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Abstract: Streptococcus pyogenes is a known cause of a wide spectrum of diseases, from mild and
acute to severe invasive infections. This paper concerns the development of a novel impedimetric
biosensor for the detection of the mentioned human pathogen. The proposed biosensor is a gold disk
electrode modified with commercially available antibodies attached to the surface of the electrode
by carbodiimide chemistry. The conducted tests confirmed the specificity of the antibodies used,
which was also demonstrated by the results obtained during the detection of S. pyogenes using
electrochemical impedance spectroscopy. The developed sensor successfully detected the presence of
S. pyogenes in the sample and the detection limit was calculated as 9.3 cfu/mL. The results obtained
show a wide linear range for verified concentrations of this pathogen in a sample from 4.2 × 102 to
4.2 × 106 cfu/mL. Furthermore, the optimal experimentally determined time required to perform
pathogen detection in the sample was estimated as 3 min, and the test did not lead to the degradation
of the sample.

Keywords: biosensor; 4-aminothiophenol; gold electrode; impedance spectroscopy; antibodies;
Streptococcus pyogenes

1. Introduction

Streptococcus pyogenes, called Group A Streptococcus (GAS), is widely occurring and one of the
most frequent, exclusive to humans pathogens. This gram-positive microbe is known as a cause
of a broad spectrum of diseases [1–7]. Exemplary are mild acute infections such as pharyngitis or
tonsil inflammation, skin infections (impetigo, pyoderma, erysipelas, or cellulitis), or severe invasive
infections, such as endocarditis, bacteraemia, puerperal fever, scarlet fever, or necrotising fasciitis [8–12].
Nowadays, GAS remains a major health concern because of rapidly progressive diseases and also due
to severe after-effects of untreated infections [13–15].

High incidence and severity of GAS pathogens occur due to productions of a large number of
virulence factors, including surface proteins (such as M proteins, protein F), hyaluronic acid capsules,
or secreted enzymes and toxins [2]. The surface of S. pyogenes is extraordinarily complex and is
composed of capsular polysaccharide, cell wall, lipoteichoic acid, and proteins [16]. Commercially
available assays can recognize the surface proteins of S. pyogenes [17].
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Nowadays, numerous advanced techniques can be involved in GAS recognition and
identification [18–21]. Methods called nucleic acid amplification testing (NAAT) such as LightCycler
Strep A assay combine PCR reaction and real-time detection of an amplified product; the Cobas Liat
Strep A based on nucleic acid purification and detection also through PCR technique, are used in clinical
routine [22–26]. Comparing to conventional detection methods, NAAT provides auspicious results with
sensitivity and specificity reaching 97% and 93%, respectively (in Liat Strep A technique), or 93% and
98%, respectively (in LightCycler Strep A assay) in a relatively short time (from 15 to 60 min). Moreover,
the NAAT techniques have received Food and Drug Administration (FDA) clearance [13,22,23].

Electrochemical detection is another promising diagnostic method. Sensors capable of recognition
of specific bacteria can base on protein and DNA detection as well on immunoassays [27–36]. Ahmed
et al. [37] proposed an electrochemical sensor for the Streptococcus pyogenes detection from human
saliva. The authors suggested the modification process through polytyramine film immobilized with
the biotin-NeutrAvidin complex. This approach requires previous antibodies biotinylation; however,
this method demands a relatively long time of operation and specific sample preparation.

Here we develop a novel sensitive, rapid electrochemical immunosensor based on impedance
measurements. This type of sensor for the detection of Streptococcus pyogenes has never been published
in the literature before. The entire surface modification process has been developed in a way that
guarantees high sensitivity of the sensor and eliminates the problem of sample decomposition during the
test. The surfaces of gold disk electrodes were easily modified in a three-step procedure. Commercially
available antibodies were anchored using carbodiimide chemistry on the surface of the electrodes on
which a self-assembled layer had been previously formed with 4-aminothiophenol. The described
sensor shows very good repeatability of measurements, satisfactory sensitivity, and specificity. In the
future, our sensor can serve as a tool for point-of-care diagnostics after miniaturizing this system.

2. Materials and Methods

2.1. Materials

Phosphate buffered saline (1 × PBS, pH 7.4), bovine serum albumin (BSA), and
glutaraldehyde solution (GA, 25%) were purchased from Sigma-Aldrich (St. Louis, MO, USA).
4-aminothiophenol (4-ATP, 96%) and Streptococcus pyogenes Group A Polyclonal Antibody (anti-Spy)
were obtained from Thermo Fisher Scientific (USA). Pure ethanol, potassium chloride, K3[Fe(CN)6],
and K4[Fe(CN)6] × 3H2O were acquired from Chempur (Poland). Artificial saliva was provided by
Pickering Laboratories (USA). 0.1% BSA was prepared in 10 mM, pH 7.4 sterile phosphate buffer.
All aqueous solutions were prepared using ultrapure water (HydroLab).

All electrochemical measurements were carried out using a potentiostat-galvanostat system
(Metrohm, Autolab, The Netherlands) in a standard three-electrode assembly in a Faraday cage
(Lambda System, Poland). Gold disc electrodes (diameter: 1.6 mm, surface area: ca. 0.02 cm2),
were obtained from Mineral (Poland) and utilized as the working electrode, while Ag/AgCl/0.1 M
NaCl (Mineral, Poland) functioned as the reference electrode and Pt sheet (Mennica-Metale, Poland)
as the counter electrode. All electrochemical experiments were carried out in 3 mL of 5 mM
K3[Fe(CN)6]/K4[Fe(CN)6] redox system containing 0.1 M KCl at room temperature. The experimental
conditions of cyclic voltammetry (CV) were a potential range from −0.15 to 0.40 V and a scan rate
of 100 mV/s. Electrochemical impedance spectroscopy (EIS) was recorded at the formal potential of
the redox couple (0.16 V), in the frequency range between 10 kHz and 1 Hz. All measurements were
repeated on three separate electrodes to obtain repeatability of measurements and thus, reliability of
the biosensor.

Streptococcus pyogenes ATCC 700294, Acinetobacter baumannii ATCC 19606, and Haemophilus
influenzae ATCC 51907 were purchased from ATCC (US). Streptococcus pyogenes 2318, Streptococcus
pyogenes 917, Streptococcus pyogenes 915, Streptococcus pyogenes 2317, Klebsiella pneumoniae,
and Staphylococcus aureus MRSA were obtained from PCM (Poland). All strains were grown overnight
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at 37 ◦C with shaking (200 rpm) in BHI (Brain Heart Infusion Broth, Sigma-Aldrich). In the case
of H. influenzae, media were supplemented with β-NAD+ and heme-histidine (sBHI) as described
elsewhere [38]. 1 mL samples of overnight cultures were centrifuged and resuspended in PBS to bring
the optical density (OD600) to 1.0. Serial dilutions in PBS were prepared (10−2, 10−3, 10−4, 10−5, 10−6).
Each dilution was plated on BHI plate (or sBHI for H. influenzae) and incubated overnight at 37 ◦C.
The number of bacteria for each dilution was counted, the results were averaged, and the cfu/mL was
calculated as follows (1):

cfu/mL = (number of colonies × dilution factor)/(volume of culture plate). (1)

Afterward, serial dilutions in PBS for electrochemical measurements were prepared (4.2 × 102,
4.2 × 103, 4.2 × 104, 4.2 × 105, 4.2 × 106 cfu/mL).

2.2. Preparation of the Biosensor

Before use, the gold electrodes were mechanically polished with 1 µm and 0.04 µm alumina slurry
followed by washing with ultrapure water. The electrodes were dipped in the absolute ethanol and
sonicated for 3 min to remove alumina residues. Afterward, the gold electrodes were rinsed with
ultrapure water and dried in a stream of pure argon.

Immediately after the cleaning procedure, the gold electrodes were flushed with absolute ethanol,
dried with an argon stream, and immersed into 0.1 M ethanolic solution of4-aminothiophenol (4-ATP)
for 19 h at 4 ◦C. For the next step, the electrodes were rinsed with pure ethanol and gently dried
with an argon stream. Subsequently, the electrodes were dipped into the 2.5% aqueous solution of
glutaraldehyde (GA) and placed for 15 min in a dark place. Next, the electrodes were rinsed with
ultrapure water and dried in a stream of argon. Later, the electrodes were left to incubate for 90 min
with 4 µL of 31 µg/mL anti-Spy diluted in 1 × PBS. After that, the electrodes were washed with
phosphate buffer, and 4 µL of 0.1% bovine serum albumin solution (BSA) was dropped onto their
surface. Then, the electrodes were incubated for 10 min at 4 ◦C. Finally, the gold electrodes were washed
with phosphate buffer, ultrapure water, and gently dried in a stream of pure argon. The schematic
representation of the modification and detection process is given in Figure 1a. The experimental setup
is presented in Figure 1b.
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Figure 1. (a) Schematic diagram of the Streptococcus pyogenes modification method and detection
process. (b) Experimental setup of the sensor measurements.

3. Results

3.1. Anti-Spy Immobilization on the Surface of the Electrodes

The cyclic voltammetry and electrochemical impedance spectroscopy measurements were
performed to investigate the correctness of antibodies anchoring on the electrode surface (Figure 2).
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An amount of 5 mM K3[Fe(CN)6]/K4[Fe(CN)6] in 0.1 M KCl was chosen for the characterization of the
modified surface.
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Figure 2. (a) Cyclic voltammograms of 5 mM K3[Fe(CN)6]/K4[Fe(CN)6]/0.1 M KCl on the bare gold
electrode and after modification steps at a scan rate of 100 mV/s; (b) Impedance spectra for 5 mM
K3[Fe(CN)6]/K4[Fe(CN)6]/0.1 M KCl registered at the formal potential of the redox couple [Fe(CN)6]3-/4-

on the bare gold electrode and after modification steps; (c) the equivalent electric circuit (EEQC) model
applied to fit the impedance measurements.

Cyclic voltammetry measurements were performed in the range from −0.15 to 0.40 V (scan rate
of 100 mV/s) to investigate the electrochemical behavior of the mentioned redox couple (Figure 2a).
At the bare electrode, the oxidation (EOX) and reduction potentials (ERED) were found at 202 mV and
108 mV, respectively, with the peak-to-peak separation of 94 mV (∆E) (Table 1). With each subsequent
modification stage, the difference between the potentials’ values increases, and the current value
decreases. It can be seen that the electrode capacity is reduced during the modification process,
which indicates that electron transfer through the electrode surface is hampered. More visible changes
occur after the immobilization of anti-Spy antibodies, which confirm their attachment to the surface of
the electrode. After incubating the electrode with BSA, in order to block the free surface, the oxidation
and reduction peaks cannot be unambiguously identified. This phenomenon shows that the electron
transfer between the redox system and the electrode is blocked.

Table 1. The values of oxidation potential (EOX), reduction potential (ERED), separation peak (∆E)
for the [Fe(CN)6]3-/4- redox system and electrolyte resistance (Re), constant phase element (CPE),
the parameter of constant phase element, exponent (n), and charge transfer resistance (Rct) calculated
from the EEQC model.

SAMPLE EOX/mV ERED/mV ∆E/mV Re/Ω CPE/µFΩ−1sn n Rct/Ω

bare Au 202 108 94 148 41.4 0.492 190
Au/4-ATP 201 98 103 153 4.1 0.704 256

Au/4-ATP/anti-Spy 237 72 165 161 2.9 0.715 446
Au/4-ATP/anti-Spy/BSA 285 52 233 191 1.01 0.862 1790

Figure 2b presents the impedance spectra of the bare and modified electrode recorded in 5 mM
K3[Fe(CN)6]/K4[Fe(CN)6] in 0.1 M KCl at the formal potential of redox couple (0.16 V). The EIS
measurements were conducted in a frequency range between 10 kHz and 1 Hz. All electrochemical
impedance spectra were analyzed using an equivalent electric circuit (EEQC) Re[CPE(RctW)] which
includes electrolyte resistance (Re), constant phase element (CPE), charge transfer resistance (Rct),
and Warburg element (W) for diffusional resistance (Figure 2c). The results obtained using this method
are given in Table 1. The comparison of modification levels can be made using the Rct parameter.
It can be seen that the charge transfer resistance value increases from 190 Ω to 256 Ω after surface
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modification with 4-aminothiophenol, which indicates the formation of a self-assembled monolayer on
the surface of the bare electrode. Further increase of this parameter (up to 446 Ω) corresponds to the
antibodies anchor on the surface. The highest value of 1790 Ω is the result of using a BSA solution,
which effectively blocked empty spots on the electrode surface. Such a gradual increase in the value of
this parameter, along with the subsequent stages of modification, indicates the hindering of electron
transfer from the electrolyte to the biolayer due to the increase in its thickness.

As expected, the results obtained during the modification process showed agreement between
electrochemical impedance spectra and cyclic voltammograms, which indicates that the surface of the
electrodes has been successfully modified.

3.2. Electrochemical Detection of Streptococcus Pyogenes

In order to demonstrate the specificity of the developed biosensor, a series of measurements
with negative samples was planned. Four different pathogens were selected (Haemophilus influenzae,
Acinetobacter baumannii, Klebsiella pneumoniae, and Staphylococcus aureus MRSA) (Figure 3). We also
used deionized water and commercially available artificial saliva (which are the components of the
potential human swab) to exclude possible cross-reactions and prove the correctness of further assumed
studies; verification of the sensor on biological samples, which are planned but yet to be done will be
further published in the next paper. Figure 3a presents the spectra obtained for a sample containing
Klebsiella pneumoniae as an example of the results obtained for negative samples. Five different
strains of Streptococcus pyogenes were used as positive samples to demonstrate the specificity of the
anti-Streptococcus pyogenes antibodies. Exemplary spectra obtained for a sample containing Streptococcus
pyogenes 2317 as one of the positive samples are shown in Figure 3b. Figure 3c shows that the plot
of charge transfer resistance parameter changes as a response of the biosensor after incubation with
negative and positive samples, which were obtained using the EEQC model. The biosensor response
was determined by the difference in Rct values before and after adding the sample onto the biosensor’s
surface and calculated from the following Equation (2):

∆Rct = (Rct
sample

− Rct
sensor)/(Rct

sensor), (2)

Each of the negative samples was tested on a separate electrode, but their mixtures were
also investigated.

According to the assumptions, there was no significant increase in the value of the Rct parameter
for the first two tested samples: deionized water, artificial saliva. Additionally, these changes
did not exceed 10% (Figure 3). Negative samples containing pathogens: Haemophilus influenzae,
Acinetobacter baumannii, Klebsiella pneumoniae, and Staphylococcus aureus MRSA reached values below
54%. These values may be the result of physical clogging of the electrode surface, and the reason may be
a high concentration of bacteria in the sample. The highest value obtained for the negative sample was
considered as the limit value separating the positive and negative results. The percentage of changes
in the charge transfer resistance parameter for positive samples was more significant and ranged from
68.73 to 206.28%. We conclude that the anti-Spy antibodies are highly specific to target bacteria as
they properly bind to five different S. pyogenes strains used for the experiment. All measurements
were repeated on a series of three electrodes to confirm the lack of influence of negative samples on
further measurements. Furthermore, the relative standard deviations (RSD) took values from 2.3 to
7.1%, which indicates the high stability of the proposed system.

The next stage of our work was to examine the effect of incubation time of the modified electrode
with the positive sample. Figure 4a shows the electrode responses in the form of EIS spectra
for three different incubation times of the electrode with a positive sample at room temperature.
EIS measurements were carried out after 1, 3, and 5 min of the mentioned incubation. It can be seen
that the spectra after 3 min were practically unchanged. This phenomenon indicates that the maximum
possible amount of antigen has been anchored on the surface of the biosensor. Moreover, for negative
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samples, the EIS spectrum was also stable after 3 min (data not shown). This observation allows us to
determine this time as optimal for further measurements.Sensors 2020, 20, x FOR PEER REVIEW 6 of 10 
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The final stage of the research was to determine the performance of the developed biosensor.
For this purpose, a series of electrodes were prepared by modifying their surfaces accordingly to the
proposed procedure. Each electrode was incubated for 3 min with a different bacterial concentration
of Streptococcus pyogenes 2317 in 1 mL of the sample. Five concentrations ranging from 4.2 × 102

to 4.2 × 106 cfu/mL were tested. All spectra were registered in a 5 mM K3[Fe(CN)6]/K4[Fe(CN)6]
containing 0.1 M KCl solution. The value of the Rct parameter was determined using EEQC fitting
for each obtained spectra. The increase in the Rct value after the bacterial binding was calculated.
Figure 4b shows the plot of the changes in charge transfer resistance vs. decimal logarithm of the
concentration of Streptococcus pyogenes 2317. For the lowest pathogen concentration (4.2 × 102 cfu/mL)
in the sample, the percentage change in the Rct parameter value was 92.89%. It is 1.68 times higher
than the limit value for negative samples; therefore, it still allows the sample to be identified as positive.
The value of this parameter was 200.32% for the sample with the highest pathogen concentration
(4.2 × 106 cfu/mL). The impedimetric sensor showed a wide linear range for all concentrations tested.
The linear regression was determined and presented in the decimal logarithm of the S. pyogenes 2317
concentration. The linear regression equation can be expressed as ∆Rct[%] = 26.2logCS.pyogenes[cfu/mL]
+ 28.9 with the correlation coefficient of R2 = 0.982. Additionally, the values of the RSD were calculated,
which ranged from 3.1 to 6.7%. The calculated limit of detection (LOD) was found to be 9.3 cfu/mL
(S/N = 3) and the received LOD value and linearity ranges of this assay were compared with other
electrochemical methods for S. pyogenes detection and presented in Table 2.

Table 2. The comparison of S. pyogenes detection methods.

Method Target Analyte Linearity Range LOD Year Ref

piezoelectric bacterial cell 3 × 102–3 × 106 cfu/mL 12 cfu/mL 2014 27
DPV ssG-DNA 10−3–10−1 ng/6 µL 130 fg/6 µL 2017 29
DPV ssG-DNA 0–1 ng/6 µL 0.01 ng 2014 30
CV ssG-DNA 0.5–50 ng/6 µL 0.01 ng/6 µL 2017 33
CV ssG-DNA 0–7.5 ng/6 µL 0.10 ng/6 µL 2016 35
EIS bacterial cell 100–105 cells/10 µL 100 cells/10 µl 2013 37
EIS bacterial cell 4.2 × 102–4.2 × 106 cfu/mL 9.3 cfu/mL 2020 This work

4. Discussion

A novel diagnostic method for the detection of human pathogens should focus mainly on high
specificity, selectivity, and relatively short time of detection to allow general practitioners to react
immediately. The sensor we propose works on the basis of electrochemical impedance spectroscopy,
which allows quick identification of the samples. The presence of Streptococcus pyogenes in the sample
is being confirmed within 3 min. The limit of the detection value for the designed sensor was set to
9.3 cfu/mL. The obtained results are linear in the whole range of tested concentrations from 4.2 × 102

to 4.2 × 106 cfu/mL, and the R2 value is equal to 0.982, which indicates good sensor performance.
Further research will cover the scope of measurements using samples coming from a patient that
will be collected in the form of a throat swab. The results are planned to be presented in the next
publication. In addition, measurements with more negative tests should be planned to exclude their
impact on sensor performance.
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