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Abstract: Hydrological calibration of raw weather radar rainfall estimation relies on in situ rainfall
measurements. Raindrop size distribution (DSD) was collected during three typical Mei-Yu rainstorms
in July 2014 using three particle size velocity (Parsivel) DSD sensors along the Mei-Yu front in
Nanjing, Chuzhou, and the western Pacific, respectively. To improve the radar precipitation
estimation in different parts of the Mei-Yu front, a scaling method was adopted to formulate the
DSD model and further derive the Z–R relations. The results suggest a distinct variation of DSDs
in different parts of the Mei-Yu front. Compared with statistical radar Z–ARb relations obtained by
mathematical fitting techniques, the use of a DSD model fitting based on a scaling law formulation
theoretically shows a significant improvement in both stratiform (33.9%) and convective (2.8%)
rainfall estimations of the Mei-Yu frontal system, which indicates that using a scaling law can better
reflect the DSD variations in different parts of the Mei-Yu front. Polarimetric radar has indisputable
advantages with multiparameter detection ability. Several dual-polarization radar estimators are also
established by DSD sensor data, and the R(ZH, ZDR) estimator is proven to be more accurate than
traditional Z–R relations in Mei-Yu frontal rainfall, with potential applications for operational C-band
polarimetric radar.
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1. Introduction

Changes in the spatial and temporal patterns of climate variables associated with global warming
will have an influence on regional- and catchment-scale hydrological processes [1]. According to the
Global Climate Observing System (GCOS), precipitation is getting more severe with drastic changes in
most of the cities worldwide [2]. For instance, Hoerling et al. [3] found an increase in both frequency
and intensity of heavy rain since 1979 in the northeastern United States. Cui et al. [4] revealed the
interannual variability of heavy rain in central and southern China due to the variation of large-scale
environmental conditions. Investigating the response of regional rainfall events, especially extreme
precipitation, will have significant implications on climate prediction. Over the last few decades,
weather radars have been principally used to collect rainfall variability because of their good areal
coverage as well as high-resolution measurements both in time and space [5].

Various radar quantitative precipitation estimation (QPE) algorithms, including Z–R relations
(Z = ARb, where Z is the radar reflectivity factor and R is the rain rate), as well as polarimetric radar
algorithms highly depend on surface-based DSD measurements [6–11]. Both Z and R are functions of
raindrop size distributions, which can be directly derived from given DSD samples. Earlier studies
tend to obtain the parameters [A, b] in Z–R relations via different mathematical fitting techniques,
but the statistical results sometimes cause severe deviations [12,13]. Other scholars establish Z–R
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relations by relating coefficients [A, b] to DSD fitting models based on a scaling law formulation [14,15].
Unlike other DSD models (e.g., exponential distributions [16] and gamma distributions [17]), the
scaling law allows the Z–R relation to be established without any DSD shapes imposed a priori [18].
More importantly, it provides valuable information about the intrinsic microphysical properties of the
drop size distribution and its relations with radar parameters [A, b], which is likely to help improve
radar rainfall estimations.

By using the scaling theory, Hazenberg et al. [19] studied the DSD characteristics and radar
retrieval variability in mesoscale convective systems (MCSs), squall lines, and midlatitude cyclones
over the Mediterranean region. However, no research has specifically examined the use of scaling
law formulas in the Mei-Yu frontal system, a quasi-stationary front stretching over thousands of
kilometers, extending eastward from southwestern China to the western Pacific through the Japanese
archipelago [20,21], which is one of the most significant rainfall systems affecting the hydrological cycle
in the East Asian monsoon region. Rainstorms associated with Mei-Yu (also called “Baiu” in Japan and
“Changma” in South Korea) are a crucial summertime water resource and sometimes result in severe
natural disasters in East Asian countries [22–27]. Meanwhile, this frontal rainstorm also intimidates
the security of naval ships on the sea. Therefore, there is an urgent need to improve the performance
of radar rainfall estimations within this weather system for flood monitoring, urban waterlogging
prediction, and ocean storm monitoring. Based on the scaling method, one specific goal herein is to
improve radar rainfall retrievals in different parts of the Mei-Yu frontal system by using in situ DSD
sensor measurement data collected during three Mei-Yu rainstorms in the summer of 2014.

Following this introduction, a brief description of data and methods is presented in Section 2,
the DSD properties among different parts of the Mei-Yu front are analyzed in Section 3, and radar
rainfall retrievals based on DSD sensor measurements are further discussed in Section 4. Finally,
Section 5 presents a summary and conclusions.

2. Data and Methods

2.1. Observational Sites and Instruments

The data collected for the analyses consisted of three-time series of 1-min DSD data that were
measured by Parsivel2 DSD sensors at Nanjing (NJ, 118.5◦ E, 32.0◦ N), Chuzhou (CZ, 118.2◦ E, 32.3◦ N),
and the western Pacific (WP, 148.0◦ E, 32.1◦ N). DSD data in WP were measured by an onboard
Parsivel2 DSD sensor during a marine survey over the western Pacific. Three typical Mei-Yu front rain
events were simultaneously detected by the above DSD sensors on the 2nd, 4th, and 12th of July, 2014,
respectively when the ship sailed across the area shown in Figure 1. Meanwhile, the satellite image
from an infrared-channel sensor on the Japanese geostationary meteorological satellite Himawari-7
clearly presents a large-scale cloud belt covering southwestern China all the way to the central Pacific
(Figure 2a). The rainfall is caused by a quasi-stationary front and the presence of strong low pressure as
presented on the surface weather chart (Figure 2b) provided by the Japan Meteorological Agency (JMA).
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Figure 1. Locations of three Parsivel2 raindrop size distribution (DSD) sensors employed during the 
Mei-Yu frontal rain events. The western Pacific (WP) site is located in the southeast ocean area of 
Japan Sea, while Nanjing (NJ) and Chuzhou (CZ) are located in the East China continent. 

 
Figure 2. Himawari satellite image and Japan Meteorological Agency (JMA) surface weather chart at 
(a) 00 UTC, 2 July (b) 00 UTC, 4 July and (c) 00 UTC, 12 July 2014. 

Figure 1. Locations of three Parsivel2 raindrop size distribution (DSD) sensors employed during the
Mei-Yu frontal rain events. The western Pacific (WP) site is located in the southeast ocean area of Japan
Sea, while Nanjing (NJ) and Chuzhou (CZ) are located in the East China continent.
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The Parsivel2 DSD sensor [28], manufactured by OTT Hydromet, Germany, is a 2nd generation
optical sensor with a near-infrared (650 nm) rectangular single-beam that is 30 mm wide, 180 mm
long (for a sensor horizontal area of 54 cm2), and 10 mm high. It archives equivalent drop diameters
sorted unevenly into 32 diameter classes from 0 to 26 mm and 32 fall speed classes from 0 to 22.4 m s−1.
The time resolution can be selected and was set to 1 min in the present study. Nevertheless, some
measurement errors, such as strong winds, margin fallers, and splashing effects are found to influence
the reliable utilization of DSD sensors. Following Wu et al. [29], we implemented a procedure on data
quality-control by eliminating particles with diameters larger than 8 mm or falling speeds 50% faster
or slower than the empirical raindrop speed-diameter relationship proposed by Gunn and Kinzer [30].
Apart from that, 1-min samples with drop numbers less than 10 or a rain rate less than 0.1 mm h−1

were also excluded [31]. In order to overcome the measurement error from ship movements and tilts,
the onboard Parsivel2 sensor was adjusted and fixed to stay perpendicular to the direction of ship
pitch to best ensure the beam orientation parallel to the horizontal plane. Finally, there are overall 2611
1-min effective DSD samples for NJ, 2306 1-min effective DSD samples for CZ, and 653 samples for WP
(see Table 1). The samples in NJ (CZ) are plenitudinous with the max rain rate reaching 88.22 (71.90)
mm h−1 on 12 July (4th). Although the onboard DSD sensor observations in WP are over a relatively
short period of time, the max rain rate obtained in WP could reach 48.64 mm h−1 on 12 July, and the
max reflectivity factor is up to 48.22 dBZ on 2 July.

Table 1. Mei-Yu frontal precipitation events detected in three different parts of the Mei-Yu front.

Date Regions 1-min Samples
(min)

Accumulated
Precipitation

(mm)

Max Rain Rate
(mm h−1)

Max
Reflectivity
Factor (dBZ)

2 July 2014
NJ 828 34.41 36.26 44.42
CZ 610 9.74 26.47 41.95
WP 454 8.60 5.74 48.22

4 July 2014
NJ 1238 95.19 86.83 53.52
CZ 1112 107.36 71.90 49.31
WP 104 5.91 10.54 16.19

12 July 2014
NJ 545 42.73 88.22 56.94
CZ 584 21.18 22.33 48.26
WP 95 10.79 48.64 52.76

2.2. Scaling of Raindrop Size Distribution

The raindrop size distribution was computed from the Parsivel2 DSD sensor counts as below:

N(Di) =
1

Se f f (Di) · T · ∆Di

L∑
j=1

ni j

V j
(1)

where N(Di) (mm−1 m−3) is the number concentration of raindrops per unit volume per unit size
interval for raindrop diameter Di (mm); L is the bin number of Parsivel2 measurements and is known
to be 32; nij is the number of raindrops within size bin i and velocity bin j; T is the sampling time (set to
60 s in this research), and Vj (m s−1) is the fall-speed for velocity bin j. Seff(D) (mm2) is the effective
sampling area [32] that considers partially detected drops across Parsivel’s laser sheet and is computed
based on beam width and length:

Se f f (Di) = 180× (30−
Di
2
) (2)
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The integral rainfall parameters, including the radar reflectivity factor Z (mm6 m−3), rain rate R
(mm h−1), and total concentration of raindrops Nt (mm−3) are directly derived from measured DSDs
and fall velocity as below:

Z =
L∑

i=1

N(Di)Di
6 ∆Di (3)

R = 6π× 10−4
L∑

i=1

L∑
j=1

V jDi
3N(Di)∆Di (4)

Nt =
L∑

i=1

N(Di)∆Di (5)

To better characterize the measured DSD samples, Sempere Torres et al. [14,15] proposed a more
general formulation for DSD parameterization, that is, to express the DSD as a scaling law (SL)

N(D,Ψ) = Ψα g(
D
Ψβ

) (6)

where Ψ is a reference variable, commonly taken as the rain rate R due to its considerable variation in
different rainfall systems (e.g., for deep convective system, the Rmax could reach up to 100 mm h−1),
and this contributes to comparing the DSD properties over a wide range. Thus, Equation (6) can also
be expressed as

N(D, R) = Rαg(
D
Rβ

) (7)

where α and β are scaling parameters and g(x) is the scaled raindrop size distribution with x = D/Rβ.
Introducing Equation (7) into (4) yields the so-called self-consistency-constraint [19]:

6π× 10−4c
∫
∞

0
x3+dg(x)dx = 1 (8)

where the terminal fall-speed is assumed to follow the power-law relationship of Atlas and Ulbrich [33]

V(D) = cDd (9)

with c = 3.778 and d = 0.67. Different functional shapes have been proposed for g(x). Herein both the
exponential (µ = 0) and gamma distribution are employed, which can be expressed as

g(x) = κxµ exp(−Λx) (10)

then k can be obtained by introducing Equation (10) into (8)

κ =
Λ4.0+d+µ

6π× 10−4cΓ(4.0 + d + µ)
(11)

2.3. Establishment of Z–R Relations

The Z–R relationship can be established via the above SL equations as well as Z = ARb,
the coefficients A and b thereby can be calculated by

A = κ
Γ(7.0 + µ)

Λ7.0+µ , b = α+ 7β (12)
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where b is related to α and β, and A is dependent on g(x). Note that the SL method can naturally lead
to power-law relationships between Z and R, without any functional shape imposed as a priori for
g(x) [18].

The SL parameters α and β, as well as the parameters [µ, Λ] of g(x) for a given functional shape
can be obtained by using the moment estimation method [17,34,35]. For a given DSD, the nth-order
moment (Mn) is defined as

Mn =

∫
∞

0
N(D)DndD =

∫
∞

0
DnRαg(D/Rβ)dD = θnRγn (13)

θn =

∫
∞

0
xng(x)dx,γn = α+ (n + 1)β (14)

Hence, to obtain the SL parameters α and β, γn should be first obtained by fitting a power law
between different integral moments Mn and the rain rate R Equation (13), then α and β can be obtained
according to Equation (14) that γn should follow a linear relationship with the moment order (n + 1).

In addition, the parameters [µ, Λ] of g(x) can be calculated with the second, fourth, and sixth
truncated moments (T246) [35]. And the mass-weighted mean diameter Dm (mm) is calculated by the
ratio of the fourth to the third moment of the DSD

η =
M2

4

M2M6
(15)

µ =
(7− 11η) − [(7− 11η)2

− 4(η− 1)(30η− 12)]
1/2

2(η− 1)
(16)

Λ =

[
(4 + µ)(3 + µ)M2

M4

]1/2

(17)

Dm =

32∑
i=1

N(Di)Di
4∆Di

32∑
i=1

N(Di)Di3∆Di

=
M4

M3
(18)

2.4. Variables of Polarimetric Radar

In addition to conventional weather radar measurements, a polarimetric radar is capable of
measuring the differential reflectivity ZDR (dB) and the specific differential phase Kdp (deg km−1)
between two orthogonally polarized radar returns, which helps to significantly improve the radar
data quality by reducing the impact of DSD variability on the accuracy of rainfall estimations [36].
These polarimetric variables are computed as below:

Zh,v =
4λ4

π4|Kw|
2

∫ Dmax

Dmin

∣∣∣ fhh,vv(D)
∣∣∣2N(D)dD (19)

ZDR = 10 log10

(Zh
Zv

)
(20)

Kdp = 10−3 180
π
λRe

{∫ Dmax

Dmin

[ fh(D) − fv(D)]N(D)dD
}

(21)

where λ is the radar wavelength; Kw is the dielectric constant factor of water and fhh,vv(D) (fh,v(D)) is
the backscattering (forward-scattering) amplitude at the horizontal or vertical polarizations. In this
research, the assumed C-band (50 mm) dual-polarization radar variables are derived from the Parsivel2

DSD sensor data by the use of T-matrix scattering approach for non-spherical particles [37]. The mean
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and standard deviation of the canting angle is set to 0◦ and 7◦ respectively with a Gaussian model.
The raindrop temperature is assumed to be 20 ◦C for summer season and the relation of axis ratio r
and its equivalent diameter D (mm) based on Brandes et al. [38] is used as below:

r = 0.9951 + 0.02510D− 0.03644D2 + 0.005303D3
− 0.0002492D4 (22)

2.5. Assessment Statistics

To evaluate the overall quality of radar QPE algorithm and eliminate the influence from different
rainfall totals over three sites in the meantime, the normalized absolute error (NAE), the normalized
mean bias (NB), and the coefficient of determination (r2) are examined in each site as defined below:

NAE =

N∑
j=1

∣∣∣Rradar −R j
∣∣∣

N∑
j=1

R j

(23)

NB =

N∑
j=1

(
Rradar −R j

)
N∑

j=1
R j

(24)

r2 = 1−

N∑
j=1

(
Rradar −R j

)2

N∑
j=1

(
R j −R j

)2
(25)

where N is the number of effective samples in rain event, Rj and Rradar represent the observed rain rate
by DSD sensors and the radar-retrieved rain rate for each sample, respectively. Note that the specific
expression of Rradar is not given here, since the radar-retrieved results are from either conventional
radar or polarimetric radar (e.g., Rradar = (Zj/A)1/b for conventional radar).

2.6. Classification Scheme of Rain Types

Based on DSD sensor measurements, the DSD samples were further classified into two fundamental
rain types (convective rain and stratiform rain). Several rainfall classification schemes have been well
developed [34,39,40]. Nevertheless, the results of Tokay and Short [34] were obtained from rainfall
clusters in the tropics, which is inappropriate in our Mei-Yu study because of the regional variability.
The categorization scheme of Testud et al. [39] was based on the variability of rain rate (R) with time.
For a time series of the rain rate {Ri}, the sample k was classified as stratiform only if the R values of
ten adjacent values from Rk−5 to Rk + 5 were all less than 10 mm h−1, otherwise, it was assumed to be
convective. And the classification scheme of Bringi et al. [40] was based on the standard deviation
value (σR) of the rain rate R. A threshold of σR = 1.5 mm h−1 was used for the classification of stratiform
and convective rain. In this research, two classification schemes were adopted together to separate
total samples into convective and stratiform clusters. More specifically, for ten consecutive 1-min
samples, if the R values of ten adjacent values were all less than 10 mm h−1 and the standard deviation
σR was less than 1.5 mm h−1, then the sample was defined as stratiform, otherwise, it was classified
as convective. As a result, NJ, CZ, and WP consisted of 77% (23%), 90% (10%), and 41% (59%) of
stratiform (convective) rainfall DSD samples, respectively. The results indicate the presence of strong
convective rain over the Pacific Ocean.
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3. DSD Properties from Parsivel2

3.1. Analyses of Drop Size Spectra

In Figures 3 and 4 the analyses of the raindrop size spectra are presented. Figure 3a presents the
values of the exponents γn calculated by the least squares method between different integral moments
Mn and the rain rate R (Equation (13), for 0 ≤ n ≤ 6). The fit was performed over the central moments
(1 ≤ n ≤ 5) in order to minimize instrumental effects that might occur in measuring the smaller and
larger raindrops by Parsivel DSD sensors. Except for the lowest-order moments, the overall fit in
panels (a) and (b) of Figure 3 was very good. Based on the estimated values of γn, the coefficients α and
β can be further obtained via Equation (14), and the results are also shown in each panel of Figure 3.
For stratiform situations, it can be found that the sum of two coefficients was positive in CZ, negative
in WP, and equal to zero in NJ, which suggests an uneven distribution of rainwater in different parts of
the Mei-Yu front. Note that the coefficient α had a negative value under all circumstances in the Mei-Yu
front. This was different from the results of squall line (α = 0.24) and MCS (α = 0.22) as reported by
Hazenberg et al. [19], which suggests that the DSD characteristics in the Mei-Yu front were unique and
worth our further research.
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Figure 3. Scaling analysis of the drop size spectra for the Mei-Yu events in July 2014. The exponent γn

versus the moment order n + 1 are plotted in three different parts of the Mei-Yu front with two different
rain types (left panels (a), (c), and (e) for convective rain, right panels (b), (d), and (f) for stratiform
rain). Additionally shown in each panel are the scaling exponents (α, β).
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Figure 4. By using the moment estimation method, the exponential (dashed) and gamma (solid) shapes
in three different parts of the Mei-Yu front are obtained and presented, together with the scaled drop
size spectra. The coefficients of the distributions [µ, Λ] and the coefficient of determination r2 are
presented as well. The left panels (a), (c), and (e) represent convective rain, while the right panels (b),
(d), and (f) represent stratiform rain.

To develop deeper insight of the Mei-Yu microphysics, the scaled raindrop spectra along with
two different functional shapes are presented in Figure 4. It can be seen that the normalized DSD data
exhibited an exponential shape, which was well fitted by both exponential and gamma distributions,
as shown by the high values of the coefficient of determination r2 calculated by Equation (25) and used
for measuring the fitting efficiency of the relations. Comparing two rain-types, a wider normalized
spectrum can be noticed in stratiform rain clusters compared to convective rain clusters, which indicates
completely different DSD characteristics of the Mei-Yu front unlike other strong convective systems
such as squall lines. Comparing the three regions from different parts of the Mei-Yu front, the max
particle concentration of convective rain was largest in WP and smallest in CZ, and the spectra of
stratiform rain were widest in NJ and narrowest in CZ. This reflects the distinct DSD variability in
different parts of the Mei-Yu front. The SL method was able to provide information about the intrinsic
microphysical properties of DSD. It was reported by Uijlenhoet et al. [41,42] that precipitation may
reach an equilibrium state, where the collision-coalescence and collision-breakup processes of raindrops
are nearly in balance, causing all characteristic raindrop sizes to remain constant when the obtained
SL coefficients (α, β) satisfy α = 1, β = 0. From Figure 3d one can notice that CZ had the smallest β
value (0.25) for stratiform rain as compared to NJ (0.27) and WP (0.30), which corresponds to its more
uniform DSD and narrower width of spectra in Figure 4d. A different rainfall control mechanism,
on the other hand, can be found in the stratiform rain of NJ. Note that the sum of coefficients α and β
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was equal to zero in NJ as presented in Figure 3b, which results in non-homogeneous precipitation [43]
and distinct variations of drop size. This is also called a “size-control” mechanism.

3.2. Statistics of DSD Parameters

To further study the rainfall microphysics in different parts of Mei-Yu front, Figure 5 shows the
evolution of Dm and log10(Nt) versus rain rate for DSD samples observed in three parts. The parameters
Dm (blue rectangle) and log10(Nt) (red circle) are presented in six classes of rain rate with an interval
of 10 mm h−1 and the ranges of both parameters are indicated by the whisker of each symbol in
Figure 5. Additionally given in Table 2 is the number of samples in each rain rate class. Remarkably,
both Dm and log10(Nt) increased with an increase in rain rate at the first three classes (R < 30 mm h−1).
However, at the last three classes where R > 30 mm h−1, the parameters seemed to become stable
with Dm values staying approximately at 2.16 (2.12) mm in NJ (CZ) and 2.08 mm in WP, while the
log10(Nt) values still increased slowly with an increasing rain rate. Note that the ranges of both Dm and
log10(Nt) become smaller and smaller with rain rate increases. At higher rain rate classes, the DSDs
may reach an equilibrium state where coalescence and breakup processes of raindrops are in close
balance [44]. Under equilibrium conditions, Dm remained nearly constant, while any increase in rain
rate was mainly attributed to an increase in the concentration of raindrops [8], which was also called
a “number-control” mechanism. The unique characteristics of Dm and log10(Nt) in our study were
consistent with this theory but further demonstrate that the rainfall in the Mei-Yu front is unevenly
distributed with larger raindrops and more abundant particles in its continental part.
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rate class. The color bar at right side represents six classes of rain rate with an interval of 10 mm h−1.
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Table 2. Sample distribution of precipitation in different rain rate classes in three parts of Mei-Yu front.

Regions
Rain Rate Classes (mm h−1)

0–10 10–20 20–30 30–40 40–50 50–60

NJ 2030 284 66 33 25 19
CZ 2073 135 45 23 15 13
WP 468 81 36 13 11 9
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3.3. µ–Λ Relations

It has been widely reported that µ and Λ show rather similar behaviors and a very strong
correlation [35,45]. Studies have also shown that radar rainfall estimations can be improved after
adjusting the µ–Λ relationship to ground DSD sensor observations [46]. Over the past few years, it was
found that µ–Λ relations vary with respect to rain types, climate regimes, and terrains [35,46–48].
Hence, the µ–Λ relation needs to be adapted to the Mei-Yu frontal system.

Following the method of data-processing in Zhang et al. [35], the DSDs with R > 5 mm h−1 and
N > 1000 were fitted via the moment method to obtain a second-degree polynomial µ–Λ relation in
three parts of the Mei-Yu front. The relation for the NJ is given by

Λ = 0.0156µ2 + 0.636µ + 1.533 (26)

For CZ the relation is given by:

Λ = 0.0072µ2 + 0.688µ + 1.426 (27)

For WP the relation is given by:

Λ = 0.0244µ2 + 0.608µ + 1.351 (28)

For the entire Mei-Yu front is given by:

Λ = 0.0080µ2 + 0.741µ + 1.432 (29)

The fitting lines and their corresponding scatter plots are presented in Figure 6. Given the same
Λ, it’s notable that the parameter µ of the WP is less than that of NJ (CZ). The µ–Λ relation can also
be formulated as ΛDm = 4 + µ [35,45]. As presented in Figure 6, more samples of precipitation in NJ
(gray circle) and CZ (gray cross) lie in the larger Dm region. Such characterization is consistent with
the results presented in Figure 5.
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of the Mei-Yu front. The gray lines correspond to the relationship ΛDm = 4 + µ given the values of
Dm = 1.0, 1.5, 2.0, and 3.0 mm. The gray circles (crosses) represent precipitation in NJ (CZ), and the
gray triangles represent precipitation in WP. The dashed line and dotted line represent the empirical
µ–Λ relations reported by Zhang et al. [35] and Chen et al. [45], respectively.
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Compared with the statistical results in other regions, presented together in Figure 6, the results
that we derived in three parts of the Mei-Yu front were right between those obtained by Zhang et al. [35]
and Chen et al. [45]. This could be attributed in part to DSD sensor uncertainty. The Parsivel2 sensors
used in our study generally underestimate small drops [31,37,49,50], resulting in a larger µ value than
2DVD (two-dimensional video disdrometers) observations in Zhang et al. [35]. Using the same type
of Parsivel instruments, the µ–Λ relation obtained by Chen et al. [45] overestimated the large drops
and underestimated the small drops. This could be the reason that only a small area of Mei-Yu is
considered in Chen et al. [45]. Thus, it is crucial to obtain the unique µ–Λ relationship for different
parts of the Mei-Yu front.

4. QPE of Radar

4.1. Z–R Relations

It is reported that a single, unique Z–R relation does not exist, and it strongly depends on the
geographical location and physical conditions of rainfall [51]. For instance, the National Weather
Service’s (NWS) Weather Surveillance radar-1988 Doppler (WSR-88D) precipitation processing
subsystem recommends Z = 250R1.2 [6] for tropical systems, and the Next Generation Weather
radar (NEXRAD) utilizes Z = 3 00R1.40 for mid-latitudes [52]. It was also reported by Rosenfeld and
Ulbrich [53] that there are significant differences in the Z–R relations between maritime precipitation
and continental precipitation. However, owing to the particularity of geographical location, in situ
observations of maritime precipitation are quite difficult. The Mei-Yu front extends from eastern
China to WP. There are few comparisons to demonstrate the variability of Z–R relations between its
continental and maritime parts. Therefore, combined with unique DSD observations, the study of
Z—R relations of precipitation in different parts of the Mei-Yu front is required to improve the quality
of radar precipitation estimations in a specific region.

To compare the scaling law method with the other fitting methods, Figure 7 presents the results
of Z–R fittings using the least squares method, which is implemented by deriving the coefficient b
from the fit and set the coefficient A to force the total rainfall to agree (i.e., A = (ΣZ1/b/ΣR)b), because
the fitting provides greater uncertainty in estimating A than it does b [54]. Additionally presented
in this plot are scatter plots of rain rate R versus radar reflectivity factor Z as measured by the DSD
sensor. In addition, Z = 368R1.21 for convective precipitation observed with Parsivel sensor during
Mei-Yu [45] and Z = 193.73R1.54 for stratiform rain observed with 2DVD sensor during Mei-Yu [55],
are also provided in the corresponding colors for comparisons with previous research in terms of
different rain types. According to the results, the Z–R relations of precipitation within different parts
of the Mei-Yu front were significantly different. Comparing the precipitation in NJ (CZ) and WP,
coefficient A and exponent b in Z–ARb relations had an inverse relationship. A larger b value can be
found for total precipitation in WP, which can be explained via Equation (12) since WP has a larger β
(see Figure 3e,f).

Compared with Z = 368R1.21 for convective rain observed by Chen et al. [45], the relation
overestimated the convective precipitation in three parts when rain rate was below 10 mm h−1, whereas
it underestimated the convective precipitation when the rain rate was above 10 mm h−1. Moreover, the
relation was quite similar to our Z = 489R1.17 relation for stratiform precipitation in WP, which further
reflects the distinct microphysical variability within different parts of Mei-Yu precipitation. Compared
with Z = 193.73R1.54 for stratiform rain observed by Wen et al. [55], the relation was very close but
slightly lower to our Z = 308R1.50 (Z = 275R1.52) relationship for stratiform rain in NJ (CZ), which
might be related to the different method of rain categorization used and the recognition of shallow
rain type in Wen et al. [55]. Due to the lack of radar observations, shallow rainfall was recognized as
stratiform rain in our surface DSD sensor-based categorization schemes. Though the influence from
rain type categorization herein was not very obvious, it is worth further improvement, and we leave it
for future research. Based on the above analyses, as well as previous studies [56–58], it is suggested
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that DSD variability related to the precipitation microphysics in different types of rain and terrain are
major sources of the diversity of Z–R relations.Sensors 2019, 19, x FOR PEER REVIEW 13 of 18 
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Figure 7. Z-R scatterplots and fitting curves for Mei-Yu precipitation in (a) NJ, (b) CZ, and (c) WP.
The gray circles indicate convective precipitation samples, the gray dots indicate stratiform precipitation
samples, the solid red line indicates the convective precipitation fitting curve, the solid blue line indicates
the stratiform precipitation curve, the solid black line indicates the total precipitation curve, and the
two dashed lines indicate the empirical relation Z = 368R1.21 for convective precipitation suggested by
Chen et al. [45] and Z = 193.73R1.54 for stratiform rain obtained by Wen et al. [55].

Besides the standard Z = 300R1.4 relation (STD) and the relations using the least-squares fitting
method (LS), the optimal Z–R relations for the normalized exponential (EXP) and gamma (GAM)
distributions in each site were also obtained via Equation (12). Their values are shown in Table 3.
The fitting results were similar for the EXP, GAM, and LS methods and varied mainly with respect to
the value of coefficient A. Compared to the LS method, both coefficients A and b were larger in EXP
and GAM methods. The result of GAM, however, was closer to that of the LS method in comparison to
the EXP method.

Table 3. Parameter values of the radar Z = ARb relations based on three different rainfall
estimation methods.

Rain Type Regions
LS EXP GAM

A b A b A b

convective
NJ 128 1.62 238 1.81 116 1.81
CZ 115 1.62 729 1.67 143 1.67
WP 142 1.76 386 1.80 168 1.80

stratiform
NJ 308 1.50 1557 1.65 748 1.65
CZ 275 1.52 1204 1.68 365 1.68
WP 489 1.17 856 1.74 576 1.74

For the assessment of radar rainfall retrievals, the statistics calculated via Equations (23) and (24)
are shown in Table 4. Comparing the four estimation methods at the same site, the NAE in Table 4
for the GAM method was smallest under both stratiform and convective situations, while the NAE
for the STD method was rather poor as compared to the other three techniques. In comparison with
statistical LS estimations, we calculated the difference of NAE errors between LS and GAM method
in three sites for both stratiform rain (8.7% for NJ, 9.9% for CZ, 15.3% for WP) and convective rain
(1.2% for NJ, 1.2% for CZ, 0.4% for WP), and found that the scaled gamma spectra method showed
an impressive improvement in both stratiform (33.9%) and convective (2.8%) rainfall estimations of
total Mei-Yu frontal rainfall. This further indicated that using scaling law fitting can well reflect the
variation of DSD in different parts of the Mei-Yu front. The EXP method had a better performance in
stratiform rain than convective rain, which indicated that the EXP method was very sensitive to rain
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rates. For scaled DSD samples, the GAM method yielded smaller NAE and NB for both rain types in
comparison to the EXP method, which could be due to its more representative description of raindrop
size spectra. On the other hand, the NB in Table 4 for EXP and GAM methods were both negative,
while the opposite results were noticed for LS and STD methods. This indicated that the normalized
spectra shapes tended to underestimate the Mei-Yu precipitation, whereas the LS method and STD
relation usually overestimated the Mei-Yu rainfall.

Table 4. NB and NAE errors (%) of four rainfall estimation methods are obtained via Equations (23)
and (24).

Rain Type Regions
NAE NB

STD LS EXP GAM STD LS EXP GAM

convective
NJ 40.1 19.1 30.3 17.9 16.6 0 −29.8 −5.4
CZ 18.3 14.3 36.3 13.1 14.2 0 −34.3 −7.9
WP 48.7 15.9 37.6 15.5 33.8 0 −35.7 −11.4

stratiform
NJ 52.4 33.6 31.5 24.9 43.8 0 −27.3 −18.4
CZ 43.3 25.7 24.6 15.8 23.4 0 −21.9 −13.2
WP 44.8 30.6 47.8 15.3 47.8 0 −33.5 −15

4.2. Polarimetric Radar Applications

One of the sources of uncertainty in radar precipitation estimates, including Z–R relations,
resulted from variable raindrop size distributions. It is expected that uncertainties in radar QPE due
to variability in precipitation microphysics and target identification can be reduced by the use of
dual-polarization techniques, which transmit both vertically and horizontally polarized electromagnetic
waves. Because larger raindrops are not spherical, their backscattering cross-sections are different
for the two polarizations; hence, the returned power and the Doppler shift within the two channels
vary. As a result, the returned polarimetric signals, such as ZDR calculated by Equation (20) and Kdp
calculated by Equation (21), yield valuable information regarding hydrometeor size, shape, orientation,
and microphysical phase [59]. Diverse rainfall estimators based on dual-polarization radar data have
previously been reported, such as R(ZH, ZDR), R(Kdp) [37,46,59,60]. Therefore, the application of
polarimetric radar as new rainfall estimators may help reduce the uncertainty due to DSD variability
among different parts of the Mei-Yu front.

In this study, C-band polarimetric radar parameters ZH (mm6 m−3), ZDR (dB), and Kdp (deg km−1)
were calculated following Zhang et al. [37] for the Brandes drop shape assumption using Parsivel2

sensor data observed during the Mei-Yu season (see Section 2.4). R(ZH, ZDR) and R(Kdp) are usually
obtained in the form of R = aZH

bZDR
c and R = aKdp

b respectively. By using the least-squares method,
the best-fit results derived from DSD for the R(ZH, ZDR) relationship is

R = 0.0023ZH
0.926ZDR

−0.97 (30)

for the R(Kdp) relationship, the equation is fitted as

R = 19.2Kdp
0.70 (31)

The comparison results and statistics are shown in Table 5. Compared to the other two, R(ZH,
ZDR) performed the best in the Mei-Yu front with an NB of −3.8% and an NAE of 9.2% for NJ, an NB
of −4.9% and an NAE of 10.7% for CZ, and an NB of 25% and an NAE of 25.5% for WP. The results
indicated that polarimetric estimation was more accurate than the Z–R relationship. We recommend in
this work to use R(ZH, ZDR) for estimations of Mei-Yu rainfall. Nevertheless, Chen et al. [10] derived
three different rainfall estimators, R(ZH), R(ZH, ZDR), and R(Kdp), from two-year 2DVD observations
of Mei-Yu systems and found that R(Kdp) was the most accurate among the three estimators. This
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is because the results of Chen et al. [10] were obtained only by using DSD data collected in eastern
China, while the oceanic part of the entire Mei-Yu front was not considered, which further implies the
microphysical variability in different parts of the Mei-Yu front is of great significance.

Table 5. NB and NAE errors (%) of Z–R (LS and GAM method), R(ZH, ZDR), and R(Kdp) for precipitation
in the three parts of the Mei-Yu front.

Parameters Regions Z–R (LS) Z–R (GAM) R(ZH, ZDR) R(Kdp)

NAE
NJ 27.6 25.3 9.2 17.9
CZ 28.5 23.9 10.7 21.1
WP 39.8 35.4 25.5 34.4

NB
NJ 0 −11.7 −3.8 −9.7
CZ 0 −13.5 −4.9 −11.3
WP 0 −25.4 25 32.2

5. Summary and Conclusions

In the work, we derived scaling law DSD models in different parts of the Mei-Yu front by using
the DSD samples measured from Parsivel2 sensors, and DSD-based relations were further derived to
improve the accuracy of quantitative radar precipitation estimations. The major conclusions can be
drawn as below:

(1) The spectral width of normalized DSD in NJ stratiform rain was widest among different parts of the
Mei-Yu front, resulting in a “size-control” drop size distribution. The max particle concentration of
convective rain was largest in WP, indicating a strong oceanic convective rainstorm. The average
Dm value in heavy rain was larger in NJ (2.16 mm) and CZ (2.12 mm) than in WP (2.08 mm) of the
Mei-Yu front. Given the same Λ, the parameter µ of WP was less than that of NJ (CZ).

(2) The Z–R relations were estimated by using four methods (STD, LS, EXP, and GAM). The scaled
spectra shapes (EXP and GAM) tended to underestimate the Mei-Yu precipitation, whereas the
statistical LS method and STD relation usually overestimated the Mei-Yu rainfall. The EXP
method had a better performance in stratiform rain than convective rain, which indicates that it
is very sensitive to rain rates. The GAM method performed best compared to the other three
methods in Mei-Yu rainfall estimations. In comparison with LS estimations, the GAM method
showed a considerable improvement in both stratiform (33.9%) and convective (2.8%) rainfall
estimations of the Mei-Yu front.

(3) Several polarimetric variables are calculated by the use of DSD sensor data, such as ZH,V and
ZDR. Furthermore, we derived empirical R(ZH, ZDR) and R(Kdp) estimators to improve the
polarimetric radar rainfall estimation in the Mei-Yu front and found that the R(ZH, ZDR) estimator
demonstrated the most impressive improvement.

Notably, the primary focus herein is on the improvement of Z–R relations in Mei-Yu frontal
precipitation with scaled DSD models. Rainfall estimation for polarimetric radar is only briefly
discussed, so more research is required to better understand the benefits of calculating polarimetric
radar variables via scaled DSD. In addition, the instrumental limitations of Parsivel sensors should be
further discussed. The rainfall estimations based on Parsivel2 DSD sensors should be validated by
weather radar observations. Meanwhile, some issues might occur from research to operation such as
the difference of height between Parsivel and radar. We leave that for future research with effective
radar data collected.
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