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Abstract: General movements (GMs) are spontaneous movements of infants up to five months
post-term involving the whole body varying in sequence, speed, and amplitude. The assessment of
GMs has shown its importance for identifying infants at risk for neuromotor deficits, especially for
the detection of cerebral palsy. As the assessment is based on videos of the infant that are rated
by trained professionals, the method is time-consuming and expensive. Therefore, approaches
based on Artificial Intelligence have gained significantly increased attention in the last years. In this
article, we systematically analyze and discuss the main design features of all existing technological
approaches seeking to transfer the Prechtl’s assessment of general movements from an individual
visual perception to computer-based analysis. After identifying their shared shortcomings, we explain
the methodological reasons for their limited practical performance and classification rates. As a
conclusion of our literature study, we conceptually propose a methodological solution to the defined
problem based on the groundbreaking innovation in the area of Deep Learning.

Keywords: general movement assessment; fidgety movements; cerebral palsy; motion sensors; visual
sensors; multimodal sensing; physical activity assessment; machine learning; artificial neural network

1. Introduction

Movements of the human body look very simple but consist of complex coordination systems,
subsystems, and monitoring pathways. Any disorder in the coordination system like progressive
neuromuscular disorders, injuries to the brain, and genetic disorders can create problems in movement
and posture. For example, cerebral palsy (CP) describes a group of disorders of lifelong physical
disability caused by a non-progressive brain injury or lesion acquired during the antenatal, perinatal,
or early postnatal period [1]. The severity, patterns of motor involvement, and associated impairments,
such as communication, intellectual ability, and epilepsy, vary widely and persist across the life
course [2]. In addition, neonatal mortality has decreased in preterm infants in the past decade,
extremely preterm infants (born at <27 gestational weeks) remain at the highest risk for neonatal
morbidity and the occurrence of CP [3]. Therefore, the prevalence of CP has remained stable over the
last forty years at 2–3 per 1000 live births in countries with a developed health care system.

At present, there are no uniform clinical procedures for the prediction of motor impairments
like CP in high-risk infants and the recognition of those at the highest risk generally requires
the combination of clinical history, various clinical assessments and expertise of the observer [4].
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Some studies, e.g., [5–7], have exposed the fact that early recognition of motor impairment leads to
early interventions that might reduce the severity of the motor impairment and the restrictions in
daily activities [8].

Prechtl presented the General Movements Assessment (GMA) as a valuable tool for the
prediction of cerebral palsy in high-risk infants [9,10]. General movements (GMs) are spontaneous
movements of infants up to five months post-term involving the whole body. The movements
vary in sequence, speed, and amplitude. Depending on the infant’s age, one distinguishes
between the general movements (GMs) (preterm general movements (∼28–36/38 gestational
weeks) or term/writhing movements (36/38–46/52 gestational weeks)), and the fidgety movements
(FMs) (46/50–55/60 gestational weeks) [9]. Next to normal GMs and normal FMs (F+ or F++),
one distinguishes between poor repertoire GMs (PR) with a monotonous sequence of movements and
reduced variance in speed and amplitude of movements, cramped synchronized GMs (CS) which
appear stiff with bilateral contraction and relaxation of the legs and the abdominal wall, and chaotic
GMs (Ch) which appear jerky, rowing, fast, and have a large amplitude. The non-normal FMs comprise
abnormal FMs (AF) with large amplitude, fast and jerky movements, as well as the absence of FMs (F−).
Showing cramped synchronized or chaotic GMs around term or the absence of fidgety movements
(F−) at 3 to 5 months post-term have an excellent predictive value for cerebral palsy [11,12]. However,
the assessment is based on videos of the infant that are rated by trained professionals, therefore,
the method is time-consuming and expensive.

As a result of the nominal use of GMA in neonatal follow-up programs, several studies have tried
to automate this method. These studies are based on either indirect sensing using visual sensors (2D or
3D video) [7,13–17,17–24], direct sensing using motion sensors [25–31], or both [32–34]. They have
shown excellent results, however, they lack full automation and also have several fundamental
limitations. First, all the studies are either based on a small number of subjects or a fewer number of
data samples with respect to CP [7,18–20,25–27,32,34]. It is also not clear if the prediction model in these
studies has external validity for high-risk infants. Second, the research work in some studies is based
on convenience samples that do not reflect the usual clinical cohorts. Third, the movement features
used in previous studies lack generality due to less number of subjects and examples. Lastly, all the
reviews, except [17,20,23,24,35,36], are not using state-of-the-art Deep Learning (DL) algorithms to
automate the GMA process. The DL algorithms are popular approaches of Artificial Intelligence (AI)
which not only provide a generalized solution but also perform well for accurate detection of the
classes in visual and time-series data. Therefore, an end-to-end system is needed to analyze the infant’s
movements in the early infancy.

There are some related review articles for monitoring body movements of infants using sensor
technology. Chen et al. [37] outlines the wearable sensor systems for monitoring body movements
of neonates apart from visual sensors and state-of-the-art AI algorithms for the development of an
automated end-to-end system. Zhu et al. [38] present a broad overview of wearable sensors intending
to measure various types of physiological signals of infants. The authors in [39] discuss state-of-the-art
movement recognition technology for assessing spontaneous general movements in high-risk infants,
however, they do not focus on the design and development of the system. They discuss the wearable
and visual sensors averagely. Zhang [40] review machine learning methods in cerebral palsy research
and evaluates algorithms in movement assessment for CP prediction.

The primary objective of this article is to systematically analyze and discuss the main design
features of all existing technological approaches trying to classify the general movements of infants
and explain the methodological reasons for their limited practical performance and classification rates.
The main contributions of this paper can be summarized as follows:

• We present a structured review of the current technological approaches that detect general
movements and/or fidgety movements, and categorize them according to the AI techniques
they use. We slice up these approaches into three vital categories: visual sensor-based,
motion sensor-based, and multimodal (fusion of visual and motion sensory data).



Sensors 2020, 20, 5321 3 of 32

• We categorize and present a summary of the sensor technology and classification algorithms used
in the existing GMA approaches.

• We also present a comparative analysis of reviewed AI-based GMA approaches with respect to
input-sample size, type of features, and classification rate.

Prior to continue, it is worth noting that the correct classification of GMs is a difficult task and
relies on clinical expertise. While some previous (machine learning) studies evaluated the ground truth
of their data by introducing trained GMA experts, some recognized ambiguous, arbitrary, or incorrect
classification or did not present detailed information about the realized process. In order to provide
an objective overview, we nevertheless indicate the classes and terms specified in the papers and
highlight if the classification was not carried out properly. Moreover, this article does not talk about
preprocessing operations, for example (image enhancement, noise attenuation, finding the region
of interest, etc.), since they fall outside from the scope of this article. In addition, we duly note
that understanding this paper requires knowledge of machine learning concepts and performance
evaluation techniques of classifiers. An extensive but straightforward explanation of these concepts
can be found in [41,42].

This article is organized as follows: Section 2 describes the review methodology. Section 3 lists
and describes the sensor modalities applied for GMA. Section 4 lists and outlines the classification
algorithms used in the reviewed GMA. Section 5 details the GMA based on the visual sensors,
motion sensors and multimodal sensors. Finally, Section 6 concludes this paper and provides ideas for
future research activities in this area.

2. Methods

2.1. Literature Search Strategy

The primary aim of this paper was to provide a review on the main design features of the existing
technological approaches dealing with the classification of the general movements of infants. The paper
also explains the methodological reasons for their limited practical performance and classification
rates. The potential research articles were searched on PubMed, IEEE Xplore, Microsoft Academic,
and Semantic Scholar. As a result of the discrete search patterns of aforementioned databases and
search engines, we used slightly different strings for each of search queries. Our search strategy for
PubMed database is shown in Table 1.

Table 1. The literature search strategy (PubMed).

Infant Infants OR Newborns OR Babies

AND

Movements General Movements OR Fidgety Movements OR Spontaneous movements

OR Movement estimation OR Movement analysis OR Motion analysis

AND

Detection Cerebral palsy OR Motor impairment OR Neurological disorders

AND

Using Machine learning OR Computer-based OR Video

OR Images OR IMU OR Motion sensors

2.2. Literature Selection Strategy

Our selection strategy was implemented in two phases. In the first phase, all the authors read
abstracts of the papers and excluded all that deal with the neurological problems of the infants other
than the early detection of cerebral palsy.
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In the second phase, authors read the full text of the papers and performed selection by
implementing the following inclusion criteria.

• Whether the paper presented a study of infants.
• The infants should be in the age group relevant to general and fidgety movements.
• The studies should have used video and/or motion sensors.
• The studies should have implemented machine learning (or statistical) approaches.

2.3. Screening Strategy

We found 1018 potential research articles. We excluded books and magazines of conference
proceedings, non-English articles, and the papers not falling within the time period of 2006–2020.
After the removal of duplication, we selected 576 articles. Figure 1 shows the complete screening
process. We performed our first phase of selection on 576 articles by reading their titles and abstracts,
and excluded all that do not deal with the early detection of cerebral palsy. Therefore, the article count
is reduced to 96. We read the full text of these 96 articles and finally selected 20 articles based on the
inclusion criteria as mentioned in Section 2.2. Three articles were included after manual searching.
Finally 23 articles were considered in this review. All the authors took part in the screening strategy.

IEEE Xplore: 586

Total retrieved articles:
1018

PubMed: 211 

Microsoft Academic: 126

Semantic Scholar: 95

646 articles

576 articles

20 articles were 
included.
IEEE Xplore: 7
PubMed: 7
Microsoft Acad.: 3
Semantic Scholar: 3

Excluded books and 
magazines of conference 
proceedings, non- English 
and papers older than 2006.

After removing duplications.

Screening based on full text 
reading while considering 
the exclusion and inclusion 
criteria.

Finally 23 articles were 
selected and analyzed.

3 Articles added after 
manual search.

96 articles

Screening based on title and 
abstract reading (All the 
papers related to the 
medical domains other than 
the early detection of 
cerebral palsy are excluded.)

Figure 1. The procedure of literature selection and screening.

3. Sensor Modalities Used for General Movement Assessment

The advancement in sensor technology facilitates the automatic monitoring of infants’ movements.
Hence, a system using visual or motion sensors can be useful to track these movements to diagnose
motor impairments at early stages. This section briefly describes the sensor modalities used in the
reviewed studies. Table 2 specifies the sensor modalities used by a particular GMA study.
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RGB Camera records the color information at the time of exposure by evaluating the spectrum
of colors into three channels, i.e., red, green, and blue. They are easily available, portable,
and suitable for continuous assessment of infants in clinics or at home due to their contact-less
nature comparing with other modalities. Various motion estimation methods for example,
Optical Flow, Motion Image, can be used for RGB videos.

Vicon System is an optoelectronic motion capture system based on several high-resolution cameras
and reflective markers. These markers are attached to specific, well-defined points of the body.
As a result of body movement, infrared light reflects into the camera lens and hits a light-sensitive
lamina forming a video signal. It collects visual and depth information of the scene [43].

Microsoft Kinect sensor consists of several state-of-the-art sensing hardware such as RGB camera,
depth sensor (RGB-D), and microphone array that helps to collect the audio and video data for
3D motion capture, facial, and voice recognition. It has been popularly used in research fields
related to object tracking and recognition, human activity recognition (HAR), gesture recognition,
speech recognition, and body skeleton detection. [44].

Accelerometers are sensing devices that can evaluate the acceleration of moving objects and reveal
the frequency and intensity of human movements. They have been commonly used to monitor
movement disorders, detect falls, and classify activities like sitting, walking, standing, and lying
in HAR studies. Due to small size and low-price, they have been commonly fashioned in
wearable technologies for continuous and long-term monitoring [45,46].

Inertial Measurement Unit (IMU) is a sensory device that provides the direct measurement of
multi-axis accelerometers, gyroscopes, and sometimes other sensors for human motion tracking
and analysis. They can also be integrated in wearable devices for long term monitoring of daily
activities which can be helpful to assess the physical health of a person [47].

Electromagnetic Tracking System (EMTS) provides the position and orientation quantities of
the miniaturized sensors for instantaneous tracking of probes, scopes, and instruments.
Sensors entirely track the inside and outside of the body without any obstruction. It is mostly
used in image-guided procedures, navigation, and instrument localization [48,49].
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Table 2. The list of sensors used for the assessment of general movements (GMs) and fidgety movements (FMs).
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4. Classification Algorithms Applied for General Movement Assessment

In machine learning, classification and regression algorithms are used to predict results based
upon input data. A classification categorizes the data into predefined classes, whereas regression
estimates an outcome from a set of input data. These algorithms are implemented in two
phases—training and testing. In each of these phases, the raw data are acquired by sensors.
After pre-processing the data, suitable features are extracted to build feature vectors. The feature
vectors can be split into train and test datasets. In the training phase, the train dataset is used to train a
model. In the testing phase, the trained model is used to predict the results of feature vectors belonging
to the test dataset. Finally, the performance of the model is evaluated using different matrices on the
test data. Figure 2 shows the essential stages of classification.

Data 
Acquisition

Feature 
Extraction

Pre-processing Classification Evaluation

Figure 2. This figure shows necessary steps to solve a classification problem.

Sensors used in data acquisition process for the assessment of GM and FM studies are shown
in Table 2. Features extraction process is out of the scope of our topic. However, the classification
algorithms used by a particular study are shown in Table 3. The outcomes of classification procedure
in the reviewed studies are shown in Tables 4–6.

In general, a classification algorithm evaluates the input features to make a decision or diagnosis.
The selection of the algorithm depends on many factors, for example, type of data, size of data,
and available resources to process the data. This section provides the description of classification
algorithms used in GMA studies for the discrimination of infant’s movements or impairments.

Naive Bayes (NB) belongs to the group of probabilistic classifiers based on implementing the
Bayes’ theorem with the simple assumption of conditional independence that the value of
a feature is independent of the value of any other feature, and each feature contributes
independently to the probability of a class. NB combines the independent feature model to
predict a class with a common decision rule known as maximum likelihood estimation or MLE
rule. Despite their simplicity, NB classifiers performed well on many real-world datasets such as
spam filtering, document classification, and medical diagnosis. They are simple to implement,
need a small amount to training data, can be very fast in prediction as compared to most
well-known methods [50].

Linear Discriminant Analysis (LDA) is used to identify a linear combination of features that splits
two or more classes. The subsequent combination can be used as a linear classifier or
dimensionality reduction step before the classification phase. LDA is correlated to principal
component analysis (PCA), which also attempts to find a linear combination of best features [51].
However, PCA reduces the dimensions by focusing on the variation in data and cannot form
any difference in classes. In contrast, it maximizes the between-class variance to the within-class
variance to form maximum separable classes [52].

Quadratic Discriminant Analysis (QDA) is a supervised learning algorithm which assumes that
each class has a Gaussian distribution. It helps to perform non-linear discriminant analysis and
believes that each class has a separate covariance matrix. Moreover, It has some similarities with
LDA, but it cannot be used as a dimensionality reduction technique [53].

Logistic Regression (LR) explores the correlation among the independent features and a categorical
dependent class labels to find the likelihood of an event by fitting data to the logistic curve.
A multinomial logistic regression can be used if the class labels consist of more than two classes.
It works differently from the linear regression, which fits the line with the least square, and output
continuous value instead of a class label [54].
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Support Vector Machine (SVM) is a supervised learning algorithm that analyzes the data for both
classification and regression problems. It creates a hyperplane in high dimensional feature space
to precisely separate the training data with maximum margin, which gives confidence that new
data could be classified more accurately. In addition to linear classification, SVM can also perform
non-linear classification using kernels [55].

K-Nearest Neighbor (KNN) stores all the training data to classify the test data based on similarity
measures. The value of K in the KNN denotes the numbers of the nearest neighbors that can
involve in the majority voting process. Choosing the best value of k is called parameter tuning
and is vital for better accuracy. Sometimes it is called a lazy learner because it does not learn a
discriminative function from the training set. KNN can perform well if the data are noise-free,
small in size, and labeled [56].

Decision Tree (DT) is a simple presentation of a classification process that can be used to determine
the class of a given feature vector. Every node of DT is either a decision node or leaf node.
A decision node may have two or more branches, while the leaf node represents a classification
or decision. In DTs, the prediction starts from the root node by comparing the attribute values
and following the branch based on the comparison. The final result of DT is a leaf node that
represents the classification of feature vector [57].

Random Forest (RF) is an ensemble learning technique that consists of a collection of DTs. Each DT
in RF learns from a random sample of training feature vectors (examples) and uses a subset of
features when deciding to split a node. The generalization error in RF is highly dependent on the
number of trees and the correlation between them. It converges to a limit as the number of trees
becomes large [58]. To get more accurate results, DTs vote for the most popular class.

AdaBoost (AB) builds a robust classifier to boost the performance by combining several weak
classifiers, such as a Decision Tree, with the unweighted feature vectors (training examples) that
produce the class labels. In case of any misclassification, it raises the weight of that training data.
In sequence, the next classifier is built with different weights and misclassified training data
get their weights boosted, and this process is repeated. The predictions from all classifiers are
combined (by way of majority vote) to make a final prediction [59].

LogitBoost (LB) is an ensemble learning algorithm that is extended from AB to deal with its limitations,
for example, sensitivity to noise and outliers [60]. It is based on the binomial log-likelihood that
modifies the loss function in a linear way. In comparison, AB uses the exponential loss that
modifies the loss function exponentially.

XGBoost (XGB) or eXtreme Gradient Boosting is an efficient and scalable use of gradient boosting
technique proposed by Friedman et al. [60], available as an open-source library. Its success has
been widely acknowledged in various machine learning competitions hosted by Kaggle. XGB is
highly scalable as compared with ensemble learning techniques such as AB and LB, which is due
to several vital algorithmic optimizations. It includes a state-of-the-art tree learning algorithm for
managing sparse data, a weighted quantile method to manage instance weights in approximate
tree learning—parallel and distributed computing for fast model exploration [61].

Log-Linearized Gaussian Mixture Network (LLGMN) is a feed-forward kind of neural network
that can estimate a posteriori probability for the classifications. The network contains three
layers and the output of the last layer is considered as a posteriori probability of each
class. The Log-Linearized Gaussian Mixture formation is integrated in the neural network
by learning the weight coefficient allowing the evaluation of the probabilistic distribution of
given dataset [62].

Convolutional Neural Network (CNN) is a class of ANN, most frequently used to analyze visual
imagery. It consists of a sequence of convolution and pooling layers followed by a fully connected
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neural network. The convolutional layer convolves the input map with k kernels to provide the
k-feature map, followed by a nonlinear activation to k-feature map and pooling. The learned
features are the input of a fully connected neural network to perform the classification tasks [63].

Partial Least Square Regression (PLSR) is a statistical method that uncovers the relationship among
two matrices by revealing their co-variance as minimum as feasible, Rahmati et al. [33] apply
it to predict cerebral palsy in young infants. Here, PLSR uses a small sequence of orthogonal
Partial Least Square (PLS) components, specified as a set of weighted averages of the X-variables,
where the weights are evaluated to maximize the co-variance with the Y-variables and Y is
predicted from X via its PLS components or equivalently [33,64].

Discriminative Pattern Discovery (DPD) is a specialized case of Generalized Multiple Instance (GMI)
learning, where learner uses a collection of labeled bags containing multiple instances, rather than
labeled instances. Its main feature is to solve the weak labeling problem in the GMA study
by counting the increment of each instance in order to classify it into three pre-defined classes.
Moreover, DPD performs the classification based on the softs core proportion rather than a hard
presence/absence criteria as in conventional GMI approaches [28].



Sensors 2020, 20, 5321 10 of 32

Table 3. The list of classification algorithms used for the assessment of GMs and FMs.
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Table 4. Classification results of general movements (GMs) studies.

Ref. & Year Dataset Information Features Method Results

Meinecke et al. [7]: 2006
Subjects: 22 infants (15 healthy, 53 quantitative Classification: QDA:
7 high-risk) parameters, optimal healthy vs. at-risk 73% acc
Age Range: 44 weeks gestational age 8 selected using Validation: 100% sen
Sensor: Vicon system cluster analysis cross validation 70% spe
Data: 92 measurements

Singh and Patterson [25]: 2010
Subjects: 10 premature born babies with statistical features, Classification: SVM: 90.46% acc
brain lesions temporal features CS vs. not-CS NB: 70.43% acc
Age Range: 30–43 weeks gestational age Validation: 10-fold DT: 99.46% acc
Sensor: Accelerometers cross validation
Data: 684,000 samples

Gravem et al. [27]: 2012
Subjects: 10 premature born babies statistical features, Classification: SVM/DT/RF:
Age Range: 30–43 weeks gestational age temporal features CS vs. not-CS 70–90% avg acc
Sensor: Accelerometers Total: 166 (features) Validation: 10-fold 90.2% avg sen
Data: Approx. 700,000 samples cross validation 99.6% avg spe

Fan et al. [30]: 2012 Subjects: 10 premature born babies basic motion features, Classification: ROC:
Age Range: 30–43 weeks gestational age temporal features CS vs. not-CS 72% sen
Sensor: Accelerometers Total: 84 (features) Validation: 10-fold 57% spe
Data: 98 CS GM segments and 100 cross validation
non-CS GM segments

McCay et al. [24]: 2019 Subjects: 12 Histogram-based Classification: LDA: 69.4% acc
Age Range: up to 7 months Pose Features, normal vs. abnormal KNN(K = 1): 62.50% acc
Data: Synthetic MINI-RGBD dataset of HOJO2D, Validation: Leave-one KNN(K = 3): 56.94% acc
12 sequences HOJD2D out cross validation Ensemble: 83.33% acc

McCay et al. [23]: 2020 Subjects: 12 Pose-based fused Classification: LDA: 83.33% acc
Age Range: up to 7 months features (HOJO2D + normal vs. abnormal KNN(K = 1): 70.83% acc
Data: Synthetic MINI-RGBD dataset of HOJD2D) Validation: Leave-one KNN(K = 3): 66.67% acc
12 sequences out cross validation Ensemble: 65.28% acc

SVM: 66.67% acc
DT: 62.50% acc
CNN(1-D): 87.05% acc
CNN(2-D): 79.86% acc

acc: Accuracy; sen: Sensitivity; spe: Specificity; avg: Average; CS: Cramped Synchronized Movements. Note: we use the classification and output terms as specified in the papers.
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Table 5. Classification results of fidgety movements (FMs) studies.

Ref. & Year Dataset Information Features Method Results

Adde et al. [22]: 2009 Subjects: 82 infants (n=32 high) and Motion features, i.e., Logistic regression Triage threshold
(n = 50 low) risk infants Quality of motion (Q), analysis to explore analysis of the centroid
Age Range: 10–18 weeks Qmean, Qmax, QSD, fidgety vs. non-fidgety of motion CSD:
Sensor: Video camera VSD, CSD, ASD, etc. 90% sen
Data: 137 recordings 80% spe

Adde et al. [14]: 2010 Subjects: 30 High-risk infants Motion features, i.e., Logistic regression ROC Analysis:
(23–42 weeks) Quality of motion (Q), analysis to explore 85% sen
Age Range: 10–15 weeks post-term Qmean, Qmedian, QSD, motion image features 88% spe
Sensor: Video camera VSD, ASD, CPP for CP prediction

Stahl et al. [16]: 2012 Subjects: 82 infants Wavelet analysis Classification: SVM:
Age Range: 10–18 weeks post-term features from impaired vs. unimpaired 93.7% acc
Sensor: Video camera motion trajectories Validation: 10-fold 85.3% sen
Data: 136 recordings cross validation 95.5% spe

Karch et al. [31]: 2012 Subjects: 65 infants (54 neurological Stereotype score Classification: ROC:
disorder, 21 control group) feature based CP vs. no-CP 90% sen
Age Range: 3 months on dynamic time Validation: N/A 96% spe
Sensor: Video Camera, Motion sensors wrapping

Philippi et al. [29]: 2014
Subjects: 67 infants (49 high-risk, Stereotype score Classification: ROC:
18 low-risk) of arm movement CP vs. no-CP 90% sen
Age Range: 3 months post term Validation: NDI 95% spe
Sensor: Video Camera, Motion sensors including CP vs.

no-NDI

Rahmati et al. [32]: 2014
Subjects: 78 infants Motion features, i.e., Classification: Motion segmentation
Age Range: 10–18 weeks post-term periodicity, correlation healthy vs. affected SVM: 87% acc
Sensor: Video camera, b/w trajectories using Validation: Sensor data:
Motion sensors motion segmentation cross validation SVM: 85% acc

Rahmati et al. [33]: 2016
Subjects: 78 infants Frequency based Classification: Video-based data:
Age Range: 10–18 weeks post-term features of motion healthy vs. affected 91% acc
Sensor: Video camera, trajectories Validation: Sensor data: 87% acc
Motion sensors cross validation

Machireddy et al. [34]: 2017
Subjects: 20 infants Video camera and Classification: SVM: 70% acc
Age Range: 2–4 months post-term IMU signal fusion FM+ vs. FM−
Sensor: IMU’s, Video using EKF Validation: 10-fold
camera cross validation
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Table 5. Cont.

Ref. & Year Dataset Information Features Method Results

Orlandi et al. [13]: 2018
Subjects: 82 preterm infants 643 numerical features Classification: RF: 92.13% acc
Age Range: 3–5 months corrected age from literature CP vs. not-CP LB: 85.04% acc
Sensor: Video camera regarding GMA Validation: Leave-one AB: 85.83% acc
Data: 127 Retrospective recordings out cross validation LR: 88.19% acc

Dai et al. [21]: 2019 Subjects: 120 infants (60 normal & wavelet & power Classification: Stacking: SVM/RF/
60 abnormal behavior) spectrum, PCA, normal vs. abnormal AB→ XGBoost
Age Range: 10–12 weeks age Adaptive weighted movement 93.3% acc
Sensor: Video camera fusion Validation: 4-fold 95.0% sen
Data: 120 samples, N/A length cross validation 91.7% spe

Raghuram et al. [15]: 2019
Subjects: Preterm infants Kinematic features Classification: LR:
Age Range: 3–5 months post-term MI vs. no-MI 66% acc
Sensor: Video camera Validation: N/A 95% sen
Data: 152 Retrospective recordings 95% spe

Schmidt et al. [17]: 2019
Subjects: infants at risk Transfer learning, to Classification: DNN:
Age Range: <6 months pre-process the video 7 classes, 65.1% acc
Sensor: N/A frames to detect Validation: 10-fold 50.8% sen
Data: 500 Retrospective recordings relevant features cross validation

Ihlen et al. [18]: 2020 Subjects: 377 High-risk infants 990 features describing Classification: CIMA model:
Age Range: 9–15 weeks corrected age movement frequency, CP vs. no-CP 87% acc
Sensor: Video camera amplitude and Validation: Double 92.7% sen
Data: 1898 (5 s) periods with CP, co-variation for 5 s cross-validation 81.6% spe
18321 (5 s) periods without CP non-overlapping time

periods

acc: Accuracy; sen: Sensitivity; spe: Specificity; NDI: Neurodevelopment impairment; EKF: Extended Kalman filter; MI: Motor impairment; CP: Cerebral palsy; CIMA: Computer-based
infant movement assessment; PCA: Principal Component Analysis; CPP: Cerebral palsy predictor. Note: we use the classification and output terms as specified in the papers.
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Table 6. Classification results of general movement (GMs) and fidgety movement (FMs) studies.

Ref. & Year Dataset Information Features Method Results

Heinze et al. [26]: 2010 Subjects:19 healthy, 4 unhealthy Extracted 32 features Classification: DT: avg. ODR:
Age Range: Avg. gestational age as described in [7] healthy vs. pathologic 89.66% acc
healthy (39.6) weeks, Validation: Train avg. PPV 65%
unhealthy (29.25) weeks test split avg. NPV 100%
Sensor: Accelerometers

1st m. Subjects: 9 healthy, 4 unhealthy Extracted 32 features Classification: Classification results:
Age Range: mean age (SD) in days as described in [7] healthy vs. pathologic ODR: 89%, PPV: 75%
healthy 24 (±4), unhealthy 29 (±16) NPV: 100%

2nd m. Subjects: 17 healthy, 4 unhealthy Extracted 32 features Classification: Classification results:
Age Range: mean age (SD) in days as described in [7] healthy vs. pathologic ODR: 88%, PPV: 50%
healthy 87 (±20),unhealthy 77 (±28) NPV: 100%

3rd m. Subjects: 15 healthy, 4 unhealthy Extracted 32 features Classification: Classification results:
Age Range: mean age (SD) in days as described in [7] healthy vs. pathologic ODR: 92%, PPV: 71%
healthy 147 (±14),unhealthy 143 (±11) NPV: 100%

Olsen et al. [19]: 2015 Subjects: 11 infants Angular velocities Classification: SVM/DT/KNN:
Age Range: 1–6 months and acceleration SP vs. not-SP 92–98% acc
Sensor: Microsoft Kinect, of the joints Validation:
Data: 50,000 labelled frames cross validation

Gao et al. [28]: 2019 Subjects: 34 infants (21 typical Temporal features, Classification: KNN: 22% avg acc
developing (TD), and 13 with PCA for dimension TD vs. AM SVM: 79% avg acc
perinatal stroke) reduction Validation: 10-fold DPD: 80% avg acc
Age Range: 1–6 months post-term cross validation No-DPD: 70% avg acc
Sensor: IMU’s

Tsuji et al. [20]: 2020 Subjects: 21 infants (3 full-term, 16 low Motion features from Classification: LLGMN:
birth weight, 2 unknown status) video images using normal vs. abnormal 90.2% acc
Age Range: N/A background difference movements
Sensor: Video camera and frame difference Validation:
Data: 21 video recordings cross validation

acc: Accuracy; sen: Sensitivity; spe: Specificity; avg: Average; SP: Spontaneous; TD: Typical development; AM: Abnormal movements; PCA: Principal Component Analysis;
LLGMN: Log-Linearized Gaussian Mixture Network, 1st m: Measurement around the first month; 2nd m: Measurement around the third month; 3rd m: Measurement around the fifth
month; ODR: Overall detection rate; PPV: Positive predictive value; NPV: Negative predictive value; Note: we use the classification and output terms as specified in the papers.
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5. Methodology of the Reviewed Approaches

The automated analysis of GMs and FMs of infants is an emerging topic in Artificial Intelligence
because of their rising demand for objective assessment in the clinical environment and homecare.
Various methods are available to automatically identify infants GMs and FMs relying on visual sensors,
motion sensors, or multimodal sensors. We further categorize these methods as shown in Figure 3.

Infant Movement 
Analysis

Motion Sensors Visual Sensors Multimodal Sensors

Markers-based

Markers-free

Decision Fusion

Feature Fusion

Figure 3. This figure shows the tree diagram of the infant’s General Movements Assessment (GMA)
methods based on three different categories of sensors. It further categorizes visual sensors-based
methods into marker-based and marker-free. It also divides multimodal sensors-based methods into
decision and feature fusions.

5.1. General Movement Assessment Based on Motion Sensors

Motion and wearable sensors have been popularly used to detect physical activities in health
care systems [65,66]. Motion sensors, for example, accelerometers, gyroscopes, and magnetometers
provide satisfactory data quality and reliability for the assessment of movement disorders. Moreover,
they are affordable, necessarily miniaturized, and improve more rapidly compared to alternative
devices usually used for movement assessment [67,68]. Their use ranges from observing functional
motor movements, i.e., neuromuscular disorders (stroke and Parkinson’s disease) to the evaluation of
physical activities to identify disease patterns for prevention, therapy, rehabilitation, and additionally,
the assessment of changes in the movement of the newborn [26,27,67,68].

In recent times, wearable sensor technology has been used for capturing and analyzing
spontaneous GMs and FMs of infants without the need of a clinical observer. Singh and Patterson [25]
proposed a system that consists of accelerometers to analyze abnormal movements of infants. The data
was acquired from ten premature babies. They showed very good classification results. However,
their study has several limitations. For example, the sample size is too small having only premature
babies. The study needs manual annotation by trained specialists using video recordings. Furthermore,
they classify the normal vs. abnormal movements based only on the presence and absence of CS.
They did not provide any clinical evidence to show the effectiveness of their study. Gravem et al. [27]
proposed a system to monitor GMs in preterm infants using five accelerometers that were embedded
in cloth bands and placed around the limbs and forehead. The infants were also filmed at the
same time. The collected data were annotated manually based on visual observation. After data
preprocessing, they computed 166 statistical and temporal features. Their proposed model was able to
identify CS with 70–90% accuracy. To validate their claims, further study with more data and clinical
follow-up outcome is necessary. Authors in [30] presented a model to recognize the CS of 10 preterm
infants from accelerometers data. They extracted several statistical features such as mean, max,
min, standard deviation, and temporal features for each measurement. The analysis was conducted
by applying Area-Under-the-Curve (AUC), which showed that AdaBoost applied to Naive Bayes
classifiers is a distinctly accurate classifier. Furthermore, they also compared the Erlang-Cox Dynamic
Bayes Networks models and claimed that they are equal in terms of AUC. Heinze et al. [26] extracted
32 features based on velocity and acceleration derived from the accelerometer data. Their dataset was
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recorded from 23 infants (19 healthy and 4 high-risk). They use Decision Tree classifier and obtain
an overall accuracy of 89%. However, their dataset seems to be unbalanced because the number of
high-risk infants in this study was substantially less than the number of healthy infants. Moreover,
they used wired accelerometers to collect the spontaneous movement of infants which might cause
hindrance to the free movements.

Karch et al. [69] provided the first study to capture the infant’s limbs movements using the
Electromagnetic Tracking System (EMTS) to calculate the segmental kinematics. They recorded the
data of 20 infants between term and post-term age by attaching four sensors to the right arm and
four sensors to the right leg of the body. Their proposed body model consists of three segments for
each limb, and they represented each segment by the Cartesian coordinate system. After calculating
the joint centers and the position of the rotation for each joint center from the captured movement
data, they use the root mean square deviation (RMSD) of the total Least Square Regression (LSR) to
measure the calibration movements of infant’s limbs at calibration time. In addition to the small sample
size, this study shows the potential to use EMTS for infant’s movements analysis; further studies are
necessary to investigate the distinctive features from the recorded data that can help in the decision
support. In order to provide an objective analysis, it is necessary to quantify the movement features.
Karch et al. [70] recorded the movements of 53 preterm and term infants using the EMTS to compute a
complexity score from all segments of movements. Their automated approach detected the complex
segments marked by the physicians with an accuracy of 77%.

Interestingly, Philippi et al. [29,31] computed 3 kinematic features from them with repetitive
movement in the upper limbs identified as finest predictor of CP. However, the accelerometer and
magnetic tracking system used by [26,29,31] were wired and massive, causing significant practical
problems. Authors in [32] collected two sets of data from 78 infants at 10–18 weeks post-term using
miniBird motion sensors and a video camera. After the motion segmentation, they extracted the
following three features: area out of standard deviation (STD) from moving average, periodicity,
and correlation between trajectories. They achieved 85% accuracy on sensor data with SVM classifier.
Despite the good accuracy, however the only limitation, user at first need to label some motion
trajectories. Rahmati et al. [33] claim that when there are relatively few subjects but several viable
features, the machine learning algorithm may lead to a suboptimal solution. Therefore, they performed
frequency-based analysis of data acquired by accelerometers attached to the limbs of the infants.
The data from 78 infants was examined to select suitable set of features. A cross-validation technique
with Partial Least Square Regression (PLSR) was applied to estimate the predictability of the model.
Furthermore, they also claim that the frequency between 25–35 Hz was found to be most meaningful.

In this section, we discussed the infant’s GMA using motion sensors that includes Electromagnetic
Tracking System and wearable sensors (accelerometers and IMUs). These sensors pose a high temporal
resolution and high availability. In addition, they are low cost and privacy-preserving in case of
wearable sensors. Therefore, they can be used for comprehensive analysis. In contrast, the assessment
under Electromagnetic Tracking System is expensive, requires complex setup, and is not suitable for
clinics and homecare.

5.2. General Movement Assessment Based on Visual Sensors

Over the past few years, motion analysis has acquired numerous attention due to the technological
evolution and exponential demand for robust, more advanced systems to capture the human body
movements for clinical or behavior assessment and other applications [71–75]. Visual-based systems
either rely on markers attached to certain body parts or explore marker-free solutions by using image
features, for example (color, shape, edges, etc.) to encode the motion information from video data.
While both approaches have their own benefits, both have certain limitations as well. A comparison of
marker-based and marker-less motion capture for gait analysis [76] and ergonomics [77] already exist.
While marker-based techniques have been proven in literature to be relatively accurate, specific markers
and hardware are needed to detect a reasonable number of markers simultaneously. In contrast,
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marker-free approaches give up some of the accuracy in exchange for the freedom of using no markers
or a specific setup on the tracked individual [78].

In the following, the two different methods are explained in more detail and evaluated with
regard to their application for GMA.

5.2.1. Marker-Based Approaches

Marker-based motion capture is a prevalent method used for human movement analysis in which
spatio-temporal variations in the point of markers attached to the body allow to quantitatively describe
body motion in the computer. Often markers are placed and tracked at joints’ location to reconstruct
the body pose. To recognize markers, several image-based techniques exist. Passive markers can
be located via color [79] or a combination of infrared stroboscopic illumination and retro-reflective
markers [80]. Little light sources, like light emitting diodes (LEDs), have been used as active markers
before [81]. The main concern using these techniques is to track a sufficient number of markers for the
pose reconstruction, which can be easy covered or overlapped.

One of the first studies to detect CP using a marker-based system was carried out by
Meinecke et al. [7]. The authors proposed an analysis system for infants by using 20 reflective
markers and 7 infrared cameras to capture 3D motion. Five experienced physicians and additional
literature [82–85] were consulted to gather key parameters for the analysis of spontaneous motor
activity of 22 infants. Further statistical and mathematical parameters were computed to yield a
total of 53 quantitative features. Using cluster analysis with Euclidean distance, a combination of the
eight most significant features to distinguish healthy and affected infants were found. This optimal
feature space was then used as an input to the quadratic discriminant analysis algorithm to acquire an
overall detection rate of the classification methodology (73% accuracy to detect healthy and affected
participants). However, such type of 3D motion capture systems are costly, challenging to set up,
not easily portable, and have high computational complexity which limits their clinical applicability.
The work of Berthouze and Mayston [86] focused on establishing surface-cluster to access general
movement especially focusing on the quantification of joint rotations. Self-cut polycarbonate sheet
frames to cluster markers (also referred to as cluster) were evaluated during a validation study with
soft-body dummy dolls and a case study consisting of 4 typically developing infants. To overcome the
problem of very young infants having insufficient space at their shanks, each frame comprises 3 or
4 markers. No disruptive overlapping or covering of markers could be accounted using a 6-camera
setup. Despite the low number of infants during the case study, several general conclusions could be
phrased. Robust estimation of joints, especially angular motion of hip and knee rotations, could be
extracted by using the proposed cluster. The setup time compared to using simple markers and the risk
of removing markers through movement was reduced. The authors “suggest that this surface-marker
cluster approach makes it possible to fully quantify infants’ general movements” [86]. Nevertheless,
the use of multiple cameras seems to be expensive and more complex in terms of preparation time
compared to approaches using one RGB video. The authors in [87] also used reflective markers,
but only a digital camera to capture the infant’s movements. They computed and tested different
kinematic features, such as the cross-correlation of velocities and accelerations between limbs from 2D
videos. They also found that the movements of infants who later develop CP were jerkier than those
of healthy ones. The drawback of this method is the estimation of velocity in pixels/frame. As the
distance between camera and infant is unidentified, it is not possible to convert the dimensions from
pixels to other units of measurement. Furthermore, they also overlook the movement perpendicular to
the camera which makes their approach invariant to scaling. These issues can be addressed by using a
depth camera.

In a most recent survey, Colyer et al. [88] provided the evaluation of several marker-based systems.
They are complex to install and fine-tune. Although the author in [88] was not focused on infants,
we can assume due to the sensitivity and size of infants that increasing the markers on the infant’s
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body parts can increase the complexity when markers are close to each other. Furthermore, the case of
increasing IR-based markers would make the system more expensive.

5.2.2. Marker-Free Approaches

Over the last decade, marker-free approaches have become very attractive in the research
community for various applications of computer vision. Instead of applying specific markers on
the human body, they make use of image features like shape, edges, and pixel location to detect and
track the human body parts. Marker-free techniques have the advantage that they do not intervene
and therefore do not interfere with the spontaneous movements of the infants. Often stationary
digital video cameras are placed above the infant to record it in supine position, being awake but
not distracted. Cameras can be distinguished in mainly two section, simple RGB and depth cameras.
Furthermore, deep learning approaches have been summarized in an additional paragraph.

RGB Cameras: Adde et al. [22] were the first to use computer-based video analysis to classify infants’
movements according to the GMA. A total of 137 video recordings of 82 infants (10–18 weeks post-term
age) were labeled with observable FMs or not observable FMs according to the GMA (119 with and
27 without FMs). A General Movement Toolbox (GMT) was implemented to view, crop, preprocess,
and extract features to classify videos into non-fidgety or fidgety. The analysis was mainly built upon
calculated motion images, where each pixel represent whether there is movement or not. From this
several features, for example the quantity of motion as “the sum of all pixels that change between
frames in the motion image divided by the total number of pixels in the image” [22], were extracted.
It could be shown that the videos of infants lacking FMs had a significant lower mean quantity of
motion compared to infants with FMs. Furthermore, the variability of centroid was determined to
have the strongest association with the absence of FMs across all tested variables using a logistic
regression. In conclusion, it has been shown that a non-intrusive computerized analysis can yield
features associated with the absence of FMs. Thus, showing that the GMA could be replaced in
theory. In [14], the authors further extended their work to predict CP as well. They used 2D videos
and a simple frame differencing software without any instrumentation to calculate a motion image.
Several hand-crafted features from motion images in addition to the velocity and acceleration of
the centroid of the motion were extracted. The best performance was achieved using a cerebral
palsy predictor (CPP), consisting of a combination of the centroid of motion standard deviation,
the quantity of motion mean, and the quantity of motion standard deviation computed from the
motion image. CP was predicted with 85% sensitivity and 88% specificity. The development outcome
was defined as an examination at 4–7 years of age. While the performance metrics look promising,
the small sample size for this study of 30 high-risk infants can be questioned. Using recordings
of 150 infants (10–15 weeks), Støen et al. [89] elevated their work by incorporating sporadic FMs
as well. These recently defined movements characterized by short FMs (1–3 s) with up to 1-min
intermediate pauses and the absence of FMs were accounted for 48 of the infants by two certified
observers. The absence of normal FMs could be associated with a large variability of the spatial center
of movements. In contrast, normal FMs lead to an evenly distributed movement and thus for a more
stable center of motion. Additionally, they showed that it is not possible to distinguish between healthy
and abnormal movement based on the quantity of motion, as it is not correlating with the presence of
FMs. Further automated analysis of sporadic FMs could help to understand their nature, as it is not
clear whether they are clinically relevant or not [90]. Stahl et al. [16] also recorded 2D videos but an
optical flow method to detect moving objects within the scene was realized. The optical flow provides
the speed and direction of the object as compared with a frame-differencing method. Visible differences
between healthy and affected children were recognized by plotting only the x or y components of the
movement trajectories. While healthy children had smaller and more frequencies in their components,
there were parts of no movement and a more discontinuous signal over time for affected infants.
Moreover, they computed wavelet and frequency features and identified three feature values for the
analysis of FMs using a support vector machine. By using a 10-fold cross-validation, they achieved
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93% accuracy to distinguish impaired from unimpaired infants. In this study, the use of 3 features
is questionable, and study samples in terms of the number of children with CP (15 infants with and
67 infants without CP) are too small. Furthermore, the proposed data analysis methods [14,16] are
sensitive to lighting conditions, cloths, and skin color. Dai et al. [21] evaluated the use of a Kernel
Correlation Filter (KCF) [91] to track trajectories of the limbs and whole body of infants to classify their
movement as normal or abnormal. Motion trajectories were split in their X and Y components and the
X axis discarded for later computations. Features were extracted using Discrete Wavelet Transform
(DWT) which considers both frequency and time information and calculation of the square of the
amplitude spectrum to retrieve a characteristic of the energy of the signal (power spectrum). PCA was
then applied to reduce the dimensionality of the features space. The authors were the only ones to
implement Stacking, a type of Ensemble Learning where classifiers are piled in layers. They created
a stacked training model consisting of SVM, RF, and AB in the first layer, feeding their output to a
second layer consisting of XGBoost which yields the final classification. In addition, a model for the
wavelet and power spectrum features each and a weighted combination has been trained. Testing on
120 video samples (60 normal-behavior, 60 abnormal infants, age 10–20 weeks) a best accuracy of 93.3%
with the combined model was achieved. Although it could be shown that KCF and Stacking yield high
accuracy in classifying normal and abnormal behavior, no detailed information about the involved
ground truth is given.

In clinical observations, CS and FM are early markers for later development of CP [11,92].
Therefore, to get a good feature set that represents the full clinical insight, the authors in [32]
implemented a motion segmentation method proposed in [93]. They collected a dataset of 78 infants
recorded with a 2D monocular camera. They also captured motion sensor data simultaneously.
The authors computed the dense trajectories by using the Large Displacement Optical Flow (LDOF) and
then applied a graph-based segmentation algorithm to segment them into groups of individual body
parts. Three types of features (area out of standard deviation (STD) from moving-average, periodicity,
and correlation between trajectories) proposed in [7] were extracted. The first two features were chosen
to detect a lack of fluent movement, the last one to detect high correlation between two limbs which can
be a predictor for CP [92] and abnormal behavior [94] respectively. By using a Support Vector Machine
(SVM), they got 87% accuracy on the motion segmentation dataset. Despite the excellent accuracy,
the user must label a small number of trajectories. Rahmati et al. [33] made use of the same dataset,
as mentioned in [32], to propose an intelligent feature set for the prediction of CP. They extracted the
motion data out of video by using the similar method proposed in [93]. A Fast Fourier Transform
(FFT) to extract the final feature from motion data was applied. The authors computed 2376 features
from video data and performed a Partial Least Square Regression (PLSR) along with a cross-validation
to estimate the predictability of the model. They claim that they achieved 91% accuracy for their
CP prediction. These results should be received with caution, as the number of children with CP
(14 infants) is very low compared to the one without CP (64 infants). Such a class imbalance can
introduce certain tendencies towards the dominant class in classifier and the evaluation by accuracy
can be misleading [32,33]. Orlandi et al. [13] screened 523 videos of babies at 3–5 months corrected
age and selected 127 of them for automatic analysis. During the selection process several criteria,
for example if the complete infant is always visible or light conditions, were checked. Each infant
was categorized by a certified observer according to the criteria described by Hadders-Algra [95]
having typical (98 infants) or atypical (29 infants) movements. The creation of the automated system
included 5 steps: a motion estimation with LDOF which uses pixel displacement between frames,
an infant segmentation to remove the background, feature extraction of 643, feature selection to reduce
the number of features, and classification. Using a Leave-one-out cross-validation (LOO-CV) several
classifiers (Logistic, AdaBoost, LogitBoost, and Random Forest) were trained to distinguish between
“typical” vs. “atypical” movement and “CP” vs. “no CP”. While the best accuracy of 85.83% for the
GMA was achieved with the AdaBoost classifier, the Random Forest yielded the best result (92.13%
accuracy) in classifying CP even outperforming the clinical GMA itself (85.04% accuracy). Being one
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of the first studies to include more than 100 preterm infants in their tests, Orlandi et al. [13] show
that an automated procedure could possibly replace the clinical GMA. Moreover, Random Forest
and AdaBoost seem to be a good choice of classifier, but the method lacks kinematic features that
could be introduced by using depth cameras. A new model called Computer-based Infant Movement
Assessment (CIMA) was introduced and evaluated on even more infants (377 high-risk infants)
by Ihlen et al. [18]. The 1–5 min video recording of 9–15 weeks corrected age infants were used to
predict CP. Pixel movements were tracked using a large displacement optical flow and six body
parts (arms, legs, head, and torso) were segmented in a non-automatic way, having two assistance
manually annotating the videos. A total of 990 features, including the temporal variation, multivariate
empirical mode decomposition (MEMD), and Hilbert–Huang transformation of the six body parts,
were extracted for 5 s non-overlapping windows of the videos. Two certified GMA observers rated
the videos according to classify FMs (FM−, FM+/−, FM+, FM++) using the GMA as comparison
to the model. Forty-one (11%) of 377 infants were diagnosed with CP according to a Decision Tree
published by the Surveillance of cerebral palsy in Europe by pediatricians (unaware of the GMA
outcome) [96]. CIMA model yielded comparable results to the GMA having 92.7% sensitivity and
81.6% specificity rate in CP prediction. Raghuram et al. [15] introduced a more general analysis by
building a predictive model for motor impairment (MI) rather than just a CP prediction. RGB videos of
152 infants (3–5 months) were analyzed to predict MI, defined as Bayley motor composite score <85 or
CP. The movement analysis contained a pixel tracking using LDOF, a skin model for segmentation and
finally an extraction of movement related features. Using logistic regression and a backward selection
method to reduce the feature space, 3 mainly contributing values have been identified. The minimum
velocity, mean velocity of the infant’s silhouette, and the mean vertical velocity yielded the best
results in MI prediction. The presented automated method performed better (79% sensitivity and 91%
negative predictive value (NPV) for MI) than the clinical GMA in relation to MI prediction.

Schmidt et al. [17] relied on 2445 video segments for their study. To reduce the data per input
video, they further sampled the segment producing 145 frames per segment video. The authors are the
only ones to implement a transfer learning approach, which means that a network trained for another
task is reused and adopted. The model was built applying Keras VGG19 [97] and trained on the
ImageNet dataset classes. Image features were picked up from Layer eight of VGG19, went through
a max-pooling layer and normalized before being presented to an LSTM layer for the classification
of the images. They reported 65.1% accuracy using a 10-fold cross validation (CV) for their method.
In addition, the model seems to prioritize sensitivity (50.8%) over specificity (27.4%). Summarizing
the results, the presented work performs worse compared to previous studies and is not feasible
in its preliminary state. Especially, the unbalanced class distribution (approximately 15% natural
occurrence rate of CP) makes the training of data intensive neural networks more difficult. Therefore,
further investigation is required to check if transfer learning-based approaches are suitable for the
problem in hand.

Depth Cameras: With the invention of the Microsoft Kinect sensor in 2010, motion tracking has
become a relatively easy problem to solve [19,44]. Without much effort, it is possible to compute
pose and motion parameters using its 640× 480 depth images, which are recorded at 30 frames per
second [98]. Olsen et al. [99] introduced a 3D model-based on simple geometries, like spheres and
cylinders, to describe the infants body using the Kinect sensor. A stomach body part was matched as
the only spatial free object. Remaining parts followed constraints due to a hierarchical model for arms,
feet, and the head. While body parameters, like position of the stomach and rotation of the remaining
parts, were iteratively improved by the Levenberg Marquardt method [100,101], size parameters for
the objects are either given or estimated in the beginning. Using the Kinect sensor, RGB-D videos of
7 infants have been recorded and some frames manually annotated to receive the ground truth of the
infants poses. The authors compared a graph-based method and model-based method to estimate the
location of the extremities. The performance of the models is estimated by calculating the euclidean
distance between the manual annotated points and the estimation of joint locations. It could be shown
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that the model-based method yielded smoother tracking. Based upon this model, Olsen et al. [19]
proposed a method to detect spontaneous movements of infants using motion tracking. They computed
several features based on the angular velocities and acceleration from their infants’ model. An RGB-D
dataset of 11 infants was analyzed. The labeling consisted of two classes (spontaneous movement or
not spontaneous) and was done by one of the authors of this study. They reported good performance
of 92–98% accuracy for their sequence segmentation method. Nevertheless, it must be emphasized that
the method was evaluated on a very small dataset. Khan et al. [102] proposed a method for monitoring
infants at home. They collected RGB data of 10 subjects using an additional RGB camera included
in Microsoft Kinect. After data preprocessing, 9 geometric ratio features were computed and then
presented to an SVM for classification. A 5-fold cross-validation was performed to validate the system
and found to be classified at around 80% accuracy. Although the proposed method shows good results,
the number of subjects is critically low, and no healthy infants have been observed as all subjects had
movement disorders.

Pose Reconstruction: Furthermore, different works have attempted to evaluate the accuracy of
Prechtl’s GMA by human experts based upon pose reconstruction models. Therefore, outcomes
yielded by the classical GMA based on RGB videos have been compared to experts’ analysis of
pose estimations extracted from the same videos. Such reconstructed models anonymize the infant’s
person-specific information (for example, faces are disguised) while remaining movement related data
to access GMs. Thus, these approaches enable data sharing and reduce privacy concerns in large clinical
trials or research projects. Using archived videos from 21 infants (8–17 weeks), a computational pose
estimation model was elaborated to extract skeleton information by Marchi et al. [103]. The original
and skeleton videos of the 14 low-risk and 7 atypical movement babies were assessed by two blind
scorers (qualitative assessment of GMs). An agreement of Cohen’s K of 0.90 between both lead to the
conclusion that the skeleton estimation comprises the clinically relevant movement. In comparison,
Schroeder et al. [104] recently evaluated a Skinned Multi-Infant Linear Model (SMIL) including 3D
body surface additionally to the skeleton of the infant. SMIL model creation consists out of several steps,
including background and clothing segmentation, landmark (body, face and hand) estimation and a
personalization step, where an initial base template is transferred to the “infant specific shape space
by performing PCA on all personalized shapes” [105]. The base template represents an infant-based
model instead of just downsampling already existing adult models. A total of 29 high-risk infants
(2–4-month corrected age) were recorded for 3 min using Microsoft Kinect V1. A GMA expert rated
both (first all SMIL, afterwards all RGB videos) in a randomized order. To evaluate the agreement
between general and fidgety movement ratings of the sequences, the Intraclass Correlation Coefficient
(ICC) was computed. ICC was 0.874 and 0.926 respectively for GM-complexity and FM. In additions,
the authors published the Moving INfants In RGB-D (MINI-RGBD) dataset [106], consisting of SMIL
applied to 12 sequences of moving infants up to the age of 7 months. These results suggest that
the golden standard for the GMA, which is represented by RGB videos, is similar and thus can be
replaced by SMIL. While such abstractions of videos seem to retrain the relevant information and
thus look promising, the presented methods did not include a fully automated solution based on AI.
Classification rates of machine learning algorithm or DL methods need to be tested on the presented
pose estimation models in the future.

Deep Learning: With the increasing computing power of Graphics processing units (GPUs) in recent
years, the training of Neural Networks (NNs) became possible. These DL approaches aim to learn
complex problems in an end-to-end manner using great number of data samples with according class
labels (supervised). Although it has been shown that NN can perform excellent results in various
tasks, they lack the ability to justify their yielded outcomes. Thus, they are also referred to as black box.
DL approaches have been used for GMA based on visual sensors in two different ways. First, NNs can
function as pose estimation or other feature extraction method. Secondly, some paper implemented
NNs as classifier to directly return the classification output.
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Deep Learning for Pose Estimation: Chambers et al. [36] built a Convolutional Neural Network to
extract the pose of infants. They were the only ones to publish an unsupervised approach as preprint
and showed that they can distinguish unhealthy movement from infants based on an NB classifier
exclusively trained on healthy children. Therefore, 420 videos of assuming healthy infants were
collected from YouTube from which 95 were selected, checking that there is more than 5 s of video
data and quality is sufficient to extract pose estimation. The age of the infants was estimated by two
physical therapists and averaged for the two resulting values. In addition, a clinical dataset was created
to evaluate the model after training. The recorded videos of 19 infants (6 preterm, 13 full-term) were
evaluated according to the Bayley Infant Neurodevelopmental Screener by an experienced pediatric
physical therapist into different risk groups. It compromises a test for neurological and expressive
functions and cognitive processes. The approach compromises OpenPose [107], a Convolutional Neural
Network trained to locate joint positions. The author adapted it for infants using YouTube and 17 out
the 19 clinical videos with manual annotated joint locations. Using the pose estimation, 38 features
(posture, acceleration, velocity, etc.) were extracted to train the NB and check if the individuals in the
clinical dataset are part of the (assumed healthy) YouTube set. In other words, they classified infants
as unhealthy when their movement was different from the healthy reference dataset. In addition to
finding important movement features, a Kruskal–Wallis test between the infants risk groups and the
calculated Naive Bayes score show significant association (χ2(3) = 29.92, p < 0.0001). While the study
offers a promising unsupervised approach to analyze infants’ movements that overcomes the obstacle
of collecting sufficient data of unhealthy children, the study faces some problems. First, the clinical
dataset of 19 infants seems in terms of participants too small. Secondly, the use of YouTube data could
be considered as not reliable for medical diagnostic, especially with missing background information as
age and health status of the children. Finally, the chosen unsupervised approach reveals whether infants
differ from the healthy reference group but does not make statements how they differ. McCay et al. [24]
applied OpenPose on the 12 sequences of the MINI-RGBD dataset. An independent expert annotated
the videos using the GMA into categories normal and abnormal. Two pose-based histogram features
to retrieve a dense representation of the posture of the infants were introduced. They calculated the
Histogram of Joint Orientation 2D (HOJO2D) and Histogram of Joint Displacement 2D (HOJD2D) to
train KNN, LDA and an Ensemble classifier (MATLAB, not specified in detail). Using leave-one-out
cross validation, a best accuracy of 91.67% was achieved for the Ensemble classifier. The promising
feature choice and the good performance results are only compromised by the used dataset which
lacks a large number of infants. In addition, the data are synthetic which can introduce a degree of
uncertainty in the ground truth and missing information for the classifier.

Deep Learning for GMA Classification: McCay et al. [23] extended their work by enhancing the
preprocessing pipeline and evaluating different kinds of NN architectures for classification on
their feature extraction approach. The confidence score of the OpenPose software was used to
find anomalous joint positions and correct them by interpolating successfully interpreted frames.
Afterwards, the feature vector computed by HOJO2D, HOJD2D, and a concatenation of both was fed
to an NN and CNN architecture and compared to standard machine learning algorithms (DT, SVM,
LDA, KNN, Ensemble). They have shown high performance and robustness of the DL approaches.
In addition, the CNN and NN architectures yielded better results compared to the standard machine
learning algorithms. Tsuji et al. [20] recorded 21 infants and labeled intervals of 30 s according Prechtl’s
assessment by the help of a physical therapist. An Artificial Neural Network with a stochastic structure
was trained on the resulting dataset containing 4 classes (WMs: 193; FMs: 279; CS: 31; and PR:
66). The proposed method compromises a conversion to grayscale with background subtraction,
resulting in a binary image where 0 is coded as background and 1 as infant. Several movement features
in the categories movement magnitude, movement balance, movement rhythm, and movement of
the body center are extracted afterwards. Features are fed to a Log-Linearized Gaussian Mixture
Network (LLGMN) which estimates the probabilistic distribution of every data point. After the
training, classification can be given by the highest posterior probability of the model. In addition,
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a threshold for the entropy is given to identify ambiguous input as additional class (Type 0). This class
is also addressed when there is no movement in the data. A classification accuracy of 90.2% for
the task normal vs. abnormal motions was achieved. To date they are the only ones to create a
model distinguishing 4 types of GMs (WMs, FMs, CS, and PR) and retrieve an accuracy of 83.1%.
The proposed model trained on a dataset with more infants and additional movement types could
lead to a promising approach to automate the GMA.

In general, most visual-based works so far rely on marker-less approaches. While initially good
results could be yielded, most obstacles arise with the limited datasets used. Research and especially
deep learning approach could benefit from publicly available large datasets. Privacy concerns could
be overcome by transforming video data to 3D infant’s models, like SMIL. So far, an automated
recognition system utilizing smartphones has not been evaluated. Yeh et al. [108] and Spittle et al. [109]
have already shown, that smartphone videos recorded by instructed parents are valid for clinical GMA.
Such a system could provide more people, especially in rural areas, access to GMA. GMA could be
used as screening for every newborn and be a benefit for the health system. Moreover, non-intrusive
markers created for the infant’s special needs could be used to boost the performance of visual system.

5.3. General Movement Assessment Based on Visual and Motion Sensors

The techniques reviewed hitherto use either visual or motion sensors for the detection of
infant’s GMs. We have observed that the GMA is mostly based on videos of infants, rated by
trained professionals and, as such, is influenced by their subjective sense because of mood, fatigue,
social issues, etc. Therefore, it is challenging to imply it in clinical settings and, this is perhaps
due to its subjective nature [110]. However, there is an emerging demand for further objective
methods [7,12,29,110]. To run-over the drawbacks of the previous approaches, efforts have been made
to create a multimodal system consisting of both visual and motion sensors. Berge et al. [110] presented
a software tool named enhanced interactive general movement assessment (ENIGMA) for the GMA
knowledge extraction and modeling. They acquired video and motion data from the past 15 recordings
having normal and abnormal GMs at the fidgety age. To model the features, trained GMA professional
guided the knowledge engineer iteratively and incrementally by providing the feedback. They claim
that their proposed system suggests a procedure to build an automated system. Moreover, they also
proposed a periodicity feature for the detection of FMs. However, they did not provide any quantifiable
evaluation on the performance of their proposed feature.

Multi-modality permits for a consistent assessment of GMs and FMs in order to avoid missing
data due to occlusion, noise, gestational age, exhaustion, etc. In this section, we reveal the available
multimodal approaches for GMA. We split up these techniques on the grounds of fusion level into the
Decision Fusion and Feature Fusion as shown in Figure 3.

Decision Fusion: The decision fusion approaches designed to blend the results of various algorithms
(or models) into one single called ensemble decision. Numerous methods are proposed [111] to make
a single final decision. Among them, majority voting is the general approach to fuse the results of
different modalities. In the majority voting scheme, each model gives one vote (i.e., label), and the
majority label in the composition is selected as the final decision. It is worthwhile to mention that
the reviewed GMA studies [13,21,23,24] used the decision fusion with motion sensors data or visual
sensors data.

Feature Fusion: Feature fusion is the tactic of joining various modalities features by integrating them
into only a high-dimensional feature vector. The integrated features are then used to train and test a
classifier. Literature shows that feature fusion practice has higher performance as compared to the
decision fusion process. Nevertheless, it can also raise several issues such as the curse of dimensionality
and missing data because of the non-availability of the device at a particular time. Techniques such as
Principal Component Analysis (PCA) and autoencoders can be used to solve the high-dimensionality
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problem. There are several methods to deal with the partially or entirely missing data, such as imputing
missing values or choosing an algorithm that supports the missing values.

Redd et al. [112] introduced a novel sensing system using 9-axis IMU (Bosch Sensortec
Accelerometer + Gyroscope and a Magnetometer) with a sampling rate of 100 Hz. A custom sensor
case with an attached triangular array of spherical retro-reflective markers was built. They have
produced results by combining IMUs with a marker-based approach. In addition, the authors tried to
keep the sensor weight as small as possible (10.25 g), since masses of 14 g do not interfere with fidgety
movements [113]. Sensors should be placed on forehead, sternum, left hand, right hand, left foot,
and right foot of the infant. However, the system was tested on only one healthy infant at 12 weeks
postterm age for which movement data and trajectories were illustrated. To justify and evaluate the
system, a machine learning study on a larger dataset should be performed.

Machireddy et al. [34] proposed a multimodal system using visual and motion sensors that
integrates marker-based tracking in video images with the IMU measurements. Multiple sensors are
used to indemnify for one’s shortcomings. The markers (or color patches) and IMUs are attached
to the infant’s hands, legs, and chest with soft bands and vest. From the marker shape, size,
and camera calibration, a value for the 3D position is computed. The IMUs and video camera are
synchronized simultaneously, and the signals from all sensors are fused using an Extended Kalman
filter. They reported 70% classification accuracy on dataset of 20 infants while using train and test data
from different limbs. This technique needs to be further analyzed on a larger dataset.

To summarize, we review here two types of fusion levels, such as decision fusion and feature
fusion for infants GMA using motion sensors and visual sensors. Decision fusion combines the
outcomes of various algorithms into one single called ensemble decision. In contrast, feature level
fusion can combine different modalities data (features) to make a high dimensional feature vector.
Nevertheless, the high dimensional feature vector with missing data can raise some issues such as
the curse of dimensionality and missing data that can be managed by using dimension reduction and
interpolation techniques.

We have summarized the results of reviewed articles in Tables 4–6. Table 4 shows the classification
results of studies focusing on the general movements. Table 5 represents the classification results of
studies focusing on the fidgety movements, and Table 6 lists the combined results of general movements
and fidgety movements. All the studies have been ordered by year in their respective Tables.

6. Conclusions

In this paper, we presented a review of recent AI approaches that attempt to automate the
assessment of general movements in order to overcome the cumbersomeness of (traditional and)
clinical GMA. We discussed the advantages and limitations of each type of approaches in their
respective sections. In Section 5.1, we have found that motion sensors like accelerometers, gyroscopes,
and magnetometers are affordable and sufficiently miniaturized to be placed on infants’ limbs and
to record necessary data for the assessment of general and fidgety movements. However, for the
purpose of manual annotation the whole process is recorded by cameras for the experts [25,27].
Then, in Section 5.2, we presented that the video data can be useful to track the movement of the
limbs to identify the existence of cramped synchronized movements, and also to discover absence
of fidgety movements. The marker-based approaches in Section 5.2.1 produce higher accuracies
however, placing several markers results in an extra setup time. For example, Meinecke et al. [7]
proposed an analysis system for CP in infants by using 20 reflective markers and 7 infrared cameras
to capture 3D motion. They produced results with high accuracy (73%). However, such a system
is costly and challenging to set up, especially when placing a large number of markers on infants’
little bodies. The work of Berthouze and Mayston [86] used 3 to 4 markers on the shanks of infants in
their surface-marker cluster approach for GMA employing 6 cameras. They have placed a relatively
small number of markers but still the system is not easily portable and also have high computational
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complexity which limits their clinical applicability. The authors in [87] presented a cost-effective and
easily portable system by using only one digital camera to capture the infant’s movements by placing
reflective markers on the joints. They computed and tested different kinematic features extracted from
2D videos.

In contrast, marker-free approaches provide the freedom of using no markers, so they are
inexpensive and easy to setup. We have presented several approaches in Section 5.2.2 that use
marker-free pose estimation for GMA [21,89]. Most of the approaches employed hand-crafted
features [16,22] to quantify the amount of motion for the classification of fidgety and non-fidgety
movements. However, the features were sensitive to lightening conditions, cloths, and skin color [14].
Some approaches have used the trajectory of limbs [21,33] to identify the normal and abnormal
movements. The authors in [13] worked on a large dataset and presented results using frequency and
time-based features. These approaches used 2D videos which may cause reduction in accuracy for the
movements that are not performed in the plane perpendicular to the camera. To overcome this problem,
several studies have used depth cameras in their research and produced good results. For example,
Olsen et al. [99] extracted joints and pose information from RGB-D data for detecting spontaneous
movements of infants. In another paper, Olsen et al. [19] presented a model-based approach for
tracking infants in 3D. A Deep Learning-based approach [36] is also used on the dataset built upon
YouTube videos. The hybrid approaches have also been experimented by incorporating the features
extracted from motion and visual data [32] and implemented the motion segmentation methods.

The RGB and depth data have been popularly used for pose and shape estimations that are the
building blocks to track the movements of the infants’ limbs. However, we have learned that all the
aforementioned approaches are missing extensive learning-based methods using the state-of-the-art
classification algorithms and the multimodal sensor setup. We also presume the need of a large
purposely collected dataset for GMA that can be used for the learning-based classification approaches.
Nevertheless, the privacy of the patients should not be compromised. The SMIL model can be helpful
in this regard because it targets the aspect of privacy and provides a very nice idea to generate 3D
models of real infants and perform the analysis. Last but not least, we have observed that some of
the reviewed studies used more general terms rather than mentioning the standard terms for GMA,
for example, normal vs. abnormal sometimes does not emphasize whether the study had dealt with
GMs or FMs. In addition, the outcome categories are not compliant with Prechtl’s GMA and the rarer
categories like Ch or AF are often not mentioned in the analyses. Therefore, in our opinion, the use of
standard terms is more meaningful and would enhance the clarity of the work.

Considering the above-mentioned points, we propose an end-to-end deep learning-based system
with the following features:

• The collection of a large dataset of infants for GMA is necessary to implement learning-based
approaches.

• The dataset should be comprised of multiple sensor modalities like visual, depth, motion data so
that the strength of each modality can be exploited to produce accurate results.

• The privacy preservation techniques should be exercised to conceal the identity of the probands.
• We can use state-of-the-art methods for extracting features, for example, joints information,

in visual and depth data.
• The implementation of multi-task learning approach would be beneficial to track the movement

of different limbs simultaneously.
• The precise objective of our system is the classification of the infants’ movements into fidgety

and non-fidgety.

We believe this approach will help to develop a screening instrument for CP for pediatricians and
general practitioners. Then they could detect those infants at highest risk for cerebral palsy (FM) and
refer them to specialized centers and start with the adequate therapy as soon as possible. The system
would be also beneficial to the parents of high-risk infants living in remote areas to reassure them with
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a normal result. From the ethical point of view, all affords should deal with developing an AI system
that can be implemented in (newly) industrialized countries and developing countries. To support this
scientific task, we also take into consideration the publishing of dataset so that research community
can use it for the development of further enhanced tools for GMA.
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Abbreviations

The following abbreviations are used in this manuscript:

AB AdaBoost
AI Artificial Intelligence
ANN Artificial Neural Networks
BINS Bayley Infant Neurodevelopmental Screener
CIMA Computer-based Infant Movement Assessment
CNN Convolutional Neural Network
Ch Chaotic General Movements
CP Cerebral palsy
CS Cramped Synchronized General Movements
CV Cross Validation
DL Deep Learning
DPD Discriminative Pattern Discovery
DT Decision Tree
DWT Discrete Wavelet Transform
EKF Extended Kalman Filter
EMTS Electromagnetic Tracking System
FM Fidgety Movement
GMA General Movement Assessment
GM General Movement
GPU Graphics Processing Units
HAR Human Activity Recognition
IMU Inertial Measurement Unit
KCF Kernel Correlation Filter
KNN K-Nearest Neighbor
LDA Linear Discriminant Analysis
LDOF Large Displacement Optical Flow
LEDs Light Emitting Diodes
LLGMN Log-Linearized Gaussian Mixture Network
LOO-CV Leave-One-Out Cross-Validation
LR Logistic Regression
LSR Least Square Regression
MEMD Multivariate Empirical Mode Decomposition
MI Motor Impairment
NB Naive Bayes
NNs Neural Networks
NPV Negative Predictive Value
PCA Principal Component Analysis
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PLSR Partial Least Square Regression
PR Poor Repertoire General Movements
QDA Quadratic Discriminant Analysis
RF Random Forests
RMDS Root Mean Square Deviation
SMIL Skinned Multi-Infant Linear Model
SVM Support Vector Machine
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