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Abstract: To accurately and quantitatively detect the gear pitting of different levels on the actual site,
this paper studies a new vision measurement approach based on a tunable vision detection platform
and the mask region-based convolutional neural network (Mask R-CNN). The shooting angle can be
properly set according to the specification of the target gear. With the obtained sample set of 1500 gear
pitting images, an optimized deep Mask R-CNN was designed for the quantitative measurement
of gear pitting. The effective tooth surface and pitting was firstly and simultaneously recognized,
then they were segmented to calculate the pitting area ratio. Considering three situations of multi-level
pitting, multi-illumination, and multi-angle, several indexes were used to evaluate detection and
segmentation results of deep Mask R-CNN. Experimental results show that the proposed method has
higher measurement accuracy than the traditional method based on image processing, thus it has
significant practical potential.
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1. Introduction

Gearbox is one of the key components in rotating machinery, and the failure rates of its
components are respectively about: gear 60%, bearing 19%, shaft 10%, case 7%, tight solid 3%,
oil seal 1% [1]. Evidently, gears have high fault probabilities because of their complex structures
and harsh operating conditions [2,3]. Gear pitting is one of the most common failure modes of
gears. Generally, under long-term load working conditions, due to the contact fatigue stress, the
material on the gear meshing surface is peeled off, forming early pitting. If the early pitting failures are
not detected in a timely manner, they deteriorate rapidly and even lead to broken teeth so as to cause
catastrophic economic losses and casualties [4,5]. Therefore, in order to prevent the gear pitting from
deteriorating, it is necessary to detect the faults as early as possible.

The research on fault detection of gear pitting has received a great deal of attention. Conventional
gear pitting fault diagnosis methods are based on signal processing such as ensemble empirical
mode decomposition [6], fast 1D K-SVD with adaptive dictionary [7], and autocorrelation-based time
synchronous averaging [8]. In order to achieve automatic and accurate diagnoses, intelligent diagnosis
methods based on machine learning are studied [9–11]. For example, one study developed a new
activation function, ReLTanh, that can eliminate the problem of gradient disappearance, which is well
used to diagnose gear pitting faults [12]. Li et al. proposed a method by stacking convolutional neural
networks (CNN) and gated recurrent unit (GRU) networks for early gear pitting faults diagnosis
with raw vibration and acoustic emission signals as direct inputs [13]. The above works paid more
attention to the qualitative detection of gear pitting. However, the level of gear pitting is usually used
for the identification of gear life and gear health management, especially in the gear contact fatigue
test. The current method for detecting the pitting area ratio mainly relies on the observation with a
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magnifying glass. Unfortunately, this method is cumbersome as well as low in efficiency and precision.
As a result, it is of great value to study an accurate, fast, and quantitative detection device for gear
pitting in a site test. There are no available test instruments for quantitatively measuring the area
ratio of gear pitting at present. Thereupon, we explore a non-contact computer vision method to
automatically and accurately measure area ratio of gear pitting under an actual working environment.

Computer vision technique has been widely applied to such fields as unmanned autonomous
vehicles [14], medicine [15], manufacturing industry [16], security [17], finance [18], etc. Among a variety
of computer vision technologies, deep architecture networks have better extensive adaptability and
non-linear mapping capability than traditional image processing methods such as frame difference [19]
and optical flow approaches [20]. The deep learning method can automatically transform the initial
“low-level” feature representation into a “high-level” feature representation through multi-layer
processing so as to realize the description of the object’s internal laws and presentation levels [21],
therefore, it is especially suitable to solve the image detection and segmentation problems related
to gear pitting. In this paper, we address to study a methodology based on deep learning for
quantitatively measuring gear pitting, which is achieved by target detection and instance segmentation.
The object detection function is used to judge whether the gear pitting occurs, while the instance
segmentation function is used to segment the gear pitting and the effective tooth surface. It can
be seen that the precision of image segmentation play an important role in the measurement of
pitting area ratio. With the development of deep learning theory and the improvement of numerical
calculation device, in the case of multi-dimensional vector images as input, the complexity of data
reconstruction in feature extraction and classification can be avoided due to the sharing of local weight
parameters of CNNs. Therefore, CNNs have been widely used in the field of computer vision [22,23].
These features learned by CNNs contain plenty of spatial dimensions and detail information to facilitate
the determination of accurate pixel position information of the object. Therefore, CNNs can be well
applied to image segmentation [24]. Li et al. proposed an iterative instance segmentation that could
successfully learn a category-specific shape prior and correctly suppress pixels belonging to other
instances [25]. DeepMask [26] and SharpMask [27] treated segmentation as a binary classification
problem, optimizing the output to produce a mask that could precisely frame the boundary of the object.
On the basis of CNN, Jonathan Long et al. proposed fully convolutional networks (FCN) for image
segmentation [28]. Most of the proposed image segmentation networks are based on FCN, such as the
encoder-decoder structure adopted by U-Net neural network [29] and SegNet network [30] and the
void convolution structure adopted by DeepLab network [31]. However, it cannot achieve multi-target
image segmentation (pitting and effective tooth surface) simultaneously. In 2017, an integrated and
complex multi-task network model, called Mask R-CNN, was built [32]. Mask R-CNN proposed
a function of region of interest align (RoI Align) to remove the rounding operation of RoI Pooling
and used bilinear interpolation to make the obtained features of each RoI better align with the RoI
region in the original image. Mask R-CNN has high detection and segmentation accuracy. Compared
to the traditional object detection method (e.g., Faster R-CNN [33]), Mask R-CNN has dominated
Common Objects in Context (COCO) [34] benchmarks, since instance segmentation can be easily
solved by detecting objects and then predicting pixels in each box. Moreover, although You Only Look
at CoefficienTs (YOLACT) [35] can implement real-time one-stage instance segmentation due to its
parallel structure and extremely lightweight assembly process, its accuracy of segmentation gap is
much worse than Mask R-CNN. Therefore, an automatic gear pitting measurement method based on
deep Mask R-CNN is proposed to achieve the calculation of pitting area ratio for different situations.

The deep Mask R-CNN was trained using datasets from real scenes with clearly marked boundaries.
To online collect the gear pitting images with high quality in the gear fatigue test, a tunable visual
detection platform (TVDP) was designed, which is suitable for testing gears with various dimensions.
Via a number of gear contact fatigue tests and TVDP, 1500 gear pitting images were obtained under
different scenes—multi-level pitting, multi-illumination, and multi-angle—and then the sample set
was used for training and testing. The proposed method can detect pitting and (effective tooth surface)
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TS simultaneously and automatically, and then pitting and TS can be effectively segmented. With the
results of deep Mask R-CNN, the area ratio of gear pitting can be easily calculated. The experimental
results demonstrate that the proposed approach has much higher measurement accuracy than the
traditional segmentation method based on image processing.

The remainder of paper is organized as follows. In Section 2, the dataset acquisition system and
the proposed approach are presented. The hyper parameters and the evaluation indexes are described
in Section 3. Section 4 introduces and analyzes all experimental results. Finally, some conclusions and
suggestions for future research are addressed in Section 5.

2. The proposed Method

2.1. Overview

The proposed vision measurement methodology for gear pitting is composed of five portions:
image acquisition, image labeling, network design, Mask R-CNN training, and pitting area ratio
calculating, as described in Figure 1.
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Figure 1. Schematic diagram of the end-to-end implementation process of quantitative detection of
gear pitting. Firstly, we obtained image samples under different experimental conditions, as shown in
(a). Secondly, we labeled image samples through VGG Image Annotator (VIA), as shown in (b). Next,
we optimized the super parameters of Mask R-CNN to train the pitting detection network, as shown in
(c). Finally, we analyzed the experimental results and verified the accuracy of the model in (d).

2.2. Tunable Visual Detection Platform (TVDP)

In this section, TVDP is designed for collecting tooth surface images, and the whole gear fatigue
test rig is illustrated in Figure 2a. In TVDP, an industrial USB digital camera (CCD) with adjustable
light source (MV-SI622-01GM, HIKVISION CO., LTD.) was used, and the range of shooting angle was
0–90◦. The parameters of the CCDs were a resolution of 2592 × 2048 pixels, a frame rate of 30 fps,
a focal length of 8 mm, and an f-number of 2.8. A piece of tailor-made organic glass board was used as
the upper cover plate of the test gearbox to observe the situation of gear running. TVDP was fixed on a
base next to the gearbox, as shown in Figure 2b. In Figure 2b, x is the distance between the slide rail
support and the right side of the test gearbox; y is the distance between the test gearbox casing and the
camera fixing point; α is the camera shooting angle. The determination of the above parameters are
explained in Section 2.3.3.
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Figure 2. Schematic diagram of the end-to-end implementation process of quantitative detection of
gear pitting. (a) Schematic diagram of gear pitting detection platform (TVDP) in whole and part;
(b) structure diagram of gear pitting visual detection platform.

2.3. Image Acquisition

The collected gear pitting images were affected by illumination, shooting angle, and area level.
With TVDP, we collected gear pitting images under varied situations, such as different pitting, different
illumination, and different shooting angle. Through a number of tests, 1500 images were obtained,
and these images constituted a complete gear pitting sample set that could be applied to train and test
the Mask R-CNN.

2.3.1. Multi-Level Pitting

In the actual working condition of the gearbox, the gear pitting images obtained by different
contact fatigue tests had different morphologies. The level of gear pitting was determined by the
pitting area. Four levels of gear pitting are illustrated in Figure 3. We can see from this figure that the
pitting area was small and consisted of many tiny pitting regions when the level was low, and the
pitting area became larger with the increase of level, and several tiny pittings formed a big pitting.
Especially for the fourth level, the pitting occupied a large tooth surface area.
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Figure 3. Gear pitting images obtained under different levels. According to the area of pitting, pitting
was divided into four grades: initial pitting (first level), initial local pitting (second level), moderate
local pitting (third level) and severe local pitting (fourth level).

2.3.2. Multi-Illumination

A robust quantitative gear pitting measurement system should have the ability to deal with
the variance of the images caused by illumination conditions, lubricating oil, and so on. Different
illumination conditions produce different forms of reflected light due to the lubricating oil and the
non-convexity of the pitted gear surface. The gear pitting images collected with different illumination
conditions are shown in Figure 4. As shown in Figure 4a,d,g, under the condition of low illumination,
the gear pitting was not able to reflect light well, i.e., the average brightness value of the data set
was 94.1 cd/m2. With the increase of light intensity, due to the non-concave nature of gear pitting,
the characteristics of gear pitting became obvious, that is, the average brightness value of the data set
was 124.7 cd/m2, as shown in Figure 4b,e,h. In addition, the reflection of other tooth surfaces without
pitting corrosion was bright. If the illumination was increased, all tooth surfaces obviously reflected
light, but the edge of the gear pitting image became blurred, that is, the average brightness value of
the data set was 151.2 cd/m2, as shown in Figure 4c,f,i. The above brightness values were rounded to
94 cd/m2, 125 cd/m2, and 151 cd/m2. In order to simplify, the data sets with three different average
brightness values were named as I, II, and III.



Sensors 2020, 20, 4298 6 of 20Sensors 2020, 20, x FOR PEER REVIEW 6 of 21 

 
Figure 4. Gear pitting images obtained under various illumination. Under different shooting angles, 
we obtained the image with illumination I ((a) α =15° I, (d) α =45° I, (g) α =75° I), illumination  II ((b) 
α =15° II, (e) α =45° II, (h) α =75° II) and illumination III ((c) α =15° III, (f) α =45° III, (i) α =75° III. 

2.3.3. Multi-Angle 

We took the cylindrical spur gear with a modulus of four and a tooth number of 16 as an 
example. Different shooting angles brought different complexities of background, including 
incomplete gear and non-gear images. The background may have influenced the precision of object 
detection. Three teeth (1, 2, 3) are located in an effective detection region 1, as shown in Figure 5. 
Point A is the camera shooting position for detecting the gear tooth 1; point B is the camera shooting 
position for detecting the gear tooth 2; point C is the camera shooting position for detecting the gear 
tooth 3; DE is a horizontal straight line, and its vertical distance from the gearbox casing is y (mm); 
the horizontal distance between the sliding bracket and the gear box is x (mm); point G is the center 
of the gear; O (x, y) is the installation base point of the gear pitting detection device; the tunable gear 
pitting detection device changes the shooting angle of the camera by adjusting the angle control 
bracket. For gears with different parameters, we tuned the shooting angle to make the camera 
perpendicular to the tooth surface 2 so as to reduce the influence of the image background. Therefore, 
the selection of these three shooting angles is important and universal. In this study, the shooting 
angles of these three teeth were set as 75, 45, and 15°, respectively. When the shooting angle was 75°, 
the gear pitting looked relatively small, and most of the incomplete teeth and a small part of the 
gearbox casing could be seen. If we decreased the shooting angle to 45°, the size of gear pitting 
became larger. To further increase the size of gear pitting, a shooting angle of 15° could be chosen. 
Different shooting angles were able to collect gear pitting images with different angles to enrich the 
diversity of gear pitting samples. According to the parameters of test gear, such as the module and 
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Figure 4. Gear pitting images obtained under various illumination. Under different shooting angles,
we obtained the image with illumination I ((a) α =15◦ I, (d) α =45◦ I, (g) α =75◦ I), illumination II ((b) α
=15◦ II, (e) α =45◦ II, (h) α =75◦ II) and illumination III ((c) α =15◦ III, (f) α =45◦ III, (i) α =75◦ III.

2.3.3. Multi-Angle

We took the cylindrical spur gear with a modulus of four and a tooth number of 16 as an example.
Different shooting angles brought different complexities of background, including incomplete gear and
non-gear images. The background may have influenced the precision of object detection. Three teeth
(1, 2, 3) are located in an effective detection region 1, as shown in Figure 5. Point A is the camera
shooting position for detecting the gear tooth 1; point B is the camera shooting position for detecting the
gear tooth 2; point C is the camera shooting position for detecting the gear tooth 3; DE is a horizontal
straight line, and its vertical distance from the gearbox casing is y (mm); the horizontal distance
between the sliding bracket and the gear box is x (mm); point G is the center of the gear; O (x, y)
is the installation base point of the gear pitting detection device; the tunable gear pitting detection
device changes the shooting angle of the camera by adjusting the angle control bracket. For gears
with different parameters, we tuned the shooting angle to make the camera perpendicular to the tooth
surface 2 so as to reduce the influence of the image background. Therefore, the selection of these three
shooting angles is important and universal. In this study, the shooting angles of these three teeth were
set as 75, 45, and 15◦, respectively. When the shooting angle was 75◦, the gear pitting looked relatively
small, and most of the incomplete teeth and a small part of the gearbox casing could be seen. If we
decreased the shooting angle to 45◦, the size of gear pitting became larger. To further increase the size
of gear pitting, a shooting angle of 15◦ could be chosen. Different shooting angles were able to collect
gear pitting images with different angles to enrich the diversity of gear pitting samples. According to
the parameters of test gear, such as the module and the tooth number, the shooting angle should be
properly set.
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Figure 5. Gear pitting images obtained under various shooting angles.

2.4. Dataset Description

The data label tool used in this article is the HTML “VGG Image Annotator(VIA)”, which is an
open source image annotation tool developed by the Visual Geometry Group. It can be used online
and offline. It can mark rectangles, circles, ellipses, polygons, points, and lines. When the annotation is
complete, it can be exported to .csv and .json file formats (Figure 6).
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Figure 6. Images labeling. (a), (b), (c), (d) were the original images of different levels, (e), (f), (g), (h)
were the label image of different levels.

2.5. Gear Pitting Detection by Deep Mask R-CNN

Compared with other segmentation models, Mask R-CNN introduces a priori, that is,
it introduces stronger supervision information and has better network segmentation performance.
Thus, Mask R-CNN is applied to detect the effective tooth surface and the segment the gear pitting.
Deep Mask R-CNN is composed of two branches: classic target detection network Faster R-CNN and
classic instance segmentation network FCN.

2.5.1. Structure of the Deep Mask R-CNN

As a flexible instance segmentation model, the deep Mask R-CNN improves upon Faster R-CNN
by adding a segmentation mask generating branch. The methodology for gear pitting measurement
based on Mask R-CNN is illustrated in Figure 7. It has three parts: (1) an input layer (the resolution of
the input image should be larger than 32 × 32); (2) convolutional backbone layers (we used ResNet101
as convolutional backbone layers); (3) final layers (it performs target detection (classification and
bounding-box regression) and mask segmentation). The target detection branch is used to determine
the coordinates of bounding-boxes and identify the pitting/tooth surface. With the recognition results,
the mask prediction branch uses FCN for semantic segmentation of pitting and tooth surface. Thus,
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deep Mask R-CNN can simultaneously identify the objects and segment them, which is different from
the original FCN network.
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2.5.2. Gear Pitting Feature Exaction

We used ResNet101-FPN as the backbone network of feature extraction. Its shallow network
extracts color, brightness, edge, corner, straight line, and other local details of pitting and effective
tooth surface, and its deep network extracts more complex information and structure, such as texture,
semantics and geometry of pitting, and effective tooth surface. The deep ResNet network [36] and the
FPN feature extraction network are used for feature extraction. The required parameters are extremely
large, and different depths correspond to different levels of semantic features. When the resolution
of network is high, the detailed features of the image are learned; when the resolution of network is
low, the semantic features of the image are learned. Compared to Centermask, Mask R-CNN shows
better performance on the mask precision [37]. This is because Mask R-CNN uses larger feature maps
(P2) to extract much finer spatial layouts of an object compared to the P3 feature map (it is used by
Centermask). Moreover, the used ResNet101 can extract more feature information to improve the
detection and the segmentation performance of the target (gear pitting and effective tooth surface).
The convolutional backbone layers are responsible for creating specific feature maps over an entire
image. The convolutional backbone layers are composed of convolution layers, rectified linear (ReLU)
layers, and pooling layers. The convolutional backbone layers contain five layers. The first layer is a
convolution layer, which consists of 32 filters with the kernel size of 3, the stride of 1 pixel, and the pad
of 1; the second layer is a rectified linear (ReLU) layer; the third layer is a convolution layer composed
of 32 filters with the kernel size of 3, the stride of 1 pixel, and the pad of 1; the fourth layer is a rectified
linear (ReLU) layer; the fifth layer is a maximum pooling layer with the kernel size of 3, the stride of 2,
and the pad of 1.

2.5.3. Region Generation and RoIAlign Operation

The anchor mechanism and the region proposal network (RPN) were used to filter the feature
map generated by ResNet101-FPN. K anchor boxes, which may have pitting or tooth surface features,
were generated in the area corresponding to the original image of each pixel of the feature map.
RPN was used to determine whether the anchor box contained pitting or tooth surface features. If so,
the bounding box position was modified according to the output coordinate offset and then outputted
to the back network for further judgment. We used the RPN area recommendation network structure
to replace the serial processing sliding window mode (selective search) within parallel processing
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anchor tasks in order to reduce the time cost. The RPN network generated a fully connected feature of
the corresponding length by using a sliding window and generated a fully connected layer with two
branches, which were respectively applied to bounding-box regression and bounding-box classification.
Then, the RoIAlign layer was used to perform unified quantization operation, since the input of the fully
connected layer needed fixed-size features. The quantization operation of the traditional RoIpooling
layer was canceled, and the value of the pixel point was obtained by bilinear interpolation at the
coordinate of floating number so as to implement the feature collection continuously. The detailed
flowchart of RoIAlign operation can be seen in [38].

2.5.4. Loss Function

The multi-task loss function was used to evaluate the prediction of pitting and effective tooth
surface features by Mask R-CNN. The Mask R-CNN can achieve multi-task learning, and the loss
function is written as:

L = Lcls + Lbbox + Lmask + LR + LP (1)

where Lcls is the loss of the target classification; Lbbox is the regression loss of the target coordinate;
Lmask is the loss of the target segmentation result; LR is the RPN network loss; and LP is the weight
regularization loss. Compared to the traditional detection network, Lmask is introduced according to
the requirements of the target segmentation task.

3. Training and Evaluation

In this study, Python 3.7, TensorFlow 1.14, Keras 2.2.4 and other common packages are utilized to
train and test neural network. During the training of deep Mask R-CNN, the size of the input image
is generally fixed and taken as 1024 × 1024. RPN and Mask R-CNN can share convolution features
during training and use the stochastic gradient descent momentum optimizer (SGDM) to train the
network. We set the hyper parameters of deep Mask R-CNN, which are listed in Table 1.

Table 1. Hyper parameters settings.

Super Parameter Category Super Parameter Name Super Parameter Value

RPN training parameters

Positive threshold 0.7
Negative threshold 0.3

Ratio between positive and negative samples 1:2
Non maximum suppression (NMS) 0.5
Number of NMS output window 2000

Number of training samples 300

RPN test parameters NMS threshold 0.7
Number of output windows after NMS 1000

Candidate window parameters

Coincidence degree of positive sample 0.5
Coincidence degree of negative sample 0.5

Number of training batches 200
NMS threshold 0.5

Learning parameters

Learning rate 0.001
Step of learning rate change 20,000

Multiple of learning rate change 0.1
Optimization algorithm SGD

Several evaluation indexes were defined to assess the performance of gear pitting detection,
which are listed in Table 2. In this table, TP represents the number of objects that are predicted to be
positive and are actually positive, which also indicates that the gear pitting or effective tooth surface
(TS) is detected correctly; FP represents the number of objects that are predicted to be positive but are
actually negative, which also indicates that the gear pitting or TS is not detected correctly; TN represents
the number of objects that are predicted to be negative and are actually negative, which also indicates
that the prediction is not gear pitting or TS, and it is not actually gear pitting or TS; FN represents
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the number of objects that are predicted to be negative samples but are actually positive samples,
which also indicates that the prediction is not gear pitting or TS, but it is actually gear pitting or TS.

Table 2. Confusion matrix.

True Objects False Objects

Detected TP (True Positives) FP (False Positives)
Undetected FN (False Negatives) TN (True Negatives)

The proportion of the predicted true objects (pitting and TS) in all the predicted objects is
represented by precision rate P, which is given by:

P =
TP

TP + FP
(2)

The proportion of the detected true objects in all the true objects is represented by recall rate R,
which is given by:

R =
TP

TP + FN
(3)

By balancing P and R, an index F1 is calculated as:

F1 =
2P ∗R
P + R

(4)

Moreover, the accuracy index A is used, which is written as:

A =
TP + TN

TP + TN + FP + FN
(5)

According to the precision rate P, the false detection rate FDR is defined as:

FDR = 1− P =
FP

TP + FP
(6)

The omission rate of false objects FOR is defined as:

FOR =
FN

TN + FN
(7)

Finally, we propose a new index PSP to represent the precision of gear pitting segmentation,
which is defined as:

PSP = 1−

∣∣∣∣∣∣Br − Bp

Br

∣∣∣∣∣∣ (8)

Bp =
Spit

STS
, Br =

S′pit

S′TS
(9)

where Bp is the predicted pitting area rate; Br is the actual pitting area ratio; S′pit is the pitting area of a
tooth surface; S′TS is the effective area of an effective tooth surface; Spit is the predicted pitting area of a
tooth surface; STS is the predicted area of an effective tooth surface.

IoU is the primary evaluation index of segmentation performance, which is written as:

IoU =
area of overlap
area of union

(10)

where area of overlap denotes the intersection area between the predicted result and the ground truth;
area of union denotes the union area of the predicted result and the ground truth.
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Next, the threshold range of IoU is taken as from 0.5 to 0.95, and it is divided into 10 levels with
the interval of 0.05. AP indicates the prediction accuracy when the threshold is 0.5 [39].

4. Results and Discussion

4.1. Traditional Segmentation Result

Firstly, the Python Image Library (PIL) image processing library crop function in Python was
used to crop the acquired image to obtain an effective tooth surface image, as shown in Figure 8a,b.
Secondly, the gear pitting images were binarized and grayscaled, and then they could be processed
by the pitting foreground segmentation algorithm. Finally, the watershed segmentation algorithm
was used to divide the gear pitting, and then varied edge detection operators were used to extract
the boundary of the gear pitting. The Laplacian of Gaussian (LoG) operator with strong boundary
detection ability and the Canny operator with strong noise suppression ability were used to perform
edge detection on the gear pitting image in different directions, and two images of edge detection were
obtained. By calculating the Euclidean norm of two images, we have:

I =
√

I2
c + I2

l (11)

where Ic is the image matrix obtained by Canny operator edge detection; Il is the image matrix obtained
by Log operator edge detection. The segmentation result can be seen in Figure 8c. By calculation,
the segmentation accuracy PSP is just 68.1%. Evidently, the traditional image segmentation method has
lower accuracy, due to the irregular shape of the gear pitting and the blurred outline of tooth surface.
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Figure 8. The result obtained by the traditional segmentation method. Firstly, the images were
preprocessed (a), and then the effective tooth surfaces were obtained by using the crop function in
Python (b). Finally, the pittings were segmented (c).

The key to compute gear pitting area ratio is how to accurately classify the pitting area and
the effective tooth surface area. The traditional image segmentation methods, such as threshold
segmentation algorithm, edge segmentation algorithm, area growth algorithm, clustering algorithm,
syntactic pattern recognition methods, texture analysis and Support Vector Machine (SVM), etc.,
may have high precision for segmenting a single class of objects. However, the acquired gear pitting
images usually have different levels of pitting, and their characteristics, such as grayscale, texture,
shape, and pitting area, are very different, thus the traditional approaches based on image processing
may lose efficacy. Moreover, the traditional approaches cannot automatically segment gear pitting and
effective tooth surface simultaneously.

4.2. Results of Object Detection

In this research, 1050 labeled images in the dataset were used for training, and the rest were
used for tests. After training and testing Mask R-CNN, the recall rate of total test dataset was 87.9%,
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and the AP of total test dataset was 89.7%. Specifically, we discuss the test results from different scenes:
multi-level pitting, multi-illumination, and multi-angle.

Firstly, four datasets of initial minor pitting, initial local pitting, moderate local pitting, and severe
local pitting were used to study the detection accuracy of multi-level pitting. These test datasets were
acquired at different stages of the gear contact fatigue test. For some images with different pitting
levels, the detection results obtained by the trained Mask R-CNN are shown in Figure 9. For the
four test datasets, evaluation parameters (TP, FP, FN, TN) of gear pitting and TS were respectively
calculated, and the results are illustrated in Figure 10. In each subplot of Figure 10, the top left part
represents TP; the top right part represents FP; the bottom left part represents FN; the bottom right part
represents TN. With the evaluation parameters, six evaluation indexes (P, R, F1, A, FDR, FOR) could
be computed by Equations (2)–(7), which are listed in Table 3. As shown in Table 3, P, R, F1, and A
for pitting detection first increased and then decreased with the increase of pitting level, while FDR
and FOR first decreased and then increased with the increase of pitting level. Additionally, we had
a similar conclusion for TS detection. It is easy to note that the proposed methodology has highest
detection precision for the data set of initial local pitting. Since the initial minor pitting had a small
area, the lesser segmentation error still seriously affected the accuracy of pitting detection. For the
data set of severe local pitting, as shown in Figure 3d, the color of the material inside the gear pitting
became difficult to distinguish owing to the long-term infiltration of the lubricating oil, and it resulted
in the lowest detection accuracy.

Sensors 2020, 20, x FOR PEER REVIEW 13 of 21 

material inside the gear pitting became difficult to distinguish owing to the long-term infiltration of 
the lubricating oil, and it resulted in the lowest detection accuracy. 

 

 
Figure 9. Detection results under different pitting levels. (a) Initial pitting; (b) Initial local pitting; (c) 
Moderate local pitting; (d) Severe local pitting. 

 

Figure 9. Detection results under different pitting levels. (a) Initial pitting; (b) Initial local pitting;
(c) Moderate local pitting; (d) Severe local pitting.



Sensors 2020, 20, 4298 13 of 20

Sensors 2020, 20, x FOR PEER REVIEW 13 of 21 

material inside the gear pitting became difficult to distinguish owing to the long-term infiltration of 
the lubricating oil, and it resulted in the lowest detection accuracy. 

 

 
Figure 9. Detection results under different pitting levels. (a) Initial pitting; (b) Initial local pitting; (c) 
Moderate local pitting; (d) Severe local pitting. 

 
Figure 10. Evaluation parameters of gear pitting and tooth surface (TS) under different pitting levels.
(a) Initial pitting (pitting); (b) Initial local pitting (pitting); (c) Moderate local pitting (pitting); (d) Severe
local pitting (pitting); (e) Initial pitting (TS); (f) Initial local pitting (TS); (g) Moderate local pitting (TS);
(h) Severe local pitting (TS).

Table 3. Detection results under different gear pitting levels.

Pitting Levels Initial Minor
Pitting

Initial Local
Pitting

Moderate
Local Pitting

Severe Local
Pitting

Pitting

P 0.851 0.983 0.919 0.730
R 0.846 0.963 0.925 0.778
F1 0.849 0.973 0.922 0.753
A 0.823 0.956 0.878 0.747

FDR 0.149 0.017 0.081 0.270
FOR 0.217 0.159 0.269 0.235

TS

P 0.908 0.939 0.927 0.898
R 0.922 0.930 0.918 0.914
F1 0.915 0.935 0.922 0.906
A 0.887 0.893 0.890 0.884

FDR 0.092 0.061 0.073 0.102
FOR 0.156 0.304 0.200 0.139

Secondly, three test data sets that were acquired under I (94 cd/m2), II (125 cd/m2), and III
(151 cd/m2) illumination, respectively, were used for investigating the effect of illumination, and each
test data set was collected under three shooting angles: 15◦, 45◦, and 75◦. For some typical gear pitting
images collected under three different illumination conditions and shooting angles, the detection results
obtained by the proposed approach are shown in Figure 11. For the three test datasets, evaluation
parameters (TP, FP, FN, TN) of gear pitting and TS were respectively calculated, and the results are
illustrated in Figure 12. With the evaluation parameters, six evaluation indexes (P, R, F1, A, FDR, FOR)
under three illumination conditions could be computed, which are listed in Table 4. We can see from
this table that the highest detection accuracy could be achieved under the illumination of I.
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Table 4. Detection results under different illumination conditions.

Illumination I (94 cd/m2) II (125 cd/m2) III (151 cd/m2)

Pitting

P 0.869 0.899 0.884
R 0.868 0.897 0.868
F1 0.869 0.898 0.876
A 0.856 0.862 0.847

FDR 0.131 0.101 0.116
FOR 0.159 0.215 0.212

TS

P 0.917 0.938 0.927
R 0.904 0.931 0.912
F1 0.910 0.934 0.919
A 0.875 0.906 0.879

FDR 0.083 0.062 0.073
FOR 0.219 0.173 0.262

Thirdly, we explored the effect of different shooting angles on the detection accuracy. Similarly,
three test datasets were used for comparison, which were acquired with shooting angles of 15◦, 45◦,
and 75◦, respectively. For the above datasets, the obtained evaluation parameters (TP, FP, FN, TN) of
gear pitting and TS are illustrated in Figure 13. Then, six evaluation indexes (P, R, F1, A, FDR, FOR)
under three shooting angles were calculated, which are listed in Table 5. We can easily see from Table 5
that the accuracy of pitting and TS detection decreased with the increase of shooting angle.
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Table 5. Detection results under different shooting angles.

α 75◦ 45◦ 15◦

Pitting

P 0.865 0.870 0.889
R 0.870 0.878 0.887
F1 0.867 0.879 0.888
A 0.871 0.862 0.852

FDR 0.111 0.120 0.135
FOR 0.153 0.161 0.163

P 0.903 0.913 0.921

TS

R 0.894 0.927 0.932
F1 0.898 0.9200 0.927
A 0.896 0.886 0.873

FDR 0.079 0.087 0.097
FOR 0.167 0.180 0.179

4.3. Results of Image Segmentation

The goal of this work is to first detect gear pitting and TS, and then calculate the ratio of the
two areas (i.e., pitting area ratio), which is given by Equations (8) and (9). With PSP, we can judge
whether the gear pair loses efficacy. Actually, the accuracy of image segmentation directly determines
the accuracy of the pitting area ratio. To assess the accuracy of PSP, pitting mask and TS mask are
first labeled, and then the pitting area S′pit and TS area S′TS can be measured. Through Equation (9),
the actual pitting area ratio Br can be computed. Similarly, with the pitting mask and TS mask obtained
by Mask R-CNN, the predicted pitting area Spit and TS area STS are obtained, and then Bp can be
calculated by Equation (9). Some examples of actual masks and predicted masks are shown in Figure 13
separately. The results obtained by the initial local pitting images are shown in Figure 14a1–c1,a2–c2.
Unfortunately, if there are a variety of minor pittings and large pittings, these minor pittings may not
be effectively segmented, as shown in Figure 14d1,d2. However, in such case, the minor gear pitting
area can be approximately neglected compared to the large pitting, therefore the accuracy of the pitting
area ratio is still satisfactory.

For 10 conditions—initial minor pitting, initial local pitting, moderate local pitting, severe local
pitting, I illumination, II illumination, III illumination, shooting angle of 15◦, shooting angle of 45◦,
and shooting angle of 75◦—PSPs were respectively calculated, as shown in Figure 15. It can be
known from Figure 15 that the proposed method can obtain the highest PSP under II illumination,
shooting angle of 15◦, and initial local pitting. The PSP for each condition was larger than 80%,
especially for different illumination conditions and shooting angles, the proposed approach had good
detection and segmentation accuracy. Moreover, considering all test datasets, the average PSP was
calculated as 88.2%, which is much larger than that (68.1%) obtained by the traditional segmentation
method. Consequently, the proposed method can better measure the gear pitting quantitatively in
practical engineering.

It is worth noting from Figure 15 that the PSP for the severe local pitting dataset was 18.5%
lower than that for the initial local pitting dataset, and it was also 8.1% lower than the average PSP.
Due to the morphological difference of various pittings, the performance of object detection decreased
when the gear pitting grew to severe local pitting. Although the accuracy of target detection and
segmentation for the severe local pitting is poor, the gear is generally not allowed to reach the severe
local pitting in the gear contact fatigue test and actual engineering. As the initial minor pitting is very
small, the detection and the segmentation accuracy of the initial minor pitting is also not high. It then
follows that the detection and the segmentation accuracy for initial minor pitting and severe local
pitting need be improved in the future research.



Sensors 2020, 20, 4298 17 of 20

Sensors 2020, 20, x FOR PEER REVIEW 18 of 21 

segmentation for the severe local pitting is poor, the gear is generally not allowed to reach the severe 
local pitting in the gear contact fatigue test and actual engineering. As the initial minor pitting is very 
small, the detection and the segmentation accuracy of the initial minor pitting is also not high. It then 
follows that the detection and the segmentation accuracy for initial minor pitting and severe local 
pitting need be improved in the future research. 

 
Figure 14. Examples of actual mask and predicted mask. 

Figure 14. Examples of actual mask and predicted mask.



Sensors 2020, 20, 4298 18 of 20Sensors 2020, 20, x FOR PEER REVIEW 19 of 21 

 

Figure 15. Precision of the gear pitting segmentation. 

5. Conclusions 

We designed a tunable vision detection platform (TVDP) for convenient online collection of the 
gear pitting images and then developed a new gear pitting measurement methodology based on deep 
Mask R-CNN. This method can detect pitting and TS simultaneously and automatically, then pitting 
and TS can be effectively segmented. With the segmented pitting and TS, gear pitting area ratio is 
easily calculated. By considering three scenes—multi-level pitting, multi-illumination, and multi-
angle—the ability of the proposed method was validated, and the superior illumination and the 
shooting angle were obtained. Compared to the traditional measurement method based on image 
processing, the proposed method has much higher PSP for the acquired gear pitting image set, and 
the average PSP was 88.2%. Therefore, the proposed method can be well applied to evaluate the gear 
pitting so as to provide a suitable maintenance plan for the gear transmission system. In the future, 
the calculation efficiency and the measurement accuracy of the proposed method can be further 
improved by exploring a new architecture of deep Mask R-CNN. 

Author Contributions: Y.Q. conceived and designed the experiments; D.X. conducted the programming; Y.W. 
performed the experiments. 

Funding: (1) a tunable visual detection platform (TVDP) is first designed for on-line collecting the gear pitting 
images conveniently; (2) a quantitative measurement method of gear pitting based on deep Mask R-CNN is 
proposed, and it can detect pitting and effective tooth surface simultaneously, which results in that pitting area 
ratio is easily and automatically obtained; (3) by comparison, the superior illumination intensity and shooting 
angle for detecting gear pitting are obtained. The experimental results demonstrated its superiority over the 
segmentation methods based conventional image processing. 

Acknowledgments: The work described in this paper was supported by the National Key R&D Program of 
China (no. 2018YFB2001300), National Natural Science Foundation of China (no. 51675065). 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Liu, S.; Song, C.; Zhu, C.; Liang, C.; Yang, X. Investigation on the influence of work holding equipment 
errors on contact characteristics of face-hobbed hypoid gear. Mech. Mach. Theory. 2019, 38, 95–111. 

2. Qin, Y.; Mao, Y.; Tang, B.; Wang, Y.; Chen, H. M-band flexible wavelet transform and its application into 
planetary gear transmission fault diagnosis. Mech. Syst. Signal Proc. 2019, 134. 

3. Wang, L.; Zhang, Z.; Long, H.; Xu, J.; Liu, R. Wind Turbine Gearbox Failure Identification with Deep Neural 
Networks. IEEE Trans. Ind. Inform. 2017, 13, 1360–1368. 

Figure 15. Precision of the gear pitting segmentation.

5. Conclusions

We designed a tunable vision detection platform (TVDP) for convenient online collection of
the gear pitting images and then developed a new gear pitting measurement methodology based
on deep Mask R-CNN. This method can detect pitting and TS simultaneously and automatically,
then pitting and TS can be effectively segmented. With the segmented pitting and TS, gear pitting
area ratio is easily calculated. By considering three scenes—multi-level pitting, multi-illumination,
and multi-angle—the ability of the proposed method was validated, and the superior illumination
and the shooting angle were obtained. Compared to the traditional measurement method based on
image processing, the proposed method has much higher PSP for the acquired gear pitting image set,
and the average PSP was 88.2%. Therefore, the proposed method can be well applied to evaluate the
gear pitting so as to provide a suitable maintenance plan for the gear transmission system. In the
future, the calculation efficiency and the measurement accuracy of the proposed method can be further
improved by exploring a new architecture of deep Mask R-CNN.
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