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Abstract: In addition to air pollution, environmental noise has become one of the major hazards for
citizens, being Road Traffic Noise (RTN) as its main source in urban areas. Recently, low-cost Wireless
Acoustic Sensor Networks (WASNs) have become an alternative to traditional strategic noise mapping
in cities. In order to monitor RTN solely, WASN-based approaches should automatize the off-line
removal of those events unrelated to regular road traffic (e.g., sirens, airplanes, trams, etc.). Within the
LIFE DYNAMAP project, 15 urban Anomalous Noise Events (ANEs) were described through an
expert-based recording campaign. However, that work only focused on the overall analysis of
the events gathered during non-sequential diurnal periods. As a step forward to characterize the
temporal and local particularities of urban ANEs in real acoustic environments, this work analyses
their distribution between day (06:00–22:00) and night (22:00–06:00) in narrow (1 lane) and wide
(more than 1 lane) streets. The study is developed on a manually-labelled 151-h acoustic database
obtained from the 24-nodes WASN deployed across DYNAMAP’s Milan pilot area during a weekday
and a weekend day. Results confirm the unbalanced nature of the problem (RTN represents 83.5%
of the data), while identifying 26 ANE subcategories mainly derived from pedestrians, animals,
transports and industry. Their presence depends more significantly on the time period than on the
street type, as most events have been observed in the day-time during the weekday, despite being
especially present in narrow streets. Moreover, although ANEs show quite similar median durations
regardless of time and location in general terms, they usually present higher median signal-to-noise
ratios at night, mainly on the weekend, which becomes especially relevant for the WASN-based
computation of equivalent RTN levels.

Keywords: noise events; database; acoustic analysis; wireless acoustic sensor networks; dynamic
noise mapping; low-cost sensors; urban environment; day–night periods; narrow–wide streets

1. Introduction

Nowadays, 55% of people is living in urban areas, a percentage that is expected to grow to
around 70% by 2050 according to the United Nations [1]. As a consequence, urban areas should
develop sustainably so as to guarantee the quality of life of their inhabitants by considering economic,
social and environmental dimensions in an integrated manner [1]. Together with air pollution,
environmental noise is increasing year after year, becoming one of the major hazards in populated
areas [2,3]. Among the different noise sources, several studies have demonstrated the negative effects
on people of Road Traffic Noise (RTN), as the main noise source in cities (e.g., see [4,5]). RTN causes
different health-related problems on people beyond annoyance [2,6], such as cardiovascular diseases [7],
hypertension [8], diabetes [9], among others. In order to address this problem in a harmonized
manner, the European competent authorities defined and published the European Noise Directive
2002/49/EC (END) [10] in 2002, together with the subsequent Common Noise Assessment Methods in
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Europe (CNOSSOS-EU) [11,12]. Regarding these regulations, the European member states are asked
to tailor strategic noise maps for large agglomerations (with more than 100,000 inhabitants) and key
infrastructures (major roads, railways and airports) [10]. In addition, they have to inform citizens
about their exposure to noise levels—typically differentiating day and night periods [10], besides
defining and developing the corresponding action plans to mitigate the noise levels every five years
where necessary.

These strategic noise maps have been hitherto developed from representative acoustic data
collected by experts using certified devices, taking into account the urban spatial characteristics of
their location for the proper simulation of sound propagation [13–15], among which the canyon effect
in narrow streets becomes an important parameter to consider [16,17]. These data are subsequently
fed into a precomputed acoustic model [18], after the manual removal of undesired acoustic events
(e.g., sirens, airplanes, trams, etc.) to avoid biasing the noise map generation process [19]. Nevertheless,
recent technological advances have enabled the development of alternative approaches within the
Smart City paradigm, which encompasses a more interactive and responsive administration of cities to
protect and improve the management of public spaces [20]. Hence, it leads to the development of new
strategies to assess environmental noise in a more dynamic way than current approaches based on
static noise maps by means of smart noise monitoring solutions. The combination of the Internet of
Things (IoT) paradigm with the design and development of low-cost acoustic sensors has given rise to
the so-called Wireless Acoustic Sensor Networks (WASNs) (the reader is referred to [21] for a review of
the state-of-the-art of this topic). Recently, the WASN concept has been improved thanks to IoT-based
advances, which have led to the miniaturization of the sensor electronics and the improvement of their
lifetime [22], besides allowing the collection of representative acoustic data from the environment of
interest. Several research projects have already deployed WASN-based dynamic noise monitoring
systems. The first generation of WASN-based approaches have been mainly focused on measuring the
global equivalent sound levels of the monitored locations [21]. Nevertheless, it is worth mentioning
that some preliminary attempts have also been developed to identify specific acoustic events through
a WASN. For instance, in the Sounds of New York City project (SONYC), the WASN-based system
has been designed to analyse the distribution of the outdoor noise complaints and identify their
origin [23]. However, the designed machine listening approach bases on an acoustic database that
combines real-life samples with synthetically mixed audio excerpts, hindering the analysis of the
natural characteristics of the sensed acoustic urban environments. Moreover, the LIFE DYNAMAP
project has developed a WASN-based dynamic noise mapping system that includes sound event
detection [24]. The project focuses on determining the acoustic impact of road infrastructures through
the real-time monitoring of RTN levels solely (either from short or long distance traffic). To that
effect, those events unrelated to regular road traffic are removed automatically to avoid biasing the
computation of the A-weighted equivalent RTN levels (LAeq, in dBAs) through an Anomalous Noise
Event Detector (ANED) [25]. According to the project specifications, those acoustic events that do not
come from vehicles’ engines or from the contact of their tires with the road are denoted as Anomalous
Noise Events (ANEs) [24]. ANEs were preliminary described through an expert-based recording
campaign conducted before deploying the WASNs in the two pilot areas of the project: the District
9 of Milan to test the system across an urban area [26], and the A90 motorway that surrounds Rome to
evaluate its performance on a suburban environment [27]. The conducted overall analyses showed
the high diversity and occasional nature of this kind of events, which makes their modelling through
synthetic audio mixtures almost unfeasible (see [28] for further considerations). In what concerns the
urban environment, that study was somehow partial since the recording campaign was mainly focused
on collecting ANEs through non-sequential diurnal recording periods, hindering their subsequent
longitudinal analysis. Moreover, the samples were taken at the street level instead of the building
façades, where the low-cost sensors have been finally placed.

With the aim of improving the characterization of urban ANEs in real acoustic environments in
terms of their temporal and local particularities, this work analyses their distribution between day
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and night in narrow and wide streets through a WASN in real operation, considering the diurnal
period as 06:00–22:00 [29] (based on the END recommendations [10]), and 1-lane roads as narrow
streets; consequently, the nocturnal period is 22:00 to 06:00, and those roads with more than 1 lane are
considered as wide streets.

Section 2 reviews relevant works about temporal and location-based acoustic measurements and
audio databases obtained from real-life data or through WASNs in real-operation. Section 3 describes
the WASN-based analysis methodology of urban ANEs during day and night in narrow and wide
streets, including the creation of a labelled WASN-based acoustic database. Next, Section 4 presents the
conducted experiments and the obtained results from the analysis of the collected urban ANEs. Finally,
in Section 5, several relevant aspects regarding the conducted research are discussed, before presenting
the main conclusions together with the future research lines.

2. Related Work

This section reviews relevant works about real-operation environmental acoustic databases and
measurements. In the literature, several audio databases related to the development of machine
listening algorithms have been designed for bench-marking purposes, being mainly oriented to the
training and the evaluation of acoustic event detection and classification algorithms. Picaut [22] details
in their recent paper that the miniaturization of the sensor electronic components and the accessibility
of low-cost computing processors together with the improved performance of batteries, have increased
the application of low-cost WASNs, widening the possibility of implementing this kind of networks as
they can be composed of a larger set of nodes to collect more information (both raw acoustic data and
equivalent sound level measurements).

2.1. Temporal and Location-Based Acoustic Measurements

In urban acoustic environments, time dependence of the measurements is a key issue to consider,
especially for those conducted so as to build dynamic acoustic noise maps. The literature presents
several studies around the temporal evolution of acoustic measurements in cities, mainly focused
on road traffic noise. The first steps in dynamic noise mapping took into account which acoustic
descriptors were better suited to capture urban traffic noise dynamics [30]. In this sense, the most
relevant feature for assessing these dynamics appears to be traffic signal cycle, which corresponds to a
certain temporal pattern evolution.

Moreover, it has been observed that in order to characterize environmental noise in situ by means
of LAeq measurements, mainly two periods of time should bee considered [10,29]: diurnal reference
time (Lday) or nocturnal reference time (Lnight), using a pre-set window with a closed observation
period. The main goal is to determine the minimum measurement time interval to obtain an accurate
estimation of LAeq values, improving the stability of the measurements [31]. This is crucial when these
values are used to update a dynamic noise map, which combines real-time measurements and data
processing to assess the acoustic impact of noise sources. Obtaining the dynamics of the acoustic
measurements across a city requires the application of a statistical approach, evaluating the noise
trends at different streets [32], in order to draw the patterns of the LAeq values for each location and
time period properly. In [33], Lan presents a spatio-temporal noise distribution analysis with the aim
of controlling and managing RTN by means of representative maps obtained for several periods of
time. The approach assumes two variables that are time-dependent of traffic flow—traffic density
and traffic speed—and evaluates the spatio-temporal characteristics of multi-source data to generate
the corresponding RTN map. Finally, the paper also evaluates the noise distributions associated with
different periods of time using the raw recorded audio.

Therefore, besides the temporal factor, the spatial characteristics of the location where the
measurements are obtained, are also relevant for the correct analysis of the measurements.
Several approaches have been considered to classify the different noise types and/or noise levels
collected at specific urban sites. In [13], a categorization method for RTN evaluation is defined,
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assuming that urban noise is stratified according to five predefined categories based on mobility routes,
which results to be appropriate for a city of nearly 320,000 citizens. The noise level predictive capacity
of the method reached around 80%, which lead the authors to conclude that it could be a simple and
low-cost method to conduct a statistical evaluation of the traffic noise in similar cities. A dynamic noise
map obtained using more than 17 monitoring stations is described in [34] for the city of Badajoz, Spain.
The noise sources considered are road and rail traffic, leisure, commercial and pedestrian derived
noise. RTN is modelled independently from the other noise sources; an exhaustive road categorization
was conducted considering all the streets network. The other noise sources (leisure, commercial and
pedestrian zones) were characterized on the basis of noise measurements—gathered during more than
one year—and taking into account more knowledge about the surroundings of the location to help
their classification in terms of complex sources into the different street types.

Furthermore, the specific geometry of the streets is a key issue for the proper modelling of
sound propagation. A systematic comparison between the sound fields in narrow street canyons with
diffusely and geometrically reflecting boundaries is developed in [17] by means of the development of
a radiosity-based theoretical model. The results obtained are substantially different depending on the
chosen boundaries, recommending their design as diffusely reflective rather than acoustically smooth
for better sound attenuation. The street canyon effect on sound pressure level (SPL) distribution
is numerically studied with the full-wave finite-difference time-domain method in [16]. The study
concludes that the building shape (up to 7 dBA), the building façade design (up to 12.9 dBA), the street
geometry (up to 11.3 dBA) and the presence of furniture and other elements in the street can have
a relevant impact on people’s noise exposure. Acoustic performance-based design is used in [35] to
investigate the SPL reduction provided by the shape and the acoustic cladding of urban façades in
front of a noise source in a street canyon. The results show that the works over the façade and overall,
on the street paving, have a relevant impact on indoor noise propagation in buildings. For more
references about the sound propagation in urban canyons, the reader is referred to [36], where several
comparisons over simulated and measured SPLs on narrow urban canyons of the city of Vienna
are described. The results show that the simulated and the measured values do generally agree,
and that the developed simulator can be used for the planning of similar urban areas. Finally, the effect
of urban spatial shape on sound propagation is evaluated in [15], going farther than theoretical
spatial models. The proposal is based on considering high-density streets as items under study,
and by means of reliable spatial parameters, the authors obtain the acoustic propagation data through
computer simulations. Several metrics are evaluated, such as attenuation, reverberation and decay
time depending on different spatial parameters, concluding that the sound propagation in urban
streets is consistent with the characteristics of semi-free sound field propagation.

Finally, it is to note that the aforementioned works are mainly focused on RTN, paying no attention
to the possible complex composition of the analysed acoustic environment, where the presence
of other acoustic events such as ANEs, although occasional, can bias the acoustic measurements
significantly [37,38].

2.2. Real-Life Audio Databases

The environmental acoustic databases described in the literature are usually employed by the
machine listening research community to train and test different type of algorithms. They are generally
composed of artificially generated sound mixtures or from real-life recordings. The former allows
the control of the signal-to-noise ratio (SNR) of the synthetic audio mixtures [28], and dealing with
class imbalance (i.e., data scarcity of specific audio categories) by means of data augmentation [39,40].
Nevertheless, although data augmentation techniques are very effective they hinder the analysis of the
actual characteristics of real acoustic environments, which can only be conducted from real-life data.

Valero, in [41], presents an automatic approach for the classification of road vehicles based on
their pass-by signature. The team recorded a dataset with six categories (light vehicles, heavy vehicles,
motorcycles, aircrafts, trains and industrial noise), resulting in 90 real-life samples for each category,
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with a duration of 4 seconds each. Heittola, in [42], published a 1133 min audio database that includes
10 different acoustic environments from both indoor and outdoor recordings. Their goal is to detail
how context information can be used for sound event detection; the approach pretends to simulate
the human behaviour by means of a two-stage process that includes automatic context recognition
and sound event detection, once the context has been identified. Despite the temporal component
is taken into account, it does not refer to the dynamics or the location of the target sound, but to the
surrounding events to improve its classification. Foggia, in [43], presents a large database of audio
events in the framework of a surveillance application. The training dataset is about 20 h, while the test
set is about 9 hours. In this work, the goal of the dataset generation is completeness in terms of events
(short and long sounds) coexisting with diverse background noise levels. Moreover, the same research
laboratory developed a smaller database of about 1 h duration also for surveillance purposes focused
on road acoustic events, which contains sound events from tire skidding and car crashes [44].

Alías, in [28], presented a real-life acoustic database of 9 h and 8 min collected from the urban and
suburban pilot areas of the LIFE DYNAMAP project [24] by means of expert-based recordings during
non-sequential diurnal time periods mainly. This acoustic database was developed for discriminating
ANEs from RTN through a sound event detection algorithm named ANED running on the low-cost
acoustic sensors [25,45]. The ANEs, which correspond to the 7.5% of the labelled data, were classified
into 19 different subcategories after expert annotation, and their SNRs were computed with respect
to the background noise levels. The obtained SNRs ranged from −10 dB to +15 dB, showing also a
wide heterogeneity of intermediate values. It is worth mentioning that the recordings in the urban
area were collected at the street level in preselected locations across District 9 of Milan [32], while the
recordings in the suburban area were conducted on several portals of the A90 ring-road surrounding
Rome (see [27] for further details). In the final stage of the DYNAMAP project, the same authors
have presented in [46] the production and overall analysis of a WASN-based environmental acoustic
database collected through the 19-node WASN of the suburban area of Rome in real-operation. As a
result, 156 h and 20 min of labelled audio data have been obtained, containing 16 ANE subcategories
that correspond to 1.8% of the data, in contrast to the preliminary suburban expert-based dataset that
contained 3.2% of ANEs throughout the total recorded time. A possible explanation to this difference
is that the expert-based dataset recording was centred in day-time while the WASN-based database
included also nocturnal samples, which showed a lower presence of ANEs. A complementary analysis
to these works can be found in [38], which was focused on evaluating the aggregate impact of the
ANEs occurring in the acoustic environments on the computation of LAeq values. Nevertheless, none of
these previous works developed within the DYNAMAP project pretended to study the temporal
evolution of the characteristics describing ANEs at specific locations as they were analysed in an
aggregate manner.

Another WASN-based project that has collected real-operation acoustic samples is SONYC [23].
The researchers provide a taxonomy of the urban sounds by means of a two-level hierarchy, dividing
them into 8 coarse categories and 23 fine subcategories [47]. The generated database is composed of
2351 recordings in the train split and 443 in the validation counterpart, making a total of 2794 audios
of 10-s each. Both the taxonomy and the details of the SONYC project database can be found in [48].
The most innovative proposal of this WASN-based approach is that by means of the deployed network,
the distribution of the outdoor noise complains can be located, besides identifying whether they have
been produced or not, e.g., due to an after-hour construction noise [23]. This process can be done by
identifying the time of occurrence of the group of annoying events, allowing also the retrieval and
visualization of the data streams obtained for each localized complain. Nevertheless, as the approach
is based on Deep Learning models, it requires a huge amount of labelled data to work properly. To this
aim, the considered acoustic model is trained by means of both real-life samples and artificially mixed
audio excerpts through data augmentation techniques [23]; an approach that overrides the the use of
the created database to analyse the actual characteristics of that urban acoustic environment.
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Mesaros, in [49], describes an acoustic database recorded in multiple cities in Europe—which
is an extension of the TUT 2018 Urban Acoustic Scenes dataset [50]. It contains recordings from
Barcelona, Helsinki, London, Paris, Stockholm and Vienna, adding in the subsequent TAU 2019
dataset, Lisbon, Amsterdam, Lyon, Madrid, Milan and Prague. The recordings were conducted using
four devices simultaneously: (i) Soundman OKM II Klassik/studio A3 electret binaural microphone,
(ii) Samsung Galaxy S7, (iii) iPhone SE and (iv) GoPro Hero5 Session. Taking into account this variety of
recording devices, the scenes were manually labelled to enable the training and test of the subsequently
developed machine listening algorithms. The dataset was used in one of the DCASE 2019 Challenges
that included data from different recorded acoustic scenes, using the acoustic raw pieces of audio
together despite their different locations and origins.

3. WASN-Based Day–Night Analysis of ANEs in Narrow and Wide Streets

This section describes the development of an acoustic environmental database through a WASN
in real operation (detailing the recording campaign methodology and the subsequent expert-based
labelling process), together with the analysis methodology followed to characterize the distribution of
ANEs between day (D) and night (N) time periods (06:00–22:00 and 22:00–06:00, respectively) in narrow
(R) and wide (W) streets (1-lane and more than 1-lane roads, respectively), and their combination.

3.1. WASN-Based Recording Campaign and Expert-Based Labelling Process

In order to analyse the main characteristics of urban ANEs properly, it is necessary to collect a
representative set of this kind of acoustic events in their natural state. Figure 1 shows the process
to obtain a labelled WASN-based acoustic database through an acoustic sensors network in real
operation. First, a WASN-based recording campaign has to be designed and performed across
the area of interest, determining a recording period (T) together with a specific temporal schedule,
e.g., specific recording hours during weekdays and/or weekend days. Once the recordings have been
finished, the gathered raw acoustic data have to be preprocesed (i.e., cleaned, organized and selected,
if necessary), considering the performance of the sensors—a relevant issue when collecting data
through a WASN in real-operation since some sensors may present operational problems during the
recording campaign. As a result, the NS sensors that captured enough representative data are selected,
besides determining the corresponding set of NT time periods considered for the subsequent analyses.
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Figure 1. Block diagram of the generation process to develop a labelled Wireless Acoustic Sensor
Network (WASN)-based acoustic database, where the labels are Anomalous Noise Event (ANE), Road
Traffic Noise (RTN) and complex (CMPLX), denoting the latter complex audio passages.

Next, the preprocessed data are manually labelled by experts in acoustics and audio signal
processing, considering visual information (e.g., waveform and spectrogram in dB) while listening to
the recorded acoustic signals to annotate the events they contain. After showing the experts several
representative examples, they are asked to classify each portion of audio according to the following
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criteria: (i) the audio excerpts that contain all kinds of sounds coming from vehicles’ engines and
tires (even if they are distant or quite similar to background noise) should be labelled as RTN; (ii) the
audio clips containing sounds unrelated to regular RTN should be labelled as ANEs, specifying their
typology through a subcategory label defined and agreed during the labelling process; and finally,
(iii) those audio passages difficult to classify as one of the aforementioned categories (e.g., containing
a high diversity of sound sources with an origin hard to identify), should be labelled as complex
(CMPLX) audio excerpts.

3.2. ANE Features Analysis Methodology

This section describes the methodology followed to analyse the main characteristics of the ANEs
collected through a WASN in real operation for different acoustic environments, based on the extraction
of several representative features, typically related to their presence and individual characteristics,
such as event duration and SNR with respect to background RTN. In particular, the analysis focuses
on the study of the particularities of these features for each ANE subcategory for day-and night-time
periods plus narrow and wide street types.

As can be observed from Figure 2, the analysis starts with ANEs feature extraction from the
labelled acoustic database (see Figure 1). The analysis evaluates the particularities of the features
considered to characterize the events composing the NSC ANEs subcategories for each subcategory i,
period of time j (day or night) and type of street k (narrow or wide), regarding the number of recording
periods NT (ND

T and NN
T for the diurnal and nocturnal periods, respectively), and/or number of streets

NL (NR
L and NW

L for the narrow and wide streets, respectively). In particular, the day–night-based
analysis is conducted through the aggregation of the ANE features along the corresponding NL

R and
NL

W locations, with the aim of characterizing its temporal evolution disregarding the specific location
where they were collected. Likewise, the considered features can be temporally aggregated for ND

T and
NN

T to study their local particularities, evaluating the specific characteristics of the ANE subcategories
for each group of narrow and wide streets. Finally, the analysis methodology also allows the study of
the combination of day–night and narrow–wide street pairs.
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Figure 2. ANE feature analysis methodology from a labelled WASN-based acoustic database.

3.3. Day–Night Plus Narrow–Wide Analysis

In order to analyse the features extracted from the ANE subcategories considering when and
where they are collected, a day–night plus narrow–wide analysis is conducted. The approach followed
to implement each one of these analyses is described in the following paragraphs.

• Day–Night analysis: With the aim of analysing the temporal evolution of ANE subcategories
during day and night periods, a PDN matrix (composed of PD and PN vectors) is computed for
each extracted feature per ANE subcategory, disregarding their specific localization of observation,
being defined as
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PDN =
(

P′D, P′N
)

(1)

PD =
(

pD
1 , pD

2 , . . . , pD
i , . . . , pD

NSC

)
(2)

PN =
(

pN
1 , pN

2 , . . . , pN
i , . . . , pN

NSC

)
(3)

where operator ′ represents vector transposition and pj
i stands for the result of the considered

statistical measure (e.g., median, mean, maximum, minimum, total, etc.) computed for each
feature considered to parameterizes the ANE subcategory i (for i = {1, 2, . . . , NSC}) within each
time period j —diurnal or nocturnal—by taking into account the full set of NS sensors of the
database. The street-based aggregation process depends on the considered statistical measure.
For instance, if it represents a quantity, then the aggregate operation is a sum of the corresponding
values obtained within the given time period for all streets. However, if the feature is characterized
by a statistical parameter (e.g., median or mean values), then it should be recomputed considering
the full set of values of the analysed feature for all the locations.

Finally, it is to note that each vector value is averaged within the total number of hours
contained in the ND

T and NN
T recording periods considered to sample the diurnal and nocturnal

periods, respectively.

• Narrow–Wide analysis: The local particularities of ANE subcategories observed between narrow
and wide streets for a specific ANE feature are described by PRW matrix, which is composed of
PR and PW vectors of parameters computed throughout the day for each group of streets, being
represented as

PRW =
(

P′R, P′W
)

(4)

PR =
(

pR
1 , pR

2 , . . . pR
i , . . . , pR

NSC

)
(5)

PW =
(

pW
1 , pW

2 , . . . pW
i , . . . , pW

NSC

)
(6)

where operator ′ represents vector transposition and pk
i denotes the result of the considered

statistical measure (e.g., median, mean, maximum, minimum, total, etc.) computed for each
feature that parameterizes ANE subcategory i (with i = {1, 2, . . . , NSC}) collected throughout
the day from each set of sensors k—located at narrow streets and wide streets, respectively.
As for the day–night analysis counterpart, the narrow–wide aggregation process depends on
the selected statistical measure. For instance, if it is parameterized quantitatively, the aggregate
value is obtained by simply summing all the values within the given subset of streets for all
the time periods. On the other hand, if the feature is statistically parameterized (e.g., through
median or mean values), the statistical parameter is computed encompassing the full set of values
for all the recording time periods within each group of streets. Moreover, all vector values are
averaged considering the number of sensors’ locations NR

L and NW
L placed in narrow and wide

streets, respectively.

• Day–Night plus Narrow–Wide analysis: This analysis is based on considering the day–night and
narrow–wide pairs combination to study the particularities of a specific ANE feature computed
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from the labelled ANE subcategories for all the day–night periods plus group of streets, obtaining
the following matrix and vectors of parameters for each pair of possible combinations

PRW
DN =

(
P′RD, P′RN , P′WD, P′WN

)
(7)

PDR =
(

pDR
1 , pDR

2 , . . . pDR
i , . . . , pDR

NSC

)
(8)

PNR =
(

pNR
1 , pNR

2 , . . . pNR
i , . . . , pNR

NSC

)
(9)

PDW =
(

pDW
1 , pDW

2 , . . . pDW
i , . . . , pDW

NSC

)
(10)

PNW =
(

pNW
1 , pNW

2 , . . . pNW
i , . . . , pNW

NSC

)
(11)

where operator ′ represents vector transposition and pjk
i denotes the result of the considered

statistical measure (e.g., median, mean, maximum, minimum, number of, etc.) computed for each
feature that parameterizes the ANE subcategory i (for i = {1, 2, . . . , NSC}) during the j-th time
period—diurnal or nocturnal—within the k-th group of streets—narrow or wide—by considering
the corresponding recording time periods N jk

T of each jk pair combination. Moreover, all vector
values are averaged on the total recorded time from the diurnal and nocturnal periods (i.e., T×ND

T
and T × NN

T ), respectively, as well as the number of locations placed in narrow and wide streets,
denoted as NR

L and NW
L , respectively.

4. Experiments and Results

This section describes the process followed to generate the urban WASN-based acoustic database
developed using the low-cost acoustic sensors installed across the urban pilot area of the DYNAMAP
project, together with its main features. Moreover, it details the conducted experiments and the results
obtained from the study of the main characteristics of the collected urban ANE subcategories following
the described analysis methodology.

4.1. Development of the WASN-Based Urban Database

This section details the process followed to obtain the labelled WASN-based database from the
different acoustic environments monitored across the District 9 of Milan. Figure 3 shows the location of
the 24 low-cost sensors of the WASN deployed in that urban area together with their Ids—the details
of their specific location are detailed in Table 1, together with three pictures showing the exact
sensor installation in the building façades for illustrative purposes. It is worth mentioning that the
sensors were designed to measure LAeq,1s (i.e., LAeq computed every second) and to evaluate whether
each measurement corresponds to RTN or ANE by running the ANED algorithm, besides allowing
occasional audio recordings accessible through 3G connection [51].

In what concerns the design of the WASN-based recording campaign (first block of Figure 1),
two days of the same week during autumn 2017 were sensed through the network nodes to sample RTN
and anomalous noise events in different traffic conditions between a weekday (Tuesday, November 28)
and weekend day (Saturday, December 2). The acoustic data were recorded in continuous audio clips
(with 48 kHz sampling frequency), retrieving the first T = 20 min of each sampled hour × 24 h/day,
considering nodes’ storage capacity limitations. Following a similar approach as the one considered
for the generation of the suburban WASN-based database [46], during the data preprocessing stage
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(second block of Figure 1) up to NT = 11 periods were selected for the weekday (i.e., 02:00, 03:00, 05:00,
08:00, 09:00, 11:00, 14:00, 15:00, 17:00, 20:00 and 23:00), and NT = 9 for the weekend day (i.e., 02:00,
05:00, 08:00, 11:00, 14:00, 17:00, 20:00, 21:00 and 23:00), as a trade-off between data representativeness
and annotation effort to sample the diversity of each acoustic environment (e.g., the traffic flow
variability is higher during the day than at night).

Figure 3. Map of the location of the 24-nodes of the WASN deployed within the DYNAMAP’s urban
pilot area across the District 9 of Milan (left), showing the exact installation of three of them in the
building facades (right) for illustrative purposes.

As a result of the WASN-based recording campaign, 154 h and 20 min of environmental audio
data were collected. However, after analysing the availability sensors, it was observed that 4 out of
the 24 nodes presented some kind of difficulty in the recording process due to diverse operational
problems. Among them, it is worth mentioning that sensor hb114 registered only 7 periods of time
on the weekend day (at 03:00, 05:00, 06:00, 08:00, 11:00, 15:00 and 18:00), while three other sensors
missed one or two recording periods (specifically, hb116 missed 02:00 and 03:00 on the weekend, hb117
23:00 on the weekend and hb138 15:00 and 23:00 on the weekday and 14:00 on the weekend). As a
consequence, after data cleaning and selection, only recordings from NS = 23 sensors were taken into
consideration for the subsequent analyses, discarding the data obtained from sensor hb114 due to
their lack of representativeness. Next, the selected recordings were organized in separated raw WAV
audio files (one for each audio clip of T = 20 min), and labelled with the corresponding sensor Id, day
and starting time of the recording. As a result, a total of 453 files were considered for the subsequent
analyses, encompassing 151 h of environmental audio data.

Finally, the WASN-based acoustic audio files were manually labelled by 5 experts in audio signal
processing using the Audacity software to perform the labelling process with the aid of spectrograms
while listening to the recorded signals (last block of Figure 1). As a result, each piece of acoustic data
was assigned to RTN, COMPLX or ANE categories, being the latter subcategorized into 26 urban-like
sounds (see Table 2). Concretely, up to 126 h and 43 s were classified as RTN (83.5%), 13 h 8 min and 48 s
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were labelled as one of the 26 ANEs subcategories (8.7%) and the remaining audio passages (11 h 50 min
and 29 s) were tagged as CMPLX (7.8%), a category which analysis is left for future investigations.

Table 1. Description of the sensors’ location across District 9 of Milan as the pilot urban area of the
DYNAMAP project [38], differentiating between those located in narrow streets (1 lane) and wide
streets (more than 1 lane) by means of a horizontal line. X-lane/Y-lane street stands for a two-way
street that has X lanes in one-way and Y lanes in the opposite way. X-lane street stands for a street with
X lanes in the same way.

Sensor Id Sensor location description

hb115 1-lane street with shopping in front
hb133 1-lane street, residential area, no shops, little park area in front

hb135 1-lane street with connection with 1-lane street (low speed),
near University campus (students), no shops, in front of park area

hb138 1-lane street near connection with other 1-lane street, no shops
hb139 1-lane street, residential area, some shop/enterprise
hb144 1-lane street in residential area, one shop far away
hb145 1-lane street, in front of park
hb124 1-lane street, no shops

hb125 1-lane street with connection with 1-lane/1-lane street, mix of
residential with some shops

hb127 1-lane street near bifurcation with 1 line street, some shop nearby

hb137 1-lane street with connection with 1 line street, in front of park,
residential area, no shops

hb106 1-lane/1-lane street with connection with 1 line street, area with parks
nearby, no shops

hb136 1-lane/1-lane street with connection with 1-lane street, area
with parks nearby, no shops

hb120 1-lane/1-lane street, residential area, no shops
hb151 1-lane/1-lane street, bike lane, some shop and restaurant
hb129 1-lane/1-lane street, bike line, connection with 1-lane street, some shop
hb108 1-lane/1-lane street, in front University exit, no shops
hb116 1-lane/1-lane street with connection with 1-lane street, residential area
hb114 2-lane/2-lane street with shopping and business area and traffic light nearby
hb121 2-lane/2-lane street, connection with 1-lane street, University area, no shops

hb140 2-lane/2-lane street with parking area and traffic light with crossing nearby,
no shops near and high traffic

hb123 2-lane/2-lane street with hotel and traffic light nearby
hb117 3-lane/3-lane street, near school, area with parks nearby, no shops

hb109 3-lane/3-lane street, near crossing with tramway and 1-lane+2-lane/2 lane+
1-lane street, shopping and coffee/restaurant area

4.2. ANEs Feature Extraction and Parameterisation

The first step to analyse the characteristics of the collected anomalous noise events is feature
extraction. To that effect, the ANE subcategories are parameterized based on their presence, together
with distinctive characteristics related to their duration and contextual SNR distributions.

• Occurrence: The presence of each ANE subcategory is described by two statistic parameters:
the total number of times it is observed [28], and the mean number of times it is observed within
day–night periods and/or narrow–wide streets.

• Duration: The duration of each event is computed (in s) as the difference between the start and
end points of each event present in the database [28]. This feature is statistically parameterized
with a two-fold aim. On the one hand, by the median of its distribution to analyse the individual
duration of each ANE subcategory, and on the other hand, by accounting for the total time a
specific ANE subcategory is present [46] within each day–night periods and/or narrow–wide
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streets, besides computing the mean total duration of the events with respect to the corresponding
time period and/or group of streets.

• SNR: The signal-to-noise ratio (in dB) of each event is computed as the ratio between the power of
the ANE and the power of the surrounding RTN, following the classical SNR computation, so as
to represent the inherent median acoustic salience of the event for a given set of streets and/or
time period. To this aim, each ANE is considered the informative signal, being its surrounding
RTN the noise signal, computing its SNR as [52]

SNR = 10 log10

(
PANE
PRTN

)
, (12)

where

Px =
Nx

∑
n=1

(
x2[n]
Nx

)
, (13)

and x[n] stands for the audio signal vector of Nx samples length for either the ANE or the RTN
signals of interest.

Following the same approach considered for the duration, this variable is also statistically
parameterized by the median value of each ANE subcategory distribution calculated under
the premises of the analysis methodology detailed in Section 3.

4.3. Overall Analysis

In order to have a global picture of the sensed urban acoustic environments, this section describes
the results of the overall analyses conducted on the audio excerpts labelled by the experts as an ANE
subcategory, according to their presence (in number of occurrences), duration (in s) and SNR with
respect to the background traffic noise (in dB).

As aforementioned, 26 ANE subcategories related to urban-like sound events were identified
during the expert-based labelling process. It is worth mentioning that two of them were only observed
during the working day, specifically, rain and thun, which are derived from a stormy episode. As can
be observed from Table 2, those ANE subcategories with the largest number of occurrences are
mainly events of short nature like peop (5822 occurrences, which account for 22.0% of total ANE
occurrences), bird (4215 occurrences, 16.0%), door (3843 occurrences, 14.5%), step (3574 occurrences,
13.5%) and brak (3245 occurrences, 12.3%). Moreover, ANE subcategories with moderate number
of occurrences are wrks (1045 occurrences, 4.0%), horn (957 occurrences, 3.6%), bike (943 occurrences,
3.6%), dog (649 occurrences, 2.5%), bell (311 occurrences, 1.2%) and busd (277 occurrences, 1.0%).
The remaining ANE subcategories present few instances (less than 1%), being wind, blin and tran,
which are rarely found in the recordings (less than 0.05%), and, finally, thun, which was only observed
once, due to the fact that the ANEs related to weather events (thun and rain) were only observed during
the weekday as aforementioned.

In what concerns the total duration of ANE subcategories, it can be observed from Table 2 that
peop is the most active subcategory (9452.7 s), followed by two ANEs derived from traffic, in particular,
brak (5054.9 s) and sire (3980.3 s), among which we also find street works (i.e., wrks with 4222.9 s of
total duration). Moreover, the presence of bird and airp subcategories are also common in the urban
environment, with an accumulated duration of 3632.3 s and 3441.7 s, respectively. Finally, it is also
worth noting the relevant duration of the inte subcategory derived from industry (2703.6 s), due to
its high median duration despite its modest presence, together with events of burst-like nature like
step and door with 2162.8 s and 2096.7 s, respectively, thanks to their common presence in the urban
environment. The remaining ANE subcategories represent less than the 4% of the accumulated total
duration of the events.
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Table 2. Description of the 26 sound subcategories of anomalous noise events, in alphabetical order,
identified during the manual labelling process of the WASN-based urban acoustic database, showing
the number of occurrences, their total duration (in s), median duration (in s) and median signal-to-noise
ratio (SNR) (in dB).

Label Description Total
Occur. (#)

Total
Dur. (s)

Median
Dur. (s)

Median
SNR (dB)

airp Noise of airplanes and helicopters 250 3441.7 9.3 0.49

alrm Sound of an alarm or a vehicle
beep moving backwards 76 307.7 2.8 0.92

bell Church bells 311 1142.2 1.4 2.62
bike Sound of bikes and bike chains 943 1843.0 0.7 0.33
bird Birdsong 4215 3632.3 0.6 0.47
blin Opening and closing of a blind 4 20.5 2.9 6.13
brak Brakes and conveyor belts 3245 5054.9 1.1 0.16

busd Opening bus door (or
tramway), depressurized air 277 218.0 0.7 0.65

dog Barking of dogs 649 637.5 0.6 4.56
door Closing doors (vehicle or house) 3843 2096.7 0.5 2.02
glas Sound of glass crashing 35 31.5 0.8 2.84

horn Horns of vehicles (cars, motorbikes,
trucks, etc.) 957 954.3 0.8 2.18

inte Interfering signal from an industry
or human machine 52 2703.6 20.5 −0.74

musi Music in car or in the street 146 984.9 1.9 0.48

peop Sounds of people chatting, laughing,
coughing, sneezing, etc. 5822 9452.7 0.8 1.82

rain Sound of heavy rain 100 1060.6 6.2 −4.64

rubb Rubbish service, sound of engine taking the
container, emptying it and dropping it down 16 423.3 7.1 1.77

sire Sirens (ambulances, police, etc.) 194 3980.3 9.67 0.59
sqck Squick sound of door hinges 216 293.6 0.9 0.92
step Sounds of steps 3574 2162.8 0.1 1.19
thun Thunderstorm 1 1.0 0.99 5.71
tram Stop, start and pass by sounds of tramways 185 1362.7 6.4 3.23
tran Sound of trains 9 73.3 7.3 2.06
trll Sound of wheels of suitcases (trolley) 251 1153.5 2.1 1.24

wind Noise of wind (movement
of the leaves of trees,...) 8 72.6 2.1 −0.43

wrks Works in the street (e.g., saws, hammer
drills, etc.) 1045 4222.9 1.5 1.27

Moreover, the global statistics of the individual particularities of the ANE subcategories in terms
of their median duration and SNR are also shown in Table 2. It can be observed that the subcategory
that presents the largest median duration is inte with a median length of 20.5 s. Next, sire and airp
show median lengths of 9.67 and 9.3 s, respectively, which are followed by events derived from means
of transportation such as tran, tram and rubb, together with rain, presenting a median duration between
6 and 8 seconds. Furthermore, blin, alrm, trll, wind, musi, wrks, bell and brak represent a quite diverse set
of shorter events with median durations between 1 and 3 s. Finally, the remaining ANE subcategories
reveal a burst-like nature with a median duration shorter than 1 s (e.g., see horn, peop, glas, step, bird,
dog, among others).

Regarding the SNR distribution of the ANE subcategories, those events presenting the highest
SNRs are blin and dog with median SNR values between 4 and 7 dB. These events have typically been
found in audio passages with very low RTN levels. Moreover, the WASN-based recording campaign
collected a weather-related event with high SNR (thun with a SNR of 5.7 dB). Furthermore, tram also
presents quite high median SNR values, followed by glas, bell, horn, tran, door, peop and rubb with
median SNR values between 1.5 dB and 3.5 dB. Finally, it is to note that several ANE subcategories
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such as inte, rain and wind show very low SNR values, being most of them below the power of the
surrounding RTN. This can be explained by the restrictions of the method used for SNR computation
that is based on estimating background noise level from the ANE neighbouring LAeq levels (see [52]
for further details), which may bias the result when the surrounding background noise or event is
louder than the one under analysis, yielding to negative SNR values.

4.4. Day–Night Evolution of Urban ANEs

In this section, we analyse the temporal evolution of the collected urban ANE between day and
night without taking into account their specific localization across the urban environment. To that
end, matrices of parameters PDN (see Equation (1)) are computed for each sensed day (weekday and
weekend day), taking into account the four considered ANE features (occurrences, total duration and
individual duration and SNR).

Table 3 shows the number of occurrences and total duration of all ANEs per diurnal and nocturnal
periods. For a fair comparison, we compute the mean number of occurrences and total duration of the
ANEs with respect to the total recording length for each time period in hours (i.e., 2.33 h of day-time
and 1.33 h of night-time for weekday, plus 2 h of day-time and 1 h of night-time for weekend day).
The table shows the higher presence of ANEs in diurnal periods with respect to the nocturnal periods
for both week and weekend days. This pattern is slightly more noticeable in terms of mean total
duration (125.5% greater for day than night) than for the mean number of occurrences (91.5% greater
for diurnal periods) in weekday. However, during weekend the pattern is the reverse, being greater
the difference of diurnal occurrences with respect to the nocturnal period (112.7% greater) than the
mean total duration per hour (93.4% greater for day-time). On the other hand, there is also a significant
increase in the number of events during the weekday compared to the weekend day, which is larger in
terms of the mean total duration during day-time (39.5% greater) and for mean occurrences at night
(34.2% greater) than at night for total duration (19.6% greater) and during day-time for the mean
number of occurrences (20.8% greater).

Table 3. Mean number of occurrences and total duration per hour obtained for the weekday and
weekend day, distinguishing between day and night-time periods, and being the diurnal period
defined as 06:00–22:00 [29], and averaging the features by the number of sensed hours per period.

Recording
Day

Mean Occurrences
Per Hour (#)

Mean Total Duration
Per Hour (s)

Day Night Day Night

Weekday 5204.1 2718.0 9984.1 4427.2
Weekend 4308.0 2025.0 7159.1 3701.0

Figure 4 shows the results of the day–night analysis of the occurrences of ANE subcategories
and their total duration during the weekday and the weekend day, respectively. First of all, the figure
confirms the higher presence of anomalous noise events in the diurnal period. Specifically, those ANE
subcategories with greater diurnal presence (more than 80% of their occurrences) are: bell, bike, rain,
wrks, wind, dog, airp, peop, musi and glas. However, several ANE subcategories present a different
behavior. On the one hand, tram and sire present a distribution of both occurrences and total durations
quite similar between day and night-time periods. On the other hand, other ANE subcategories show
a higher presence at nights, such as inte and bird. Moreover, it can be observed that ANE subcategories
related to meteorological phenomena, like rain and thun are mainly present in the diurnal period of the
weekday, and other events such as blin, glas, tran, thun and wind present a quite sparse distribution
mainly due to the fact that these subcategories are the ones observed with the lowest number of
occurrences and, thus, total durations (see Table 2). Finally, it worth noting that the differences of the
mean number of occurrences between day and night are statistically significant for both the weekday
(χ2 (24, N = 7927) = 2741.92, p < 0.01), and weekend day (χ2 (21, N = 6339) = 419.69, p < 0.01).
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Figure 4. Results of the day–night analysis (PDN matrices) differentiating weekday and weekend
days for the following ANE features: mean number of occurrences per hour (two leftmost subfigures)
and total duration per hour (two rightmost figures). Each subfigure shows the distribution of the
corresponding ANE feature in terms of ANE subcategory and time period.

Figure 5 depicts the results of the day–night analysis of ANE subcategories in terms of their median
duration and median SNRs during the weekday and the weekend day, respectively. It can be observed
that the ANE subcategories that present higher median duration are inte, rubb, tram, tran, airp, sire and
rain, while events such as step, door, bird, dog, peop, horn, busd, glass, bell, bike, sqck present very short
median durations, since most of them entail a burst-like pattern. In terms of night vs. day variation,
most ANE subcategories show stable patterns without significant variations. However, there are
several subcategories that present quite relevant differences in terms of the variation of the median
durations between day and night in both days (e.g., see blin, musi, rubb, tran and wind). Nevertheless,
notice that these anomalous events do not present a homogeneous distribution throughout the day.
For instance, rubb and musi are mostly observed on the weekday and during the diurnal and nocturnal
periods, respectively. Regarding the statistical differences of the individual event durations between
day and night for both days, they have been analysed using the Mann–Whitney U-test, concluding
that those ANE subcategories that show significant differences (with p < 0.01) are bird, peop, sire and
trll on the weekday, and peop, step and trll on the weekend.

On the other hand, it is worth mentioning that most SNRs are higher at night for both sensed
days, i.e., for 13 out of 21 ANE subcategories at weekday and for 12 out of 19 subcategories observed
in both time periods. In particular, those ANE subcategories with higher nocturnal median SNR (with
differences with respect to diurnal values greater or equal than 1 dB) are inte, rain, sqck, tram, trll and
wrks on the weekday, and airp, airp, busd, sqck, trll, wind and wrks on the weekend day. These results
can be explained due to the fact that RTN noise levels are typically lower at night, which makes ANEs
become more salient. However, beyond this general pattern, it is to note that several ANE subcategories
present quite significantly higher median SNR values during the diurnal period, such as bell, dog,
glas, musi and rubb in weekday (between 1.9 and 4.8 dB higher) and bell, dog and inte for weekend
(between 1.5 and 3.9 dB higher). Nevertheless, as aforementioned, some of the ANEs subcategories
are particularly found in either day or night periods, a fact that could bias the qualitative analyses.
Furthermore, when comparing median SNR values between weekday and weekend days, glas, musi,
rubb and wind are those ANE subcategories entailing higher values for the weekday (between 2.1 and
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5.8 dB higher), while airp and tran show higher SNR median values on the weekend (between 0.6 and
2.7 dB higher). The ANE subcategory inte presents a daily median SNR value 7.6 dB higher in the
weekend than during the weekday, while this measure is 3.1 dB higher for the nocturnal period on the
weekday than during the weekend. Finally, we have evaluated the differences of the individual SNRs
of the ANE subcategories between day and night for both recording days through a Mann-Whitney
U-test, concluding that those ANE subcategories that show significant differences (with p < 0.01) are
bird, dog, door, peop, step and wrks for the weekday and bird, step and trll for the weekend.
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Figure 5. Results of the day–night analysis (PDN matrices) differentiating weekday and weekend days
for the following ANE features: median duration (two leftmost subfigures) and median SNR (two
rightmost figures). Each subfigure shows the distribution of the corresponding ANE feature in terms
of ANE subcategory and time period.

4.5. Particularities of Urban ANEs in Narrow and Wide Streets

In this section, we present the results of the analysis of the local particularities of the collected
urban ANE subcategories in narrow and wide streets. To that end, PRW matrices (see Equation (4)) are
computed for each sensed day, taking into account the four considered ANE features (occurrences, total
duration, median duration and median SNRs) by considering narrow streets those sensor locations
placed at 1-lane rows and wide streets, for the rest (see Table 1).

Table 4 shows the mean number of occurrences and mean total duration of all ANEs analysed
regarding the type of street where sensors are located. For a fair comparison, both mean values are
averaged by the number of streets belonging to each type, that is, NR

L = 11 for narrow and NW
L = 12

for wide streets, respectively, after discarding the location of sensor hb114 for technical problems
during the WASN-based recording campaign (see Section 4.1). As can be seen from the table, narrow
streets tend to contain a larger presence of ANEs both in terms of number of occurrences (between
26% and 74% of increase with respect to wide streets), and total duration (between 58% and 89% of
increment in narrow streets). In concordance to what has been observed in the day–night analysis
(see Section 4.4), the weekday contains a higher averaged number of occurrences and total duration
of ANEs.
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Table 4. Mean number of occurrences and total duration per street obtained for weekday and weekend
day, distinguishing between narrow and wide streets (see Table 1), being the diurnal period defined as
06:00–22:00 [29].

Recording
Day

Mean Occurrences
Per Street (#)

Mean Total Duration
Per Street (s)

Narrow Wide Narrow Wide

Weekday 768.9 609.1 1,574.0 990.4
Weekend 594.0 342.3 1,037.8 550.3

Figure 6 shows the narrow–wide analysis matrices PNW for the mean number of occurrences and
total durations of ANE subcategories for both recording days. As can be observed, the following list
of ANE subcategories appear to be more prominent in narrow than in wide streets: peop (between
56 and 65% of its occurrences), step (between 60 and 73% of its total durations), bell (more than
97% of its total durations), inte (more than 95% of its total durations), musi (more than 88% of its
occurrences), door (more than 70% of its total durations), wrks (72.3% of occurrences during weekday),
sqck (between 62 and 83% of occurrences), airp (more than 73% of occurrences), tran (more than 83% of
total durations) and rubb (more than 94% of total durations). In contrast, several ANEs derived from
means of transportation are more noticeable in wide streets, like vehicle brakes (brak, more than 82% of
its occurrences), busd (more than 68% of its occurrences) or tram (about 88% of its occurrences). Finally,
notice that the differences between the mean number of occurrences observed in narrow and wide
streets were found statistically significant for the weekday (χ2 (21, N = 1379) = 172.83, p < 0.01) and
for the weekend day (χ2 (20, N = 936) = 142.39, p < 0.01).

Mean Occurrences Weekday
5.4 1.8

3.4 1.3

12.7 1.2

27.5 23.5

129.7 78.7

0.1

33.6 141.2

2.2 14.8

21.8 5

137.2 71.8

1

20.3 30.8

1.7 0.2

7.7 0.8

163.9 114.3

8.1 0.9

0.9 0.1

5.1 4.1

7.6 4.2

109.6 78.9

0.1

0.9 6.7

0.3 0.1

4.7 6.6

0.2

63.5 22.3

R W
Street type

airp
alrm
bell

bike
bird
blin

brak
busd
dog

door
glas
horn
inte

musi
peop

rain
rubb
sire

sqck
step
thun
tram
tran

trll
wind
wrks

A
N

E
 s

ub
ca

te
go

ry

  0

  5

 11

 18

 27

 41

 62

164

# 
oc

cu
rr

en
ce

s/
st

re
et

Mean Occurrences Weekend
13.5 1.8

1.2 0.8

13.5 0.8

21.9 9.8

114.8 48.4

0.3

17.9 82

2.2 4.3

22.6 8.3

98.1 32.8

2.2

14 17.6

2.5 0.3

4.2 0.5

155.7 77.9

0.5

5.8 2.1

6.2 1.2

88.7 37.1

1 7

0.5

3.2 7.1

0.5

3.7 3.3

R W
Street type

airp
alrm
bell

bike
bird
blin

brak
busd
dog

door
glas
horn
inte

musi
peop

rain
rubb
sire

sqck
step
thun
tram
tran

trll
wind
wrks

  0

  5

 11

 18

 27

 41

 62

164

# 
oc

cu
rr

en
ce

s/
st

re
et

Mean total duration Weekday
78.3 28.1

11 7.8

41.6 0.7

53.3 37.1

136.9 70.3

1.1

59.5 232.7

1.4 10.9

24 6.8

81.5 30.7

0.9

21.2 27.8

132.2 2

48.3 7.7

282.4 219.3

92.3 3.8

35.9 1.8

55 112.6

9.2 8.5

89.1 30.9

0.1

11.3 42.5

3.8 0.7

32.7 29.7

0.2

272 76.8

R W
Street type

airp
alrm
bell

bike
bird
blin

brak
busd
dog

door
glas
horn
inte

musi
peop

rain
rubb
sire

sqck
step
thun
tram
tran

trll
wind
wrks

    0

  8.6

 18.9

 31.3

 47.4

 69.8

107.7

282.4

se
co

nd
s/

st
re

et

Mean total duration Weekend
162.2 38.2

5.4 2.9

60 1.3

49.6 22.1

83.9 30

0.6

32.2 104.5

2.5 3.8

15.8 9.9

60.5 13.9

2

16.1 17.6

106.5 4.5

26.3 6

207.3 119.5

0.6

111.3 66.7

6.9 1.2

44.9 26.5

12.2 49.5

2.1

19 19

5.8

10.3 16.4

R W
Street type

airp
alrm
bell

bike
bird
blin

brak
busd
dog

door
glas
horn
inte

musi
peop

rain
rubb
sire

sqck
step
thun
tram
tran

trll
wind
wrks

    0

  8.6

 18.9

 31.3

 47.4

 69.8

107.7

282.4

se
co

nd
s/

st
re

et

Figure 6. Results of the narrow–wide analysis (PRW matrices) differentiating weekday and weekend
days for the following ANE features: mean number of occurrences per street (two leftmost subfigures)
and total duration per street (two rightmost figures). Each subfigure shows the distribution of the
corresponding ANE feature in terms of ANE subcategory and type of street where the sensor is located.

Figure 7 shows the narrow–wide analysis matrices PRW for the median duration and median
SNRs of the ANE subcategories during the weekday and the weekend days, respectively. It can
be observed that most ANE subcategories present quite similar median duration in both type of
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streets. However, it is worth mentioning that certain subcategories show some kind of imbalance
between narrow and wide streets. The statistical analysis of the differences of the individual event
durations based on the computation of the Mann–Whitney U-test confirm that there are several ANE
subcategories that present significant differences (with p < 0.01) between narrow and wide streets,
such as bell, bike, bird, door, horn, musi, sire, sqck, step and tram for the weekday and airp, bird, brak, dog,
door, horn, peop, sire, step, tram and trll for weekend day.
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Figure 7. Results of the narrow–wide analysis (PRW matrices) differentiating weekday and weekend
days for the following ANE features: median duration (two leftmost subfigures) and median SNR (two
rightmost figures). Each subfigure shows the distribution of the corresponding ANE feature in terms
of ANE subcategory and type of street where the sensor is located.

On the other hand, when analysing median SNRs, mostly narrow streets tend to present higher
values, which are found in both sensed days for bell, bike, bird, brak, busd, dog, door, peop, sqck, step and
trll. All of these ANE subcategories show SNRs between 0.09 and 2.76 dB higher in narrow streets
compared to wide streets. Finally, only inte subcategory shows higher SNR values in wide streets
than narrow streets for both days (between 5.00 and 6.94 dB higher), maybe due to the fact that the
origin of this ANE is very local, as aforementioned. Nevertheless, this hypothesis should be confirmed
through further analyses. In what concerns the statistical analyses of the differences between the
individual SNRs of the events in narrow and wide streets, the Mann–Whitney U-tests conducted for
each recording day proved that the following ANE subcategories show significant differences: bell,
bird, dog, door, peop, step and wrks for the weekday and bird, brak, dog, door, horn, peop and step for
the weekend.

4.6. Day–Night Plus Narrow–Wide Characteristics of Urban ANEs

In order to have a more detailed analysis of the characteristics of the collected ANE subcategories,
this section describes the results of the day–night plus narrow–wide combinations based on the
computation of PRW

DN matrices (see Equation (7)) for the considered features to parameterize the ANE
subcategories and the two days under study. In this case, the mean values of the features are averaged
considering NR

L = 11 narrow and NW
L = 12 wide streets and the total recorded time for each period,

that is: 2.33 h of day-time (for DR and DW) and 1.33 h of night-time (for NR and NW) on the weekday,
plus 2 h of day-time (for DR and DW) and 1 h of night-time (for NR and NW) during the weekend.
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Table 5 shows the mean values of the number of occurrences and total durations for the day–night
plus narrow–wide pairs. As can be observed, narrow streets reveal the highest presence of ANEs
during day-time both in terms of occurrences and accumulated duration. When compared to the
other three pairs, the mean number of occurrences per hour and street are 29.2–134,7% greater on the
weekday and 64–324.5% greater on the weekend, while for the mean total duration this increase is
between 58.3 and 261.3% during the weekday and between 79.1 and 302.5% on the weekend. Thus,
in this analysis the dominant factor seems to be the time period in front of the street type because
the second combination that entails a larger presence of ANEs is the DW pair. In this combination,
the mean number of occurrences is 55.4–81.7% higher than the other two night-based pairs (NR and
NW) for the weekday, and between 16–158.8% on the weekend, while the mean total duration is
41.3–128.3% larger for the weekday, and 122.9% larger than the NW configuration during the weekend.

Table 5. Mean number of occurrences and total duration per hour obtained for the weekday and
weekend day, distinguishing between day- and night-time periods, being the diurnal period defined as
06:00–22:00 [29], and averaging the features by the number of sensed hours per period and number of
streets per type.

Recording
Day

Mean Occurrences
Per Hour and Street (#)

Mean Total Duration
Per Hour and Street (s)

DR NR DW NW DR NR DW NW

Weekday 256.5 127.8 198.6 109.3 537.3 240.2 339.5 148.7
Weekend 235.2 123.6 143.4 55.4 405.7 226.5 224.7 100.8

Figure 8 shows the results of the analysis of the mean number of ANE occurrences and total
duration for both the weekday and weekend days for the four considered configurations. It can
be observed that narrow streets host most of the occurrences during day-time (DR). More precisely,
several ANE subcategories like airp, bell, bike, dog, door, glas, musi, peop, sqck, wrks and thun present in
DR more than 45.1% of their total number occurrences and more than 37.3% of their total duration for
both days. At second level, wide streets contain at least six sources of anomalous events during the
diurnal period (DW) (i.e., brak, busd, horn, tram, trll and wind) with more than 33.4% of their occurrences
and more than 33.6% of their total duration in DW for both days. Narrow streets (NR) contain more
than 34.8% of their occurrences and 22% of their total duration at night for bird, inte and sire for both
sensed days. Moreover, we want to highlight that the tram subcategory is the one that presents a quite
important presence in wide streets at night (NW pair), with 33.8% of its occurrences and total duration.
Finally, regarding the statistical comparison between the mean number of occurrences found among
the four combination pairs, again they present significant differences for both the weekday (χ2 (54,
N = 685) = 348.35, p < 0.01), and the weekend day (χ2 (51, N = 557) = 140.71, p < 0.01).

Figure 9 depicts the results of the computation of the median durations and median SNRs of the
anomalous events for both recording days. It can be observed that narrow streets present the highest
number of events with maximum median duration, for 11 ANE subcategories at night on the weekday
and during day-time on the weekend. Regarding the individual durations of the events, it can be
observed that most events present quite stable patterns among the four combination pairs. However,
several ANE subcategories present relevant variations. The conducted statistical analyses based on the
Kruskall–Wallis test prove that the differences of individual event durations are significantly different
(with p < 0.01) among the four configurations for the following ANE subcategories: bell, bike, bird, door,
horn, musi, peop, sire, step and tram on the weekday, and bird, brak, door, horn, peop, sqck, step, tram and
trll on the weekend.
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Figure 8. Results of the day–night and narrow–wide pairs analysis (PRW
DN matrices) differentiating

weekday and weekend days for the following ANE features: mean number of occurrences per street
and hour (two leftmost subfigures) and total duration per street and hour (two rightmost figures).
Each subfigure shows the distribution of the corresponding ANE feature in terms of ANE subcategory
and the pair street type and time period.
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Figure 9. Results of the day–night and narrow–wide pairs analysis (PRW
DN matrices) differentiating

weekday and weekend days for the following ANE features: median duration (two leftmost subfigures)
and median SNR (two rightmost figures). Each subfigure shows the distribution of the corresponding
ANE feature in terms of ANE subcategory and the pair street type and time period: Narrow–Day (RD),
Narrow–Night (RN), Wide–Day (WD) and Wide–Night (WN).
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In what concerns the analysis of median SNRs, the highest values are found at night on narrow
streets, for 13 ANE subcategories on the weekday and 9 subcategories on the weekend. Within these
subsets, the subcategories with highest median SNR values are alrm (3.4 dB), busd (between 1.8 and
3.5 dB), door (between 2.3 and 3 dB), step (between 1.4 and 2.1 dB), trll (between 2.2 and 7.1 dB) and
wrks (between 3.4 and 3.5 dB). On a second level, narrow streets contain the next group of higher
median SNRs during day-time, for 6 ANE subcategories on the weekday and 7 on the weekend day.
Moreover, lower median SNR values are found in the diurnal period in wide streets, more concretely,
10 ANE subcategories present their minimum SNRs on the weekday, becoming 11 during the weekend.
Among these ANE subcategories, the conducted statistical analyses based on the Kruskall–Wallis test
to evaluate the variations of the individual SNRs of the events among the four pair combinations are
significantly different (with p < 0.01) for bird, dog, door, peop, step and wrks on the weekday and bird,
brak, dog, door, horn, peop and step on the weekend day.

5. Discussion and Conclusions

In this work, we have advanced in the characterization of anomalous noise events in real urban
environments, extending previous analyses by studying their presence (number of occurrences and
total duration) and individual features (median duration and median SNRs) according to their
evolution throughout the day and night, together with their local particularities found in narrow and
wide streets during a weekday and a weekend day.

To that effect, a WASN-based database of 151 h has been designed and developed to have
enough representative samples of this kind of acoustic events in real-life urban environments
through the 24-nodes WASN of the DYNAMAP project deployed across District 9 of Milan pilot
area. The conducted analyses show the regular presence of ANEs throughout the day in all sensed
locations, besides confirming the unbalanced nature of the problem at hand, as the developed urban
WASN-based database is composed of 126 h and 43 s of RTN passages (83.5%), 13 h 8 min and 48 s of
ANE samples (8.7%), classified in 26 subcategories, 11 h 50 min and 29 s labelled as CMPLX (7.8%).
Specifically, urban ANEs are mainly derived from the presence of pedestrians (e.g., peop and step),
animals (e.g., bird and dog), transports (e.g., airp, door, brak, sire, horn) and industry (e.g., wrks and inte).

When comparing these results with the ones obtained from the preliminary manual recording
campaign [28], substantial differences have been found. First, it is worth mentioning that in the
WASN-based database the total amount of labelled ANEs (8.7%) is quite lower than the corresponding
percentage observed in the manual dataset (12.2%). This result confirms the need of extensive
recordings to characterize the urban environment properly—a similar conclusion was obtained when
comparing the WASN-based suburban database with the previous manual recordings (1.8% and 3.2%
of ANEs were found, respectively) [46]. Second, it is also worth noting that up to 11 non-previously
observed urban ANE subcategories have been identified thanks to the WASN-based recording
campaign. In particular, the annotators have completed the initial list of subcategories with alrm, bell,
blin, glas, inte, rain, rubb, sqck, step, trll and wrks, being some of them quite predominant in the database.
Finally, it should be pointed out that the WASN-based database is around 33 times larger than the
expert-based dataset (of 4 h and 24 min of data, also composed of 20 minutes of continuous audio
clips), as it was gathered in only 12 city locations of Milan at the street level during non-sequential
diurnal periods (containing only one nocturnal recording).

Regarding the comparison between the urban and suburban WASN-based databases
(both composed of more than 150 h of annotated environmental acoustic data), several issues can be
discussed. First, the presence of ANEs in the urban environment is significantly higher than in the
suburban counterpart (located at the A90 motorway surrounding Rome). The latter is composed of
only 16 ANE subcategories (with 3,170 occurrences and 10,752.9 s of total duration [46]), being the most
frequent ones rain and thun due to a fortuitous long thunderstorm episode that coincided with the
weekend recordings. These events are followed by sounds derived from transports, like brak or tran,
and animals (in this case, only bird) (see [19] for further details). Although meteorological ANEs have
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also been observed in the urban environment (i.e., rain, thun, and wind), their relevance is significantly
lower as they have seldom been recorded. Nevertheless, this kind of events should also be discarded
from the WASN-based measurements of noise levels due to their potential impact on the computation
of LAeq values as stated in both environments.

In what concerns the day–night plus narrow–wide pair combinations, both axes of the analysis
methodology (see Figure 2) entail significant differences on the presence of ANEs for both recording
days. In particular, the results have shown the major dependence of the presence of ANEs with respect
to the time period axis than the street type axis. That is, ANEs have been mainly found (both in
terms of number of occurrences and total duration) in day-time during the weekday, despite they
have also been more observed in narrow than in wide streets, probably due to several issues such as
the pass-by nature of RTN and the shorter distance between the source and the measurement point
located at building facades that could entail higher SNRs, for instance. However, these preliminary
considerations should be analysed in detail in future works, taking into consideration urban spatial
features such as the height of buildings, the presence of furniture and greenery, or the so-called canyon
effect in narrow streets [16,17], among others. Furthermore, it is also worth mentioning that several
ANE subcategories show a relevant temporal dependence (e.g., peop, step and door in the diurnal period,
bird at night and wrks on the weekday), along with other events that present a clear relationship with
the type of street where have been found (e.g., tram and brak in wide streets or step) in narrow streets.
When analysing the distribution of ANEs between day and night, most events have been found during
the diurnal period, for both days, showing the weekend day a lower presence of ANEs both in terms
of mean number of occurrences and total duration. However, several events are more present in the
nocturnal period, such as bird and inte, when lower background RTN levels are typically measured.
A similar pattern has been also found when comparing the results between narrow and wide streets,
showing the former a higher presence of anomalous events. In what concerns the median duration
of the ANE subcategories, we have found that most events show quite similar median durations
regardless of the considered period of time and type of street. However, it is to note that events such as
bird, horn, sire or tram present significantly lower durations in narrow than wide streets, besides other
events such as door, peop and step, show also significant differences among the four configurations,
together with events like inte, musi, rubb, rain tram and wrks, despite part of the latter group can be
caused by the particular local nature of the events. On the other hand, median SNRs computed during
the nocturnal periods from both days present higher values than in the diurnal counterparts (e.g.,
see alrm and sqck), which can be attributed to the lower background RTN levels, showing bird, dog, door,
peop, step and wrks statistically significant differences among the four combination pairs. This issue
may result particularly relevant in terms of the impact of the ANEs in the computation of the LAeq
values at night, as the permitted levels defined by the competent authorities are significantly lower
than the corresponding ones for the day-time [10].

Future work will focus on advancing the research about the characteristics of real acoustic
environments in two main directions: first, by designing and developing a complete spatio-temporal
analysis of the ANE subcategories collected in both urban and suburban environments through both
WASN-based recording campaigns, completing the study by considering complex audio passages,
the effect of urban shapes and other street clusters; and second, by training the ANED algorithm with
both WASN-based acoustic databases to improve its performance in real-operation environments.
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