bounding box and encourages the network to
be class-agnostic as well.

We process a synthetic dataset to build a dataset with accurate ground truth range for training
and testing. In addition to synthetic data, we also collect data in the real world by our autonomous
driving vehicle to verify our method. Our method can generalize to objects of unseen categories,
different cameras, and novel views. It also presents superior performance when compared with an
IPM-based two-step method. Moreover, our method is not a pure black box but provides partial
interpretability because the produced weight map can easily be visualized to indicate which part of
the image dominates the estimated range.
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2. Approach

2.1. Overview

Our method is an end-to-end deep learning architecture that directly estimates range to the
closest object in front for forward collision warning (FCW). The pipeline of the proposed method
is illustrated in Figure 1. Based on the planar road surface assumption, we use inverse perspective
projection to convert the U, V coordinate maps of an image to a distance map, in which each pixel
value corresponds to the distance to the road surface along the forward direction. The range to be
estimated is formalized as a weighted sum of these distances. The corresponding weights are generated
from a weight generation network with a single image and the mask of the collision region as input.
The whole network is differentiable and can be supervised only by the ground truth range.
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Figure 1. Overview of architecture. The range is represented as a weighted sum of a set of potential
distances and the whole architecture consists of weight map generation and distance map generation.
The solid lines with arrows represent the forward implementation of our method, while the dashed
lines with arrows indicate the loss calculation and back-propagation in the training stage.

2.2. Distance Map Generation

Estimating distance from a single monocular image is severely under-constrained. The estimated
distance would have inherent ambiguity, especially on the global scale. Some assumptions are needed
to infer distance directly from image coordinates. Our method follows the planar road surface
assumption to generate a distance map through inverse perspective projection. The planar road surface
assumption assumes that the road surface is a plane and objects are on the road, which is general and
has no restriction on the category of the object.

Under the pinhole camera model, the 3D scene is mapped onto a 2D image plane. Thus, each pixel
(u, v)T in an image corresponds to a point (x, y, z)T in 3D space. The camera coordination system and
the world coordinate system in our setting are illustrated in Figure 2. The center point of the world
coordinate system is on the road plane and straightly beneath the camera with Z axis perpendicular
to the road surface. The correspondence relationship between these two coordinate systems can be
expressed by perspective projection:

s · (u, v, 1)T = K · [R | T] · (x, y, z, 1)T , (1)

where K and [R | T] are intrinsic and extrinsic camera parameters respectively and s is the scalar
projective parameter. With the planar road surface assumption, for all the 3D points on the road surface,
coordinates z in the world coordinate system equal to 0, which can be removed from Equation (1). Then,

s · (u, v, 1)T = P · (x, y, 1)T . (2)
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Here, P is a 3× 3 projection matrix. For each pixel (u, v)T in the image coordinate, we use inverse
projection to calculate the corresponding (x, y)T , which indicates a point on the road surface with x
representing the distance along the forward direction.
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Figure 2. Our autonomous driving vehicle with image coordinate system, LiDAR coordinate system,
and world coordinate system in our setting.

Some traditional methods [8–10] use perspective projection to convert the original image to an
image in bird’s eye view which is usually called an Inverse Perspective Mapping (IPM) image. Then the
distance information is obtained from this interpolated IPM image. In contrast, the proposed method
works on the original image plane to generate a distance map with the same resolution as the original
image. One example of the generated distance map is visualized in Figure 1. The value on each pixel
of distance map is the calculated x from the inverse perspective projection, representing the distance
to the road surface. As we are only concerned with the object in front of the ego vehicle, which may
cause a forward collision, we set a potential collision region to mask the distance map by limiting the y
coordinate according to the width of the ego vehicle and the x coordinate according to the farthest
distance we care about. Finally, the masked distance map consists of a set of potential distances for the
target range. More details of the mask generation are introduced in Section 3.

For this distance map generation, even though the required intrinsic and extrinsic camera parameters
can be offline calibrated, the vehicle motion may cause perturbation on the extrinsic parameters.
The extrinsic parameters can also be estimated on-the-fly. For example, in [19], the extrinsic parameters
are estimated based on the parallel lane detection. How to obtain accurate extrinsic parameters for
inverse projection is out of the scope of this paper. In our method, we assume we have both the
accurate intrinsic and extrinsic camera parameters.

2.3. Weight Map Generation

We consider the target range as a weighted sum of a set of distances within the masked region.
Thus, the range is obtained by dot product of the distance map and a weight map. The weight map is
generated by a deep neural network with the same resolution as the distance map. In principle, any
off-the-shelf dense prediction architecture can be adopted for such weight map generation. In our
method, as shown in Figure 3, we employ a novel U-Net structure network to generate the weight
map by extracting features on multi-resolution.
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Figure 3. The network structure of weight generation network. The U-Net structure is an encoder-decoder
network. The encoder and decoder parts consist of fully convolutional networks. Fully connected
layers are applied to the flattened encoded features to provide spatial position information. See the text
for more details.

Typically, the U-Net structure network [20] is an encoder-decoder network. We adopt fully
convolutional structures for the encoder and decoder parts. For the encoder part, we firstly apply a
5 × 5 convolution layer on the input images. Then, each time a convolution layer with the stride of 2 is
adopted to reduce the resolution of the feature map. For each resolution, 3 stacked ResBlocks [21] are
used to extract features. The ResBlock consists of two sequential 3× 3 convolution layers with a skip
layer. The resolution of the encoded feature is 1/32 of the original resolution. For the decoder part,
we use a sequence of deconvolution layers with the stride of 2 to increase the resolution of the feature
map. Finally, a 1 × 1 convolution layer is used to map the feature map to single-channel output. In this
U-Net structure, for each resolution, we employ an additional skip connection to fuse the feature maps
of the same resolution from the encoder to the decoder. Each convolution or deconvolution layer is
followed by a batch normalization [22] and a ReLU [23] layer. As shown in Figure 1, we concatenate
the color image and a mask of preset collision region as the input of the U-Net structure. The mask
added here is to force the network to pay attention to the region of interest.

As it is possible to have multiple objects in front, the network needs to learn the point that
the desired range is the one to the closest object. However, this point is difficult to learn by a
fully convolutional network [24], since the parameter sharing mechanism of convolution layer can
only provide spatially-agnostic operation with local receptive field. To make the network aware
of the spatial position information, we apply three fully connected layers which can assign unique
parameters for each spatial position on the encoded feature. For the encoded feature map, we keep
the channel dimension unchanged and only flatten the spatial dimension, i.e., the height and width
dimension. Then the linear operation of the fully connected layer works on the flattened feature and
is shared among channels. By sharing parameters among channels, these fully connected layers can
introduce spatial position information without causing too many parameters. In addition to spatial
position information, these fully connected layers also provide global perspective field for the network.
We apply a dropout [25], layer normalization [26], and ReLU [23] layers after each fully connected
layer. The produced features from these fully connected layers are reshaped back (unflattened) to
feature map with 2D spatial dimensions and fed to the decoder part of the network.

In our method, these generated weights work as probabilities of corresponding distances for
the expected range. Thus, these weights should be non-negative and their sum should be equal to 1.
We adopt a softplus [27] layer on the single-channel output of the U-Net structure to yield a weight
map with all the values positive. The weight map is then masked by the preset collision region. Finally,
we normalize the masked weights to make them suitable as probabilities.
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2.4. End-to-End Learning

Our method learns the range from a single image in an end-to-end manner. This end-to-end
learning is optimized by minimizing the difference between estimation and ground truth range.
Unlike previous end-to-end object-specific distance estimation methods [13–15] that require expensive
object-level annotations as supervision, our method is only trained with ground truth range and has
no restriction on object category, which makes it possible to generalize to objects of unseen categories.
Meanwhile, we have no direct supervision on the predicted weight map. The weight map is generated
by the weight generation network which is only supervised to produce accurate range estimation.
Since the weight map is a single channel image, as shown in Figure 1, it can easily be visualized to see
which part of the image dominates the estimated range. Thus, our method is not a pure black box but
has partial interpretability.

2.5. Training Settings

We adopt mean absolute error (MAE) as the training loss to train our range estimation network.
We process a synthetic dataset to build a dataset with accurate ground truth range for training. In total,
about 170k samples are used for training. More details about the dataset preparation are introduced in
Section 3.1. Color image with bottom-center cropped 320× 960 resolution and the corresponding mask
of the preset collision region are used as the input of our network. The code is implemented in Pytorch
and trained from scratch in a GPU server with 8 Nvidia GTX 2080Ti GPUs. The batch size on each GPU
is 8 and the batch norm layers in our network are synchronized across GPUs. We utilize ADAM [28] as
the optimizer with an original learning rate of 10−3 and weight decay of 10−6. The network is trained
for 80 epochs while the learning rate drops to half at the 40th and 60th epochs.

3. Experiment Setup

One of the properties of data-driven methods especially deep learning methods is data-hungry.
A large dataset is usually necessary for training. However, it is difficult to obtain accurate range
information in the real world, especially considering that it must satisfy the planar road surface
assumption adopted in our method. To have a large enough dataset with little noise and error on
ground truth range, we process a synthetic dataset to build a dataset for training and testing. We also
collect data in the real world by our autonomous driving vehicle with ground truth range from LiDAR
to verify our method.

3.1. Synthetic Dataset

The synthetic Apollo dataset (https://apollo.auto/synthetic.html) is one of the largest
photo-realistic synthetic datasets for autonomous driving currently. The dataset is created by Unity
3D engine with various distinct virtual scenes, including highways, urban, residential, downtown,
and indoor parking garage. The dataset also contains plenty of environmental variations, such as
different times of day, different weather conditions, different objects, and varied road surface qualities.
In addition to the synthesized color image, it provides extensive ground truth data, such as 2D/3D
object data, semantic/instance-level segmentation, depth, and 3D lane line data. We choose data in
good light conditions (data with time at 9:00, 13:00, and 14:00) and good road surface quality (referred
to as ‘No Degradation’ in this dataset) for our experiment.

Camera parameters are required by our method. The intrinsic camera parameters are provided
by the dataset. We calculate the extrinsic parameters, which transfer the coordinate from the world
coordinate system to the camera coordinate system shown in Figure 2. In particular, we first find
the depths of all the pixels whose semantic labels are ‘road’ from the depth image and semantic
segmentation image. Based on camera projection, we convert these pixels with depth to a set of 3D
points. Then we use RANSAC to fit a plane from these 3D points. Based on the normal of the road
plane, we calculate the pitch and roll angles and the height to the road plane of the ego camera. Finally,

https://apollo.auto/synthetic.html
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we use these angels and height to build the [R | T] matrix as the extrinsic camera parameters. In this
process, we remove the image from the dataset if we find these 3D points have a sufficient number of
outliers of the fitted plane, which indicated that the sample violates the planar road surface assumption.

The target range to the closest object depends on the preset collision region. The collision region
is a rectangle space on the road, whose width is the width of the ego vehicle, and height is the farthest
distance concerned. The rectangle is located in front of the ego vehicle, and the position may have
an offset angle to the forward direction of the camera due to the yaw angle between the camera and
vehicle. We project the collision region into image plane to get the potential collision mask. Thus,
the collision region is decided by the width of the ego vehicle, the farthest distance concerned, and the
offset angle to the forward direction of camera. For this synthetic Apollo dataset, we randomly adjust
these three parameters (the vehicle width from 1.5 m to 2.5 m, the farthest distance from 80 m to 90 m,
the offset angle from −10◦ to +10◦) to provide different collision regions. In this way, a single image
may have different target ranges corresponding to different collision regions. It can be seen as data
augmentation and forces our method to be robust to different masks.

In the collision region, we take the closest distance among the pixels whose semantic labels are not
‘road’ as the target range. As there are confusing situations in the synthetic Apollo dataset, e.g., leaves
on the road, which may not cause a forward collision, we remove the sample from the dataset if the
semantic label of this closest-distance pixel is ‘vegetation’. We also remove the sample from the dataset
if the semantic label of this closest-distance pixel is ‘terrian’, which may be just a small bump on the
road. In Figure 4, we present some examples from the generated dataset. The closest-distance pixel is
marked with a red dot. In total, there are 190k samples with color images, camera parameters, collision
regions, and ground truth ranges. We randomly select 90% samples as the train set and the remaining
as test set.

Distance

Image Masked Img. Masked Img. Masked Img. Masked Img.

Segmentation Masked Seg. Masked Seg. Masked Seg. Masked Seg.

Range: 90.00 Range: 25.20 Range: 6.43 Range: 41.62

Mask 1 Mask 2 Mask n-1 Mask n

Figure 4. Processed Apollo dataset. These masks represent different preset collision regions. Even for
the same color image, different collision regions may induce different target ranges.

3.2. Real-World Data Collection

We also collect data in the real world by our autonomous driving vehicle to verify our method.
Our autonomous driving vehicle has one 12 mm lens camera and one 128-line LiDAR mounted as
shown in Figure 2. The camera and LiDAR are synchronized with a trigger signal to guarantee LiDAR
measures range in the forward direction when the image is captured by the camera. In order to obtain
measurements as accurately as possible, our ego vehicle is parked on a flat road to collect data and
avoid the effect of ego-motion. In the process of data collection, the scene in front is almost fixed or
dynamic objects move at a very low speed. The intrinsic and extrinsic camera parameters (camera
coordinate system to LiDAR coordinate system and camera coordinate system to world coordinate
system) were calibrated before data collection. The collision region for the data collected by our
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autonomous driving vehicle is determined by the vehicle width of 1.8 m, the farthest distance of 85 m,
and the offset angle of 0◦ .

4. Results and Analyses

Our method produces range to the closest object in the front preset collision region for FCW.
We demonstrate the properties of our method and compare its performance with a traditional
IPM-based method.

4.1. Interpretability

Our method is not a pure black box but has partial interpretability. The estimated range is
produced as a weighted sum by a distance map and weight map. The weight map, which is generated
by a U-Net structure, is a single-channel image of the same resolution with the input color image.
It works as a probability map to yield the expected range. By visualizing the generated weight
map, we can take a look at which part of the image the weight map focused on to produce the
estimated range.

We illustrate several examples in Figure 5. It is interesting that even no direct object-level
supervision such as bounding box is used, our network successfully learns to give a high response on
the intersection region of the target object and road surface. Compared to the other part in the preset
collision region (the green region in the last row), the distances in the intersection region of the distance
map are closer to the target range. Thus, it is reasonable to give larger weights on this intersection
region for range estimation. From this view, our method shares the same philosophy with traditional
IPM-based methods that the intersection region of the target object and road surface is found for range
estimation. However, in contrast to achieving the intersection region by object detection in traditional
IPM-based methods, our method implicitly learns to give larger weights on this intersection region in
an end-to-end manner towards the true range estimation task.

Gt. 11.91 Gt. 13.03 Gt. 20.23Est. 11.81 Est. 13.05 Est. 20.15

Figure 5. Visualization of generated weight maps. The first row is the color image. The second row
is the colorized weighted map. The last row is the color image superimposed on the preset collision
region and the colorized weighted map. This interpretable representation of the last row will be used to
illustrate experimental results in the following. We use cyan rectangles to highlight the notable regions
and zoom in these regions for better visualization.

4.2. Class-Agnostic Property

Previous monocular range estimation methods mostly involve two sequential steps of object
detection and range estimation that can only estimate ranges for objects from some limited given
categories. Our method is only supervised by the target range and has no restriction on the object
category. This encourages our method to be class-agnostic, which can work on objects of various
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categories, even unseen categories in the training stage. In Figure 6, we illustrate the mean relative
absolute error (MRAE) on the test set. We can see that our method performs well on objects from
various classes.

Figure 6. Performance on target objects of various classes.

We illustrate some results in Figure 7. The top row is the results of images from the test set of the
processed synthetic Apollo dataset. Our method works well on these examples which are more flexible
and rarer than typical objects such as cars and pedestrians. The bottom row shows the results on some
real-world collected data. These objects, including fire-extinguisher, cart, and suitcase, are categories
that rarely appear in traffic scenes and are not included in the train set. We can see our method can
still work on these unseen categories, which demonstrates the class-agnostic property of our method.

Gt. 12.14

Gt. 16.77

Gt. 7.27

Gt. 19.42

Gt. 13.75

Gt. 10.53

Est. 12.20

Est. 17.11

Est. 7.17

Est. 19.96

Est. 13.84

Est. 10.99

Figure 7. Results on objects of various categories.

4.3. Generalization Capability

Our method is trained on the processed synthetic Apollo dataset. As the intrinsic and extrinsic
camera parameters have been explicitly embedded in the distance map generation of our method,
our method can generalize to images captured from different cameras and novel views, while methods
estimating range by hard regression with camera parameters ignored tends to overfit dataset and can
not generalize. We selected some examples from the KITTI dataset [29] and virtual KITTI dataset [30],
and show the results in Figure 8. The first row is the paired images from KITTI dataset [29] which
are captured in the traffic scene by a stereo camera mounted on an autonomous driving vehicle.
The following two rows are the images from virtual KITTI dataset [30], which is a synthetic dataset.
The second row is two images captured by cameras mounted with left 15-degree and right 15-degree
offsets to the forward direction. The two images in the last row are from cameras with left 30-degree
and right 30-degree offsets. We can see our method works well on these six images, even though they
are captured with different cameras and different views than images in the train set.
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Gt. 24.77

Gt. 31.33

Gt. 31.33

Gt. 24.77

Gt. 31.33

Gt. 31.33

Est. 24.35

Est. 31.15

Est. 31.19

Est. 24.51

Est. 30.82

Est. 31.23

Figure 8. Generalization capability. These six images are from KITTI and virtual KITTI datasets.
They are collected with different cameras and views than the training dataset.

4.4. Closest Object

The goal of our method is to estimate the range to the closest object for FCW. When there are
multiple objects in the potential collision region, we expect our method to provide the range to the
closest object, without being disturbed by other objects that are farther away. In order to encourage
our method to learn this point, we apply fully connected layers on the encoded features to provide
spatially-specific operations and global receptive field.

We test our method on some examples with multiple objects in front and show results in Figure 9.
The top row is the results of one image with three different collision regions. The different collision
regions contain different numbers of objects with different target ranges. We also collect data with
two pedestrians walking in front shown in the bottom row. For each image, we can see from the
superimposed weight maps that our method can focus on the closest object to estimate range.

Gt. 41.57

Gt. 14.28 Gt. 14.18 Gt. 11.89

Gt. 28.64 Gt. 12.63Est. 42.12

Est. 14.13 Est. 14.23 Est. 11.88

Est. 28.56 Est. 12.65

Figure 9. Results on images with multiple objects in front.

4.5. Comparison

As analyzed in Section 4.1, by visualizing the generated weight map, we find our method shares
the same philosophy with the traditional IPM-based method. Thus, we compare the performance
of our method and traditional IPM-based method on the test set of the processed synthetic Apollo
dataset. For the IPM-based method, we first use the released code and model of [31] to detect
the car in front which is one of the top-ranked 2D car detection methods in KITTI object detection
benchmark (http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=2d). With the
same camera parameters as our method, we then project the center point of the bottom side of the
bounding box into bird’s eye view coordinate and interpolate distance from the IPM image. Since the
object category is constrained as car for the object detection model of [31], we only consider the samples

http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=2d
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in the test set whose closest object in the preset collision region belongs to the classes of ‘bus’, ‘SUV’,
‘van’, ‘sedan’, ‘truck’, ‘hatchback’, and ‘pickuptruck’. We ignore the sample if the closest car is not
successfully detected by [31]. We show the MAE of these two methods in Figure 10. Compared with
the IPM-based method, our method has a lower MAE over all the ranges.

Figure 10. Performance on cars in the test set of the processed synthetic Apollo dataset.

We also collect a data sequence by our autonomous driving vehicle with a car moving in front
to evaluate the performance of our method and traditional IPM-based method. Figure 11 depicts the
quantitative results. The horizontal axis is the ground truth range obtained from the LiDAR sensor
and the vertical axis is the absolute error between the estimate and ground truth range. We can see
that compared with the IPM-based method, our method has a better performance, especially when the
target car is far away.
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Ground Truth Range (m)
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Figure 11. Performance on a data sequence collected by our autonomous driving vehicle.

We illustrate some samples of the results of our collected data in Figure 12. The top row is the
results of the IPM-based method and the bottom row is the results of our method. The bounding
boxes are drawn with red rectangles for the IPM-based method. We can see that even the target car
is successfully detected in the IPM-based method, its performance is still worse than our method
with a larger error on the estimated range. We attribute the superior performance of our method to
the end-to-end learning. Compared to end-to-end learning whose optimization objective is towards
the true task, the IPM based method is a two-step method with the first step optimized to accurate
bounding box for object detection which is a proxy task. Object detection tends to produce relatively
accurate bounding boxes, for example, satisfying the criteria of IoU>0.7 in KITTI object detection
benchmark. However, it is still difficult to achieve the precise intersection region of the object and road
surface from the detected bounding box.
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Figure 12. Samples of results in our collected sequence. The results of the Inverse Perspective Mapping
(IPM)-based method are shown in the top row. The results of our method are shown in the bottom row.

4.6. Failure Cases

Our method is trained on the train set of the processed synthetic Apollo dataset. In Figure 13,
we illustrate the mean absolute error (MAE) on the train set and the test set under different ranges.
We can see that distant objects tend to have larger errors.

Figure 13. Mean absolute error (MAE) (in m) on the train set and test set under different ranges.

As MAE only demonstrates the mean performance of our method on the dataset, we also plot
the δ of our method on the test set in Figure 14. δ means the percentage of samples where the relative
error is less a threshold. We can see that for more than 98% of samples, the relative error is less than
0.1. While even the threshold of relative error goes up to 1.0, δ is still less than 100%. This suggests
that there are cases in which our method completely fails.

Figure 14. δ corresponding to the threshold of relative error in the test set.

Thanks to the partial interpretability of our method, we can classify and analyze these failure
cases. In general, the failure cases of our method can be classified as five types. We illustrate these
five types of failure cases in Figure 15. The first type is complex road surface, which may be caused by
marks or shadow of trees. As shown in Figure 15a, our method is affected by the shadow on the road
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surface and treats it as the target object. The second type is small distant object shown in Figure 15b.
The object only occupies a few pixels and is missed by our method. The third type is that the object
is almost at the boundary of the preset collision region as shown in Figure 15c. In this ambiguous
position, our method is confused whether to respond to this object. The fourth type is that our method
does not respond to the closest object, but a farther object. As shown in Figure 15d, it mostly occurs
when the perception of the closest object is difficult, such as a very thin pole. The fifth type is that
our method responds to multiple objects as shown in Figure 15e. In our method, we employ a U-Net
structure network to produce the weight map. Even though we apply fully connected layers on the
encoded features to provide spatial position information, the proposed method still does not have
strict constraints to ensure that the generated weight map only responds to the single closest object.

Gt. 36.69 Gt. 72.81 Gt. 71.90

Gt. 30.87Est. 50.19Gt. 11.34

Est. 16.92

(a)

(d) (e)

(b) (c)
Est. 88.04 Est. 11.85

Est. 33.23

Figure 15. Examples of five types of failure cases of our method. See the text for more details.

5. Conclusions and Future Work

In this paper, we propose a novel end-to-end network to estimate the range to the closest object in
front from a monocular image for forward collision warning (FCW). The target range is represented as
a weighted sum of a set of potential distances. These distances are generated by inverse perspective
projection under the planar road surface assumption and the corresponding weights are produced
by a deep neural network. The proposed method is end-to-end trained with only the ground truth
range as supervision. Experimental results on synthetic data and real world collected data show that
the proposed method has several properties favored by FCW: (1) Class-agnostic property for objects
of various categories; (2) generalization capability for images from new cameras and novel views;
(3) partial interpretability indicating which part of the image dominates the result; and (4) superior
performance to the IPM-based method.

In the future, we plan to collect a large dataset in the real world with accurate ground truth
range to fine-tune our model, as the model trained by a synthetic dataset could still easily fail in a
real complex scene due to the gap between these two domains. Furthermore, we assume the planar
road surface and accurate extrinsic camera parameters in our method. Fitting for non-planar road and
estimating extrinsic camera parameters on-the-fly even as a trainable component of the method would
be interesting and meaningful extensions of this work.
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