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Abstract: This work improves a LeNet model algorithm based on a signal’s bispectral features to recognize
the communication behaviors of a non-collaborative short-wave radio station. At first, the mapping
relationships between the burst waveforms and the communication behaviors of a radio station are
analyzed. Then, bispectral features of simulated behavior signals are obtained as the input of the
network. With regard to the recognition neural network, the structure of LeNet and the size of the
convolutional kernel in LeNet are optimized. Finally, the five types of communication behavior are
recognized by using the improved bispectral estimation matrix of signals and the ameliorated LeNet.
The experimental results show that when the signal-to-noise ratio (SNR) values are 8, 10, or 15 dB,
the recognition accuracy values of the improved algorithm reach 81.5%, 94.5%, and 99.3%, respectively.
Compared with other algorithms, the training time cost and recognition accuracy of the proposed
algorithm are lower and higher, respectively; thus, the proposed algorithm is of great practical value.

Keywords: communication behaviors; bispectrum estimation; signal recognition; convolutional neural
network (CNN); short-wave radio station

1. Introduction

In the field of electronic counter-measures, only physical layer signals can be detected
by sensors. Therefore, research on the communication behavior of radio stations must be carried
out by analyzing the physical layer signals. In the absence of communication protocol standards,
as a non-collaborator, correctly recognizing communication behaviors has always been a difficult
problem [1,2]. The communication behavior of a radio station represents the working state of the radio
station, which helps us to infer the communication intention of the radio station’s holder. It is of great
significance to carry out research on communication behaviors by directly using physical layer signals
detected by sensors.

The communication behavior of a short-wave radio station refers to the behavior generated by
the targeted radio station, which transmits voice, data or images. Communication behaviors include
“link establishment–link demolition”, “service request–service confirmation”, and “service transmission”.
In this work, communication behaviors of a short-wave radio station are divided into five categories:
automatic link establishment (ALE) behavior, traffic management and high-rate data link protocol
(HDL) acknowledgement (TMHA) behavior, HDL traffic data (HTD) behavior, low-rate data link
protocol (LDL) traffic data (LTD) behavior, and LDL acknowledgement (LA) behavior. The five kinds
of communication behavior correspond to five kinds of burst waveforms. If we can distinguish the
kind of burst waveform (BW) a radio station sends, we can establish the radio station’s communication
behavior, and at the same time we can determine the radio station’s working status. Mastering the
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working status of the radio stations of non-collaborative organizations can provide us with more
intelligence information, which is very difficult if there is no communication protocol standard.
The traditional recognition methods for a radio station’s communication behavior need to go deeply
into the framework in the data link layer, which is not possible in real electronic countermeasures.
In this work, the analysis of communication behaviors is carried out directly based on the physical
layer signals, which are able to be collected by sensors in the real environment. A novel algorithm for
radio station communication behavior recognition is proposed.

There is almost no existing research on non-collaborative radio station communication behaviors
due to many difficulties in the field. Previous studies [3,4] explored communication relationships
between radio stations by analyzing the intercepted radio signals. However, these communication
relationships are not our focus. However, Wu et al. [5] proposed a method for radio station link
establishment (LE) behavior recognition, and the method can recognize seven kinds of LE behaviors
without a communication protocol. The seven types of LE behavior would be categorized as ALE
behavior in this work. In fact, there are five kinds of radio station communication behavior, which means
the LE behavior recognition proposed by Wu et al. [5] differs from the communication behaviors
studied in this work. There are also other methods; for example, the flow mining (FlowMine)
algorithm was proposed to mine the instruction flow and was verified with simulated and real data [6].
Another study [7] completed feature selection and data classification for binary protocol packets,
which facilitated further study of the communication protocol recognition. Moreover, the FlowMine
conversation relationship extraction method—which is based on conversation revivification and
protocol identification methods, combing port and regular expressions—was proposed to quickly
locate Fetion service packets in promiscuous raw packets to achieve various business relationships [8].
However, in those studies [6–8], the main focus of research was the identification of communication
relationships or a communication protocol, while the research on communication behaviors of specific
targets is not in-depth. These previous studies [6–8] may infer communication behaviors represented
by the physical layer signals by analyzing the communication protocol standards, but this is difficult
to apply without a communication protocol standard. Since we cannot demodulate and decrypt
correctly, we must break through the limitations of the communication protocol, which is impossible
as a non-collaborator.

According to a simple analysis of the communication behavior signals of a short-wave radio station,
the five types of communication behavior signals corresponding to five kinds of burst waveforms differ
slightly in their durations, which are specified in the third-generation short-wave communication
protocol standard called military standard-188-141B (MIL-STD-188-141B). However, in the real world,
it is difficult to distinguish between the small differences in different burst waveforms. In this work,
a bispectral feature transformation is used to transform signals into matrices with the same dimensions
that are easily and conveniently imported to a neural network. Bispectral feature transformation
is widely used in signal recognition. For example, Han et al. [9] and Cao et al. [10] used bispectral
features of signals to carry out signal classification and Wang et al. [11] used bispectral diagonal slices
of signals to make extracted features of signals simpler and more obvious. After bispectral feature
transformation, the signal can be directly recognized by the classifier, but recognition performance is
often not ideal. In addition, a convolutional neural network (CNN) can extract the deeper features
of the signal bispectrum [12–15]. In this case, after the physical layer signals are collected by sensors,
the method of signal bispectrum estimation combined with CNN can infer the communication
behaviors of a radio station. Generally speaking, the more complex the CNN, the better the network
performance. The first classic architecture of CNN was the network proposed by Yann LeCun
called LeNet. Even though it has existed for many years, it is still widely used in fault diagnosis
and gas identification [16,17]. The more complicated network proposed by Alex Krizhevsky called
AlexNet appeared later, but it does not differ much from LeNet in architecture [18,19]. As far as
network architecture is concerned, a network proposed by Google called GoogLeNet, residual network
(ResNet), and densely connected convolutional network (DenseNet) are all innovative. In addition,
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GoogLeNet [20,21] and ResNet [22–24] are used widely in hand gesture recognition, image retrieval,
and visual recognition. DenseNet can reuse the features of initial samples and has better performance
than other CNN models. Therefore, DenseNet is widely utilized in speech recognition, disease
diagnosis, and detection of wildfire smoke images [25–27]. To speed up application, LeNet was
employed to conduct the extraction of features and recognition of communication behaviors because it
is the simplest method.

The recognition of communication behaviors of a non-collaborative radio station by directly
analyzing physical layer signals without using a standard protocol is a novel approach, especially
because deep learning (DL) is adopted to improve the outcome. To achieve this, communication
behavior signals were simulated according to the communication protocol called MIL-STD-188-141B.
Then, the algorithm combing bispectrum estimation of behavior signals with the ameliorated LeNet
was adopted. The training time cost of LeNet is low, which is of great practical value. Finally, the
experimental results demonstrate that the proposed algorithm is effective for communication behavior
recognition purposes.

The main contributions of this work are as follows:

1. A DL method is adopted so that the different communication behaviors of non-collaborative
radio stations can be recognized without a standard protocol, which provides a new method for
military reconnaissance in the field of electronic countermeasures;

2. In terms of communication behavior signal feature transformation, complex matrices of a signal’s
bispectrum estimation are used as the input to the network model;

3. As far as the recognition network model is concerned, LeNet is ameliorated by adjusting the
network structure and selecting an appropriate size of convolution kernels. The time cost
of training LeNet is discussed because the time cost has to be considered when a recognition
network is applied in the battlefield.

The remainder of this paper is organized as follows. Section 2 introduces the generation
of communication behavior signals of a short-wave radio station. In Section 3, the proposed algorithm
for recognition of non-collaborative radio stations’ communication behaviors is explained in detail.
Section 4 presents the experimental results and analysis. Finally, Section 5 concludes the presented work.

2. The Communication Behavior Signals of a Short-Wave Radio Station

The third-generation short-wave communication protocol standard (MIL-STD-188-141B) is widely
used in the current American military short-wave communication system. The latest short-wave
communication systems in Europe and China were also formulated with reference to MIL-STD-188-141B.
If a targeted radio station’s communication behavior is recognized from the perspective of the physical
layer, it is necessary to analyze the features of signals in the physical layer. MIL-STD-188-141B specifies
five kinds of burst waveforms—BW0, BW1, BW2, BW3, and BW4. The five kinds of burst waveforms
correspond to different functions in the process of communication, as shown in Figure 1.
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In fact, the five functions correspond to five communication behaviors of a radio station, as shown
in Figure 1. In this work, the communication behavior recognition of the third-generation short-wave
radio station mainly involves recognizing the communication behavior signals corresponding to the
five types of burst waveforms identified. The following provides a brief introduction to the simulation,
which shows how the burst waveforms (BW0–BW4) are formed. All of the original valid parts of the
five types of burst waveforms are represented by randomly generated binary parts.

The data frame of the burst waveform BW0 consists of a transmit-level control (TLC)–automatic
gain control (AGC) guard sequence (256 bit phase shift keying (PSK) symbols), acquisition preamble
(384 bit PSK symbols), and valid payload (832 bit PSK symbols). The transmission scheme of BW0 is
shown in Figure 2.
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The data frame of burst waveform BW3 consists of an acquisition preamble (640 bit PSK symbols)
and valid payload (32 × n + 256 bit PSK symbols), n = 64, 128, 256, or 512. The transmission scheme
for BW3 is shown in Figure 5, where FT represents how many forward transmissions have occurred
in transmitting the current datagram.

Sensors 2020, 20, x 5 of 21 

 

Forward error correction 
encoder(4,1,8)

Valid 
bits

1881bit

32bits
CRC

7bits
Set 

encoder 
zero

Bitout0

Bitout1

Bitout2

Bitout3

i=mod(FT,4)
Bitouti 1920bits

Modulation 
symbols

(Gray 
encoding)

640bits

FT

32-bit octal symbols

32-bit octal symbols

32-bit octal symbols

…

…

20 *32-bit octal symbols

16-bit zero

16-bit zero

16-bit zero

n*960bits,n=3,6,12,242880-bit octal symbols

Acquisition 
preamble(64bits)

TLC/AGC(240bits)

Set n=38PSK 
modulation

Burst 
Waveform 
modulation

Sending 3184bits

740-bit head zero sequence

528-bit head 
zero sequence

4416bits

960-bit 
octal 

symbols

PN 
sequence

960bits FT

 
Figure 4. The transmission scheme of burst waveform BW2. FT: forward transmission. 

The data frame of burst waveform BW3 consists of an acquisition preamble (640 bit PSK 
symbols) and valid payload (32 × n + 256 bit PSK symbols), n = 64, 128, 256, or 512. The transmission 
scheme for BW3 is shown in Figure 5, where FT represents how many forward transmissions have 
occurred in transmitting the current datagram. 

Forward error correction 
encoder(2,1,7)

Valid bits
(8n+25)bits
n=64,128,25

6,or512

32bits
CRC

7bits
Set 

encoder 
zero

Bitout1

Bitout2

i=mod(FT,2)
Bitouti 576bits

Interwea
-vingSet

n=64

576bits 24*24
Walsh 

sequence
（16，4）

Soft spread 
spectrum

PN 
sequence

2304bits

8PSK 
Modulation,
Waveform 
modulation

Acquisition 
preamble(640bits)

2304bits

2944bits

Sending

 
Figure 5. The transmission scheme of burst waveform BW3. 

The data frame for burst waveform BW4 consists of an acquisition preamble (256 bit PSK symbols) 
and valid payload (2 bit PSK symbols). The transmission scheme for BW4 is shown in Figure 6. 

Walsh 
sequence

(16,2)
Soft spread 
spectrum

PN sequence
(1280bits)

Acquisition 
preamble
(256bits)

8PSK
modulation

Waveform
modulation

Valid 
bits

2bits
16bits 1280bits

1280bits 1536bits
Octal 

number

SendingRepeat
80 times

 
Figure 6. The transmission scheme for burst waveform BW4. 

The five burst waveforms were all modulated by 8 PSK. Then, they were up-sampled by 
interpolation four times and put into an ascending cosine filter. IQ signals were modulated with an 
1800 Hz carrier. Finally, the radio signals to be sent were acquired. The parameters of the ascending 
cosine filter were set as follows: rolling drop coefficient, 0.25; the symbol scope is the length of the 
sequence, whereby a single symbol was sampled four times. Considering the process of collecting 
signals in the actual environment, the sampling rate could be set to 

0
B 24002 ( f ) = 2 ( 1800) = 6000
2 2

× × +  +  Hz. When actually using sensors to collect signals, we would set 

the sampling rate to 7500 Hz, avoiding the influence of radio frequency modulation and signal 
distortion in the process of passing wireless communication channels. Finally, the five types of signals 
we simulated are shown in Figure 7. 

Figure 5. The transmission scheme of burst waveform BW3.
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The five burst waveforms were all modulated by 8 PSK. Then, they were up-sampled by
interpolation four times and put into an ascending cosine filter. IQ signals were modulated with an 1800
Hz carrier. Finally, the radio signals to be sent were acquired. The parameters of the ascending cosine
filter were set as follows: rolling drop coefficient, 0.25; the symbol scope is the length of the sequence,
whereby a single symbol was sampled four times. Considering the process of collecting signals in the
actual environment, the sampling rate could be set to 2 × (B

2 + f0) = 2 × ( 2400
2 + 1800) = 6000 Hz.

When actually using sensors to collect signals, we would set the sampling rate to 7500 Hz, avoiding
the influence of radio frequency modulation and signal distortion in the process of passing wireless
communication channels. Finally, the five types of signals we simulated are shown in Figure 7.Sensors 2020, 20, x 6 of 21 
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Figure 7. The time domain waveforms of five types of communication behavior signals.

Recognizing different communication behaviors of a short-wave radio station is difficult because
there is not much difference in the time domain waveform of each type of communication behavior signal,
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especially after these communication behaviors signals have passed through the wireless short-wave
communication channel. As a non-collaborating party, it is difficult to infer the communication
behaviors of a radio station through traditional methods. Therefore, the algorithm described in
this work combines the feature transformation of signals and employs deep learning to distinguish
the different communication behaviors of a radio station.

3. Methods

3.1. Bispectrum Analysis of Communication Behavior Signals

This work focuses on the performance of the developed algorithm in terms of recognizing
different communication behavior signals in the physical layer. The intercepted signals were simulated
by passing the communication behavior signals through the Gaussian white noise channel, as specified in
communication protocol MIL-STD-188-141B. Based on these intercepted behavior signals, we conducted
an experimental exploration. First, we carried out a signal bispectrum transformation, then we trained
the LeNet network, and finally we carried out communication behavior signals recognition. Through
the analysis of the simulated physical layer signals, communication behavior recognition of a short-wave
radio station was carried out.

The bispectrum function is a two-dimensional Fourier transform of the third-order cumulant.
The bispectrum function was used because it is able to transform burst waveforms with different
lengths into their features with the same dimensions (Figure 7), allowing behavior signals of different
waveforms to be put into the same network model, while other methods cannot obtain features with
the same dimensions, for example the Fourier transform, time–frequency transform, and wavelet
transform. In addition, the differences in lengths of different waveforms are very small in the real
environment, meaning behavior signals cannot be distinguished by the lengths of the waveforms.
The bispectrum transform can also retain frequency information and phase information of signals,
which means the feature transformation could be effective even if the modulation style of signals is
unknown. The bispectrum of the signal, x(t), is defined as:

Bx(ω1,ω2) =
∑
τ1

∑
τ2

C3x(τ1, τ2)e− j(ω1τ1+ω2τ2) (1)

where C3x(τ1, τ2) is the third-order correlation function of the signal, defined as:

C3x(τ1, τ2) = E
{
x∗(t)x(t + τ1)x(t + τ2)

}
(2)

There are parametric and non-parametric methods in the bispectral estimation of a signal.
The parameterized method needs to find a model that matches the communication behavior signals
acquired by the reconnaissance, which is difficult in a complex electromagnetic environment. Therefore,
this work mainly uses the non-parametric method to obtain the bispectrum estimation of the simulated
communication behavior signals. According to the non-parametric method of bispectral estimation,
when we conduct bispectrum estimation on a one-dimensional signal, we must first divide the signal
into K segments and then further process each segment. In addition, the parameters in the method are
set as follows: the number of sampling points in each segment is set as M = 128; the output of the
bispectrum estimation is a complex square matrix with a size of 256 × 256. According to the symmetry
of the matrix, the complex matrix measuring 128 × 128 at the top right of the square matrix can be used
as the deep features of communication behavior signals, and these features are used to train the neural
network to recognize communication behaviors. The bispectrum estimations of the communication
behaviors are shown in Figure 8.
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link protocol; LDL: low-rate data link protocol.

As can be seen from Figure 8, the bispectrum of the five communication behavior signals are
different. According to our analyses of simulated signals, the reason why the differences are small
might be that the dimension of the bispectral estimation matrix is too small compared with that
of the signals. Hence, the bispectral estimation matrix with dimensions 256 × 256 × 2 cannot retain
the full information of the behavior signal’s frequency and phase. Another reason could be that
octal-phase modulation was utilized for all communication behavior signals, so the simulated signals
only differ in their original binary bits. While this results in small differences among behavior signals,
the differences are sufficient to distinguish different communication behavior signals. In addition,
to make the differences more obvious, we can expand the dimension of the bispectral estimation
matrix, although this could increase the time cost of training the recognition network and reduce the
practical value of the proposed algorithm. The slight differences are also the reason why it is difficult
to distinguish communication behavior signals of a radio station from the perspective of the physical
layer. At present, the frequency information or magnitude information in the bispectral estimation
of signals is used separately for recognition using bispectral diagonal slices, a rectangular integral
bispectrum, and a selective bispectrum [28–30]. In order to retain the subtle features of communication
behavior signals and recognize the radio station communication behavior, this work used the improved
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bispectrum features as the inputs of the recognition network. The magnitude and phase information
of the bispectral square matrix were used as the inputs for the recognition network.

To distinguish between such small differences in communication behavior signals, CNN can be
used to further extract deep features of signals. Considering the time spent by the real application,
the recognition network cannot be too complicated. Thus, the ameliorated LeNet, as a classic CNN,
was adopted to recognize the communication behaviors of a short-wave radio station.

3.2. LeNet

LeNet is a classic CNN. Due to its simple architecture and superior performance, LeNet is widely
used in image classification, signal recognition, and speech recognition. LeNet includes two modules:
a convolutional module and a fully connected module. The structure of the ameliorated LeNet used in
this work is shown in Figure 9.
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The dimensions of the five types of communication behavior signals of the bispectral estimation
matrix measured 256 × 256. According to the symmetry of the bispectral estimation matrix, the upper
right side of the matrix was selected and the values of the phase and magnitude corresponding to each
element in the matrix were normalized. Finally, a matrix measuring 128 × 128 × 2, which included the
frequency information and phase information of the signal, was acquired. The matrix was used as the
input of LeNet to train the recognition network. The following improvements were made to LeNet in
this work:

(1) We optimized the activation function. The advanced activation function “leaky rectified linear
unit (leaky ReLU)” was used instead of the activation function “tanh”, accelerating the gradient
descent speed and overcoming the death of neurons;

(2) We optimized the size of the convolution kernel. The size of the convolution kernel was adjusted
from (5, 5) to (3, 3) to extract more subtle features;

(3) We used batch normalization (BN). The use of BN in the fully connected layer did not complicate
the network but accelerated the training process. BN also reduced the sensitivity of the network
model to the learning rate, which had better performance than “dropout”.

3.3. Algorithm for Radio Station Communication Behavior Recognition

The generation of the five kinds of communication behavior signals was in accordance with
communication protocol standard MIL-STD-188-141B. To ensure that each burst waveform could fully
represent its corresponding communication behavior, the initial valid parts of each burst waveform were
randomly generated when a communication behavior signal was simulated. Finally, the communication
behaviors signals were generated. There were 1000 samples in each class, totaling 5000 samples
of communication behavior signals. All of the communication behavior signals passed through the
Gaussian channel before they were used in the recognition algorithm. In this work, the recognition
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algorithm adopted the basic framework as follows: features transformation, followed by automatic
extraction of features, followed by communication behavior recognition. The algorithm model is
shown in Figure 10.

Sensors 2020, 20, x 9 of 21 

 

(2) We optimized the size of the convolution kernel. The size of the convolution kernel was adjusted 
from (5, 5) to (3, 3) to extract more subtle features; 

(3) We used batch normalization (BN). The use of BN in the fully connected layer did not complicate 
the network but accelerated the training process. BN also reduced the sensitivity of the network 
model to the learning rate, which had better performance than “dropout”. 

3.3. Algorithm for Radio Station Communication Behavior Recognition 

The generation of the five kinds of communication behavior signals was in accordance with 
communication protocol standard MIL-STD-188-141B. To ensure that each burst waveform could 
fully represent its corresponding communication behavior, the initial valid parts of each burst 
waveform were randomly generated when a communication behavior signal was simulated. Finally, 
the communication behaviors signals were generated. There were 1000 samples in each class, totaling 
5000 samples of communication behavior signals. All of the communication behavior signals passed 
through the Gaussian channel before they were used in the recognition algorithm. In this work, the 
recognition algorithm adopted the basic framework as follows: features transformation, followed by 
automatic extraction of features, followed by communication behavior recognition. The algorithm 
model is shown in Figure 10. 

Labels

Ameliorated 
LeNet Classifier

Channel 1: 
Bispectrum features

Channel 2: 
Bispectrum features

Data set

Training set

Test set

Labels

Comparison

Train

TestChannel 1: 
Bispectrum features

Channel 2: 
Bispectrum features

Output

 
Figure 10. The structure of the proposed algorithm. 

The specific steps of the proposed algorithm were as follows: 

Step 1: Signal features transformation. Calculate the bispectrum of all samples and take the 
normalized phase and normalized magnitude of each element in the bispectral matrix to form a 2-
channel square matrix measuring (128, 128, 2). There were 1000 samples for each label; 

Step 2: Make data sets. From the 5000 samples generated in step 1, 80% of the samples were 
randomly selected as the training set and the rest were used as the test set; 

Step 3: Train the neural network. Firstly, the training set was used to train LeNet and the Adam 
optimizer was adopted in the training. When the loss function of the network did not change, the 
training was finished; 

Step 4: Recognize communication behaviors. The test set was used as the input of the trained 
LeNet. 

4. Experimental Results and Analyses 

The communication behavior signals used in the experiment were simulated according to MIL-
STD-188-141B. Their carrier frequency was 1800 Hz and the sampling rate was 9600 Hz/s. The five 
types of communication behaviors were automatic link establishment behavior, traffic management 
and HDL acknowledgement behavior, HDL traffic data behavior, LDL traffic data behavior, and HDL 
acknowledgement behavior. The bispectral features of the five types of communication behavior 

Figure 10. The structure of the proposed algorithm.

The specific steps of the proposed algorithm were as follows:
Step 1: Signal features transformation. Calculate the bispectrum of all samples and take the

normalized phase and normalized magnitude of each element in the bispectral matrix to form
a 2-channel square matrix measuring (128, 128, 2). There were 1000 samples for each label;

Step 2: Make data sets. From the 5000 samples generated in step 1, 80% of the samples were
randomly selected as the training set and the rest were used as the test set;

Step 3: Train the neural network. Firstly, the training set was used to train LeNet and the
Adam optimizer was adopted in the training. When the loss function of the network did not change,
the training was finished;

Step 4: Recognize communication behaviors. The test set was used as the input of the
trained LeNet.

4. Experimental Results and Analyses

The communication behavior signals used in the experiment were simulated according to
MIL-STD-188-141B. Their carrier frequency was 1800 Hz and the sampling rate was 9600 Hz/s. The five
types of communication behaviors were automatic link establishment behavior, traffic management
and HDL acknowledgement behavior, HDL traffic data behavior, LDL traffic data behavior, and HDL
acknowledgement behavior. The bispectral features of the five types of communication behavior
signals were different from the conventional picture and text. The feature dimensions were (128, 128,
2); that is, slightly larger than other ordinary pictures, meaning LeNet, which possesses a different
internal structure and hyperparameters, needs to be optimized so that it is suitable for the recognition
of different communication behaviors. It is also necessary to explore the influence of the Gaussian
white noise channel on the recognition performance of the algorithm. In addition, Gaussian noises
with different signal-to-noise ratios (SNRs) were added to the five communication behavior signals to
imitate the real scene where communication behaviors signals are received by a sensor. The reason
why other more advanced classical CNN models were not used here was that their complexity is
high and would be unlikely to meet the requirement for rapid reconnaissance. The time required
to run various algorithms needs to be explored through experimentation, so that the network that
best meets the needs of the application can be chosen. The comparison demonstrates the superiority
of the proposed algorithm, which means that the proposed algorithm can better realize the purpose
of a short-wave radio station′s communication behavior recognition.

To improve the algorithm in the future, network optimization and algorithm recognition
performance experiments were conducted, as well as comparisons with other algorithms.
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Experiment environment: Intel(R) i5-4200H CPU; Windows 10; NVIDIA GEFORCE GTX 950M;
TensorFlow 1.12.0; Keras 2.2.5.

4.1. Network Optimization Experiments

The original LeNet was proposed to solve the problem of simple character recognition. In order to
make it more suitable for complex 2-channel bispectral features, the ameliorated network was optimized
using the signals dataset with signal-to-noise ratio (SNR) = 10 dB. The optimizations of LeNet mainly
refers to two aspects: the location of the batch normalization (BN) layer and the size of the convolution
kernel. LeNet benefits from optimization of these aspects because the BN layer can speed up the
training of the network, improving the generalization ability of the network and the shuffling of the
training samples [31]. A smaller convolution kernel gives more attention to the details of features,
which also affects the performance of the network [32]. The global parameters in LeNet were set as
follows: batch size = 64; epoch = 5; the number of training samples was 4000; the number of test
samples was 1000; the initial learning rate was 0.001.

4.1.1. Experiment on the Location of the BN Layer

The fixed parameter in the experiment was the size of the convolution kernel, set as (5, 5).
The variables in the experiments were as follows: The BN layer was added into the fully connected
layer, the output layer, and the two convolution layers, expressed as A. The BN layer was added into
the two convolution layers, expressed as B. The BN layer was added into the fully connected layer and
the output layer, expressed as C. Finally, the BN layer was not added, expressed as D.

After training was completed, the training epoch changed. The values of the loss function and
training accuracy of the training set are shown in Figure 11.Sensors 2020, 20, x 11 of 21 
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Figure 11. Value of the loss function (a) and the value of the training accuracy of the training set (b)
as the epoch changed when the batch normalization layer was added into different positions. The
batch normalization (BN) layer was added into the fully connected layer, the output layer, and the two
convolution layers, expressed as A. The BN layer was added into the two convolution layers, expressed
as B. The BN layer was added into the fully connected layer and the output layer, expressed as C.
Finally, the BN layer was not added, expressed as D.
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As shown in Figure 11a, under conditions B and D, the value of the loss function did not change
after epoch 2 due to the parameters in the network reaching local optimization. Under conditions
A and C, the value of the loss function steadily decreased and the rate of the decrease was basically
the same. This shows that the use of the BN layer in the fully connected layer effectively avoids the
local optimization of parameters. As shown in Figure 11b, the value of the training accuracy under
conditions B and D stabilized at 0.40 after epoch 1. The value of the training accuracy under conditions
A and C increased steadily and finally reached about 1.0. The value of loss of C dropped faster than
that of A, while the accuracy of C increased faster than that of A. Therefore, the BN layer should be
added as C. The experimental results show that when the BN layer is added in the fully connected
layer it can accelerate the speed of training the network and improve the performance of the network.

The experiments were conducted under conditions A, B, C, and D, and the corresponding time
spent training each sample is shown in Figure 12.Sensors 2020, 20, x 12 of 21 
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Figure 12. The time spent training each sample when the batch normalization layer was added into
different positions. The BN layer was added into the fully connected layer, the output layer, and the
two convolution layers, expressed as A. The BN layer was added into the two convolution layers,
expressed as B. The BN layer was added into the fully connected layer and the output layer, expressed
as C. Finally, the BN layer was not added, expressed as D.

As shown in Figure 12, the corresponding time periods under conditions A and B were 106 ms and
108 ms, respectively. The corresponding time periods under conditions C and D were 49 ms and 46 ms,
respectively. The experimental results show that when the BN layer was added into the convolutional
layer it greatly increased the time cost of training the network. Meanwhile, adding the BN layer to the
fully connected layer did not change the time cost of training the network.

According to Figures 11 and 12, the experimental results also verify that the BN layer can speed
up the training of LeNet and avoid local optimization of parameters, as BN has the ability to normalize
features and shuffle training samples. Thus, by adding BN layers to the network, the proposed LeNet
can learn the deep features of the bispectrum. Considering the time cost of training, adding the BN
layer would increase the time cost to a certain extent if added in convolutional layers because BN is not
simply a normalization function. The essence of BN is to change the value of variance and the mean,
so that the new distribution is closer to the true distribution of data and the non-linear expression
ability of the model is also guaranteed.

Overall, the use of the BN layer in the fully connected layer can accelerate the speed of training
the network, causing LeNet to avoid falling into local optimization. Moreover, the time cost of training
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the network barely changes. Therefore, the BN layer was only added into the fully connected layer for
subsequent experiments in this work.

4.1.2. Experiment on the Size of the Convolution Kernel

For this experiment, the BN layer was only added to the fully connected layer. The sizes of the
convolution kernels were set as (3, 3), (5, 5), (7, 7), and (9, 9), expressed as E, F, G, and H, respectively.

Figure 13 shows the changes in the values of the loss function and the training accuracy of the
training set corresponding to the different sizes of convolution kernels.
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corresponding to the different sizes of convolution kernels as the epoch changed. Kernel sizes (3, 3), (5, 5),
(7, 7), and (9, 9) are expressed as E, F, G, and H, respectively.

As shown in Figure 13a, before epoch 2, in general the smaller the size of the convolution kernel,
the slower the value of the loss function decreased. As the epoch increased, the value of the loss
function corresponding to smaller sizes of convolution kernels was smaller. When the size of the
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convolution kernel was larger, the value of the loss function was also larger. As shown in Figure 13b,
before epoch 2, the smaller the size of the convolution kernel, the higher the test accuracy of the training
set. However, the differences between E, F, G, and H are not clear. If a smaller kernel size is used in
the network, the speed of training will be slightly slower, but this will only be a very small difference.
More details of the bispectral estimation can be extracted by adopting a smaller kernel size, resulting
in improved performance for LeNet. The value of the loss function does not converge as quickly
if the size of convolution kernel is smaller. However, as the epoch increases, the features extracted
by a smaller kernel can better reflect the essence of the samples belonging to one class.

The time periods spent training each sample under conditions E, F, G, and H are shown in
Figure 14.Sensors 2020, 20, x 14 of 21 
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As shown in Figure 14, as the size of the convolution kernel increases, the time spent training
each sample gradually increases from 31 ms to 110 ms. Combined with Figure 13, it is obvious that
the smaller the size of the convolution kernel, the less time is spent training the network. Moreover,
a smaller convolution kernel can better reflect the essential differences between communication
behavior signals. Therefore, the size of the convolution kernel adopted in LeNet was set as (3, 3) for
subsequent experiments.

According to all of the experiments in Section 4.1, the different internal structures and the kernel
size in LeNet have important impacts on the performance of the algorithm. We gradually optimized
the network by fixing the size of the convolution kernel and selecting the appropriate structure through
experiments, and then with the appropriate structure we chose the optimal size of the convolution
kernel. Considering the rapid response and performance of LeNet in practical applications, the original
LeNet was improved here by adding the BN layer into the fully connected layer and setting the size of
the convolution kernel to (3, 3).

4.2. Experiments on the Recognition Performance of the Algorithm

He standard protocol MIL-STD-188-141B is used widely in short-wave communication systems.
The protocol standard stipulates that the Gaussian noise channel can be used as a wireless
communication channel to verify the performance of the communication system. Therefore, the influence
of Gaussian noise with different SNRs on the performance of LeNet should be explored. First, 5000
simulated signals belonging to five signal types of communication behavior passed through different
Gaussian noise channels with SNR = 0 dB, 5 dB, 8 dB, 10 dB, and 15 dB. Then, the magnitude
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square matrix and the phase square matrix of each signal’s bispectral estimation were labeled by the
corresponding category of the signal. In total, 1000 samples belonging to each category were simulated.
The magnitude square matrix and the phase square matrix of each signal were treated together as one
sample so that 5000 samples were generated. Finally, 4000 samples were randomly selected to train the
ameliorated LeNet and the remaining 1000 samples were used as the test set.

The fixed parameters were as follows: the batch size was fixed at 64; there were 10 epochs;
the initial learning rate was 0.001; and the size of the convolution kernel was (3, 3).

The change in value of the loss function for the different SNRs over the training epochs is shown
in Figure 15.
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Figure 15 shows that the higher the SNR, the faster the value of the loss function decreases,
which means the faster the algorithm converges. The value of the loss function gradually stabilizes at
epoch 7. The test accuracy of the trained network on the test set is shown in Figure 16.
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Figure 16. The test accuracy of the test set under different signal-to-noise ratio (SNR) conditions.

As shown in Figure 16, with the improvement of the quality of the wireless short-wave
communication channel, the recognition accuracy of the proposed algorithm in this work gradually
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improves. When the SNR values were 0 dB and 5 dB, the test accuracy values of the test set reached
46.2% and 73.2%, respectively. At an SNR was greater than 8 dB, the algorithm had good recognition
performance. The test accuracy values were 81.5%, 94.5%, and 99.3% when the SNR was 8 dB, 10 dB,
and 15 dB, respectively. At low SNRs, the recognition performance of the algorithm still needs
to be improved. Nonetheless, we achieved the recognition of different communication behaviors
without a communication protocol standard, which is significant. In real applications of the algorithm,
the de-noising technology can be used to process the intercepted communication behavior signals,
after which the proposed algorithm can be adopted to recognize a short-wave radio station’s behaviors
by utilizing the processed signals.

In order to explore the influence of the number of samples used to train network on the classification
accuracy, the signal data set with SNR being 10 dB was utilized to conduct following experiments.
Finally, the recognition accuracy of the proposed algorithm is shown in Table 1.

Table 1. The recognition accuracy corresponding to different numbers of training samples (SNR = 10 dB).

The number of samples 500 1000 2000 3000 4000

Recognition accuracy (%) 36.0 45.5 61.7 80.1 94.5

Table 1 shows that the more samples that were used to train network, the higher the recognition
accuracy of the proposed algorithm. When the numbers of training samples were 500, 1000, 2000, 3000,
and 4000, the recognition accuracy values were 36%, 45.5%, 61.7%, 80.1%, and 94.5%, respectively.
Moreover, when the number of training samples was greater than 3000, the recognition accuracy
was greater than 80%, indicating that 3000 samples were needed for the bispectrum to reveal the
signal features.

4.3. Comparison Experiments

With regards to neural network selection for the recognition of a radio station’s communication
behaviors, here simple LeNet was used to extract the deep features of the samples and then the Softmax
classifier was utilized to complete the recognition of different communication behaviors. At present,
there are other more advanced CNN models, such as AlexNet, GoogleNet, and ResNet. In the field
of computer vision, the recognition performance of these networks is generally higher than LeNet.
However, in the field of radio reconnaissance, the complexity of these networks incurs a high time
cost to train the network, which is a significant drawback. Thus, we carried out some experiments
to explore the performance and time costs for the adoption of different CNN models to recognize
communication behavior signals. In addition, these experiments can explain the reason why the
ameliorated LeNet was adopted for this work. Finally, the performance of the proposed algorithm was
compared with some traditional radio signal recognition algorithms.

The time cost of training the ameliorated LeNet was compared with the classic LeNet, classic
AlexNet, classic GoogleNet, and classic ResNet. The signals with SNR = 10dB were used in the
experiment and the data set was generated by the magnitude square matrix and phase square matrix
of these signals’ bispectral estimations.

The fixed parameters in experiments were as follows: the batch size was 64; there were five
epochs; the initial learning rate was 0.0001; the training and test sets consisted of 4000 and 1000
samples, respectively.

The values of the loss function changes during the training of each network are shown in Figure 17.
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As shown in Figure 17, after the second epoch, the loss of the ameliorated LeNet, classic AlexNet,
and classic GoogLeNet is very small, and then the loss declines more slowly. Before the third epoch,
the loss of the classic LeNet and classic ReNet declines rapidly and then the loss function declines
slowly. The loss of every network model tends to be stable by epoch five, although local optimization
may occur due to the different internal structures of each network. The test accuracy of every network
on the test set at epoch five is shown in Figure 18.
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Figure 18. The test accuracy of every network on the test set at epoch five.

As shown in Figure 18, the classic LeNet and ameliorated LeNet, which have simpler structures,
have the best performance. As the complexity of the networks increases, the other networks more
easily fall into the trap of local optimization; thus, the recognition performance of these networks may
deteriorate. Combining Figures 17 and 18, we know that every network becomes stable after epoch
five because the loss function changes very little. Thus, the test accuracy of the networks at epoch five
represents the final performance. In addition, the complex matrix of the bispectral estimation was
used to train the network, but the differences among communication behavior signals were not very
obvious, as Figure 8 shows, so the features to be extracted by networks might not differ greatly. Hence,
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the simple LeNet had better performance than other networks with more complicated structures.
Of course, there is more work needed on this topic, as the research on this subject has just begun.

In practical applications, the time cost of training the network will be an important issue, which was
also the original motivation for choosing LeNet rather than other networks. The time spent training
each sample corresponding to every network in Figures 17 and 18 is shown in Figure 19.
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Figure 19 shows that the time cost of the ameliorated LeNet is lower than other networks. It takes
about 31 ms to train each sample for the ameliorated LeNet. The time to train ResNet is ten times
higher, which means the ReNet is not suitable for practical applications.

Finally, some traditional algorithms were adopted to recognize short-wave radio station
communication behavior signals. Yuan et al. [29] and He et al. [30] adopted respectively rectangular
integral bispectrum and selected bispectra only using the magnitude matrix of the bispectral estimation,
so their methods are treated as a traditional method called the “magnitude matrix of the bispectrum”.
Another traditional method used in the experiment was the diagonal slice of the bispectrum [28].
The performance of the different algorithms is shown in Figure 20.Sensors 2020, 20, x 19 of 21 
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Figure 20 shows that the proposed algorithm had better performance than other traditional
algorithms. The accuracy of the proposed algorithm reached up to 94.5%, which was 47.1%, 23.8%,
and 0.6% higher than that of the diagonal slice of bispectrum+support vector machine (SVM),
bispectrum+LeNet, and improved bispectrum+LeNet, respectively. The recognition accuracy of the
improved bispectrum+LeNet was 93.9%, while that of bispectrum+LeNet was 70.7%, which means the
proposed complex matrix of the bispectrum estimation can retain more features of communication
behavior signals. Moreover, the recognition accuracy of the proposed algorithm was 0.6% higher than
that of the improved bispectrum+LeNet, which shows that our work to ameliorate original LeNet
was successful.

According to the experiments in Section 4.3, the time cost of the proposed algorithm was lower and
the recognition accuracy of the proposed algorithm was higher than other algorithms. The proposed
algorithm meets the needs of practical applications.

5. Conclusions

An algorithm based on bispectral features and ameliorated LeNet was proposed in this study of
short-wave radio station communication behavior recognition. Compared with traditional methods,
the proposed algorithm does not require the communication protocol standard of non-collaborative
organizations. For this study, communication behavior signals were simulated according to
communication protocol MIL-STD-188-141B. In real environments, we can only obtain behavior signals
collected by sensors, so we added Gaussian noise to simulated signals. Thus, the communication
behavior signals passing through wireless communication channels of different qualities were acquired.
In terms of the preprocessing of signals, the bispectral features can preserve the information of a signal’s
frequency and phase and can transform the five types of burst waveforms of different lengths into
a square matrix with the same dimensions, which makes it easier to input behavior signals into the
network model. In terms of the recognition network, CNN has a strong capability for learning deep
features, so an ameliorated LeNet was adopted here. The structure of LeNet was optimized by a series
of experiments, which made LeNet more suitable for communication behavior signal recognition.
The performance of the proposed algorithm was superior to the algorithm based on the bispectral
diagonal slice and the algorithm based on more complex CNN models. The high recognition accuracy
and low time cost of the proposed algorithm showed that it is of high practical value in the field
of electronic reconnaissance. We can use sensors to capture signals from non-cooperative organizations
and then analyze the communication intent represented by the signals.

In the future, the proposed algorithm can be improved, for example through more efficient
extraction of features and by optimizing the selection of the neural network. In fact, we did not
thoroughly explore the impacts of each network’s structure and hyperparameters on recognition
performance. Moreover, the communication behavior signal should be collected by sensors in the
battlefield and then used to verify the effectiveness of the proposed algorithm. This work provides
new ways to analyze a non-collaborative radio station’s topological structure and tactical status,
even without a standard protocol.
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