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Abstract: A novel method is described for evaluating the colorimetric accuracy of digital color
cameras based on a new measure of the metamer mismatch body (MMB) that is induced by the change
from the camera as an ‘observer’ to the human standard observer. In comparison to the majority of
existing methods for evaluating colorimetric accuracy, the advantage of using the MMB is that it is
based on the theory of metamer mismatching and, therefore, shows how much color error can arise in
principle. A new measure of colorimetric accuracy based on the shape of the camera-induced MMB is
proposed and tested. MMB shape is measured in terms of the moments of inertia of the MMB treated
as a mass of uniform density. Since colorimetric accuracy is independent of any linear transformation
of the sensor space, the MMB measure needs to be as well. Normalization by the moments of inertia
of the object color solid is introduced to provide this independence.

Keywords: camera sensor design; color camera accuracy; metamer mismatching

1. Introduction

Digital color cameras record colors that, while pleasing, are not necessarily accurate in the sense
that their outputs cannot be converted to precise CIE XYZ coordinates. For instance, the sRGB
standard [1] defines a conversion from sRGB (as one of the default outputs in consumer digital
cameras) to XYZ, but most cameras do not actually meet the standard and so applying the conversion
transformation will lead to XYZ that are only approximately correct. The fundamental problem is that
the camera sensors are generally not within a linear transformation of the human cone sensitivities. As
a result, even using camera RAW mode in place of sRGB will not circumvent the problem.

There are many trade-offs involved in digital color camera design in terms of image noise, cost,
and physical limitations that mean that perfect color accuracy is usually sacrificed. This is especially
the case since the usual goal in camera design is to provide good-looking pictures, not to build an
imaging colorimeter. Nonetheless, since digital cameras are often used to ‘measure’ color, in areas such
as dentistry [2] and dermatology [3] there is a definite need to be able to quantify the degree of color
accuracy/inaccuracy that a given camera possesses. This paper presents a new metric of colorimetric
accuracy that, unlike most existing metrics, is based on a theoretical principle rather than a finite set
of measurements.

2. Background

A camera is said to be colorimetric if it satisfies the Maxwell–Ives criterion (also called “Luther
condition”) [4]. In other words, if the camera sensor sensitivities can be represented as a linear transform
of the CIE 1931 2◦-observer color matching functions then colorimetric accuracy is guaranteed. The
problem with this condition is that it is an all-or-none test in the sense that if it is not met then it
does not specify how inaccurate the camera’s color may be. One possible variation on the strict
Luther condition is to measure the root mean squared (RMS) error of the best linear fit—possibly a
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weighted linear fit to account for the low sensitivity of the cones at the ends of the visible spectrum—of
the camera sensitivities to the cone sensitivities, but unfortunately any error other than zero lacks a
perceptual interpretation.

As another alternative, Jiang et al. [5] calculate the mean color difference between the actual XYZs
of the 1269 reflectances of the Munsell Book [6] illuminated by D65 and those that are predicted based
on using the camera’s spectral sensitivity functions. The camera predictions are made by computing
the resulting RGB values for the given camera’s sensitivity functions and then mapping them to the
corresponding XYZ values based on a best linear fit of the camera sensitivity function to the CIE 1931
2◦-observer x, y, z color matching functions. They measured the sensor sensitivity functions of the
28 cameras and ranked the cameras based on their average ∆E errors. The problem with using the
mean ∆E is that it is based on a small—necessarily finite, hence not necessarily representative—set of
sample papers.

In terms of the Luther condition test, Jiang et al. [5] also report how closely each of the 28 different
cameras approximates the Luther condition by measuring the RMS error in the best linear fit of the
camera sensitivities to the CIE 1931 2◦-observer color matching functions. However, several of these
camera rankings differ significantly from those based on the ∆E measure, which leaves the question as
to which ranking to use and why one over the other.

Another approach is the q factor quality measure introduced by Neugebaur [7]. Let V = [v1, v2, v3]

be the vectors that represent the illuminant-times-color-matching-function product. The space spanned
by these vectors vi(i = 1, 2, 3) is called the human visual subspace (HVSS). If m is a filter, the q factor
can be expressed as

‖Pv(m)‖2

‖m‖2
, (1)

where Pv(m) is the orthogonal projection of m onto the HVSS.
The disadvantage of the q factor is that it is limited to the evaluation of a single filter, and hence is

insufficient for the evaluation of color cameras. Three independent filters each with q(m) = 1 spanning
the HVSS would be perfect; however, the q factor on its own does not indicate whether a set of filters
is independent or not. Thus, a set of three identical filters can be deemed perfect even though they
clearly are not.

The q factor also does not differentiate among imperfect sets of filters. To be able to handle sets of
filters, the q factor was extended to the ν measure by Vora et al. [8], which is defined as:

v(V, M) =
α∑

i=1

λ2
i

(
OTN

)
, (2)

where λi
(
OTN

)
is the ith singular value of

(
OTN

)
, O is an orthonormal basis for the HVSS, and N is an

orthonormal basis for the subspace spanned by the set of filters, M, under a given illuminant (usually
CIE D65). Such an orthonormal basis can be computed by the Gram-Schmidt orthogonalization. This
measure represents the distance between the subspaces.

Another extension of Neugebaur’s q factor to multiple filters is the CQF, color quality factor
(Trussell et al. [9]). The q factor measures the fraction of the camera filter energy that lies within the
HVSS. By reversing the roles of the color matching functions (CMF) and the camera color filters, one
can evaluate the fraction of the energy of each CMF that lies in the space spanned by the camera filters.
The τ measure is the minimum of the three q factors corresponding to the three CMFs and is defined as:

τ(V, M) = min
i
{
‖PM(vi)‖

2

‖vi‖2
}, (3)

Trussell et al. [9] compare Vora’s νmeasure with the τmeasure. They generated a large number of
non-perfect filter sets and plotted their ν and τmeasures versus their average CIE ∆E error. Their plot
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shows that Vora’s νmeasure has a higher correlation with the CIE ∆E error than with the τmeasure
and confirms the advantage of the νmeasure.

Sharma et al. [10] criticize the q factor, ν and τ measures, making the point that all the
aforementioned algorithms are directly or indirectly computing the mean squared error in CIE
XYZ color space, which is known to be perceptually non-uniform. The mean squared error for a set of
filters is given by:

ε(V, M, B) = E
{
‖F (t(r)) −F (t̂(r))‖2

}
, (4)

where t(r), t̂(r), F and E{} denote, respectively: the CIE XYZ tristimulus values of object reflectance r;
the CIE XYZ tristimulus values estimated as a linear transformation (matrix B) of the scanner/camera
measurement plus white noise; a 3 × 3 transformation of tristimulus values; and the expected value
over a set of objects to be scanned. They prove that the error metric with optimal transformation matrix
B becomes:

ξ
(
V, M, Bopt

)
= α(V) − β(V, M). (5)

Hence the ratio:

qF (V, M) =
β(V, M)

α(V)
, (6)

defines a normalized figure of merit (FOM) that provides a unified framework encompassing the
previous measures as a function of the transformation F . They introduce a FOM based on linearized
CIELAB space that aims to account for both the nonlinearities in color perception process and
device noise.

In another study, Quan [11] proposed a unified measure of goodness (UMG) that is basically the
same as Sharma’s FOM but with a more practical imaging noise model. Quan argues that dark and
shot noise are equally important, and that the white noise modeled in Sharma’s FOM is not sufficient
for evaluating sensor sensitivities.

3. Proposed Method

The present paper proposes a method for evaluating color filters that significantly differs from the
methods described above. The new method is based on evaluating the degree of metamer mismatching
between the camera sensitivity functions and those of the eye. Metamer mismatching refers to the
fact that two lights differing in their spectral power distributions (SPD) may match in ‘color’ for one
of them (i.e., lead to equal RGB for the camera or equal LMS cone response) and simultaneously not
match for the other. For a given camera responding with the value RGB when viewing a given surface
reflectance illuminated by a given light, there are many other surface reflectances (from the set of all
theoretical surface reflectance functions) for which the camera will record the identical RGB response.
For this set of metameric (to the camera) reflectances there is a corresponding set of LMS triples.
This set of LMS triples is convex [12] and is referred to as the metamer mismatch body (MMB) [13].
This type of metamer mismatching is often referred to as ‘observer metamerism’ (for a change of
observer) and is analogous to ‘illuminant metamerism’ (for a change of illuminant). The algorithm of
Logvinenko et al. [12] is used in this paper to compute MMBs.

The intuition behind using the degree of metamer mismatching to evaluate color accuracy is that
if a human observer sees a pair of lights as matching, then the camera should too, and vice-versa. The
volume of the MMB is a measure of the degree to which matches by the observer and camera differ.
From the fact that they differ it follows that there does not exist a one-to-one mapping between camera
RGB and LMS.

Previous methods for evaluating MMBs in the context of cameras [14] or light sources [15] have
been based on normalizing the volume of the MMB by the volume of the convex hull of the spectral
curve for the second observer (see Eq. 8 of [16] for a formal definition). The normalization makes the
measure invariant to any linear transformation of the sensitivity functions. However, the MMB can
be very thin in one direction and elongated in other directions, which makes the normalized volume
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an unstable measure. In a case such as that shown in Figure 1, the MMB is wide in two directions
but narrow in the third. This narrowness means that the volume is small even though the degree of
metamer mismatching can be large. To overcome this problem, we propose, instead, to use a measure
of the MMB that considers its shape rather than its volume.
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Figure 1. (a) A very thin metamer mismatch body (MMB) found for the Point Grey Grasshopper2
camera (and similarly for the Hasselblad H2); (b) The same MMB from a different viewing angle.

4. Camera Metamer Mismatch Radii Index

The normalized volume method is attractive in that is based on a theoretical measure that considers
all possible metameric pairs and not a finite sample. To keep the benefits of the MMB approach while
overcoming the problems created by thin MMBs, we propose that the MMB be evaluated in terms of
aspects of its shape rather than its volume. Zhang et al. [13] have shown that the MMB of flat grey
(i.e., uniform 50% spectral reflectance) typifies the MMBs of other colors and so using only this one
case is sufficient for our purposes. Thus, we use flat grey illuminated by D65 and calculate the MMB
that results for a change from camera sensitivities to cone sensitivities. But how can we measure the
dimensions of such a non-geometric shape?

We propose instead to characterize the shape of the MMB in terms of the radii (suitably normalized)
of its equivalent ellipsoid (i.e., an ellipsoid with the same principal moments of inertia as the MMB).
The advantage of evaluating the MMB in terms of these radii in contrast to using the MMB’s volume is
that, even in the case of a thin MMB of small volume for which one of the radii will be small, the other
two radii may still be large. In other words, the other two radii correctly indicate the possibility of
significant metamer mismatching.

Equation (7) shows the general formula for computing the moment of inertia tensor, I, of an object
Q rotating around a given axis:

I =
∫ ∫ ∫

Q
ρ(x, y, z)‖r‖2dV, (7)

where ρ(x, y, z) is the mass density function at each point and r is the radius vector from the points to
the axis of rotation. To calculate the MMB’s equivalent ellipsoid, it is treated as a mass of uniform unit
density (ρ = 1). For any mass, there exists an equivalent ellipsoid having the same moments of inertia
(i.e., characteristics when it is spun) about its principal axes.

An ellipsoid is uniquely characterized by its three principal radii, so they concisely characterize
the dominant aspects of the shape of the MMB. A linear transformation of the sensor functions,
however, will change the principal axes, moments of inertia, and radii of the corresponding equivalent
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ellipsoid. To obtain radii that are independent of linear transformations of the sensor space, the MMB
is normalized relative to the object color solid (OCS) [17] defined by the 2-transition ‘optimal’ color
reflectances. Specifically, the principal moments of the OCS are used to determine the unique linear
transformation, T, that transforms the OCS so that its equivalent ellipsoid becomes the unit sphere.
The details of how T is defined are given in the next section. The same transformation, T, is then
applied to the MMB after which the principal radii of the equivalent ellipsoid of the transformed MMB
are computed.

The Camera Metamer Mismatch Radii Index (CMMRI) is defined (see details below) as the mean
of these three principal radii. The orientation of the MMB is not important, so there is no reason to
weight one of the radii any more highly than the other two. Clearly, measures based on the median or
the maximum of the radii are alternatives, but the mean is used here.

Details of Camera Metamer Mismatch Radii Index (CMMRI) Computation

To compute the CMMRI, first consider the OCS, O, (determined as the convex hull of points on its
boundary [17]) as a rigid body of a unit density and translate O so that its center of mass lies at the
origin. Second, compute the inertia tensor of this centered mass. The diagonal elements of the tensor
are the moments of inertia about the x, y and z axes. The off-diagonal elements are the products of
inertia. Third, determine the principal moments of inertia from its inertia tensor by rotating O such that
all products of inertia become zero.

Eigenvectors of the inertia tensor are ranked in descending order based on the magnitude of their
corresponding eigenvalues. They form a 3 × 3 orthogonal matrix E. Applying ET to the boundary
points of O rotates O to become O∗. The principal axes of O∗ align with the coordinate axes, and all its
products of inertia are zero. The inertia tensor of O∗ is a diagonal 3 × 3 matrix, where the elements
on the diagonal are then the principal moments of inertia Ia, Ib, Ic. Given the principal moments Ia, Ib
and Ic of an ellipsoid of unit density, the ellipsoid’s radii a, b and c can be derived from the following
equations [18]:

Ia =
m
5

(
b2 + c2

)
, (8)

Ib =
m
5

(
c2 + a2

)
, (9)

Ic =
m
5

(
a2 + b2

)
. (10)

In particular, the mass of an ellipsoid of uniform unit density is:

m =
4
3
πabc. (11)

Letting
P = Ib + Ic − Ia, (12)

Q = Ic + Ia − Ib, (13)

R = Ia + Ib − Ic, (14)

and solving for a, b and c yields,

a =
5
√
(15 ∗ P2)/

(
8π

√
QR

)
, (15)

b =
5
√
(15 ∗Q2)/

(
8π
√

PR
)
, (16)

c = 5
√
(15 ∗R2)/

(
8π

√
PQ

)
. (17)
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If we apply the transformation T =


a 0 0
0
0

b 0
0 c


−1

ET to the boundary points of O, its

equivalent ellipsoid will become a unit sphere. Since the columns of E are the eigenvectors ranked in

descending order, a, b and c in the matrix


a 0 0
0
0

b 0
0 c


−1

need to be ranked in descending order

too. Applying T to the boundary points of the MMB rather than O normalizes the MMB relative to O.
Call the normalized MMB, Mnormalized. Now compute α, β and γ as the radii of the equivalent ellipsoid
of Mnormalized (the ellipsoid having the same principal moments of inertia as Mnormalized) in the same
way as the equivalent ellipsoid of the OCS was computed. The CMMRI is then defined as the mean of
these radii:

CMMRI ≡
α+ β+ γ

3
. (18)

As justification for this normalization, suppose a linear transformation matrix A is applied to
the camera’s sensitivity functions. This will result in a new object color solid, A ∗OCS, and metamer
mismatch body, A ∗MMB. The 3 × 3 transformation matrix, A, can be decomposed into rotation and
scaling matrices using singular value decomposition (SVD):

A = U ∗D ∗VT. (19)

VT is a 3 × 3 orthogonal matrix that rotates the OCS, diagonal matrix D scales the principal axes
of the OCS, and U rotates the result. Since rotations U and VT preserve shape, only D will affect
the shapes of the OCS and MBB. Calculating ET given A ∗OCS and applying it to the boundary
points of A ∗OCS results in O∗ with all the rotations being canceled. The second part of matrix T (i.e.,

a 0 0
0
0

b 0
0 c


−1

) then cancels the scaling by converting its equivalent ellipsoid to a sphere. The

scaling by D may change the order of the principal axes of A ∗OCS. For instance, instead of ijk, the
principal axes may become aligned with jik. However, the order of the MMB radii is irrelevant since
the order does not affect their mean.

5. Discussion

5.1. CMMRI Evaluation of 35 Cameras

The sensor sensitivity functions of 28 cameras were measured by Jiang et al. [5]. Prasad et al. [19]
provide the sensor spectral sensitivity functions of an additional 6 cameras (Fujifilm XM1, Nikon
D5200, Olympus EPL6, Samsung NX 2000, Sony A57 and Panasonic GX1). Their 6 CMMRIs along
with those of the previous 28 cameras [5] plus that of an iPhoneX [20] are reported in Figure 2. We also
compute the RMS errors of the best linear fit of the camera sensitivities to the CIE 1931 2◦-observer
CMF and the mean CIEDE00 color difference between the actual XYZs of the 1950 NCS papers [21]
under D65 and the RGB values of the cameras mapped to the XYZs via a best linear fit. Figure 2 is
a combination of three plots of the different metrics. The cameras are sorted by increasing CMMRI.
Figure 3 plots the z-scores for each camera. A camera’s z-score reflects how many standard deviations
it is above or below the mean for the given metric across all the cameras. For example, the SONY
NEX-5N is slightly better than average in terms of the root mean squared error (RMSE), average in
terms of CMMRI, and worse than average in terms of Mean ∆E.
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plotted in Figure 2. Low (including negative) z-scores are preferred.

5.2. Effect of the Illuminant Choice

As described in the previous section, the MMB for a change from camera to cone sensitivities is
calculated for the case of the flat grey reflectance illuminated by D65. However, will the proposed
CMMRI measure change significantly if some other illuminant is used in place of D65? Clearly,
a camera is likely to be used under a variety of different illuminants, so it is important that the
CMMRI not be limited to one particular illuminant. To evaluate the effect of the choice of light on
the results, CMMRIs are calculated using CIE standard illuminants A and F11; and Illuminating
Engineering Society (IES) [22] illuminants #221 (light-emitting diode (LED) Phosphor Blue Pump) and
#317 (Tri-band Gaussian). Their spectral power distributions are plotted in Figure 4. The correlation
coefficients between the CMMRIs obtained using the different illuminants are reported in Table 1.
There is a very strong linear correlation (correlation coefficient 0.97 or greater) between CMMRIs for
the ‘smooth’ illuminants (D65, A, IES 221) (null hypothesis rejected with p-values less than 10−10 at the
5% significance level). There is a lesser correlation for the spiky illuminants (F11 and IES 317) but this
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is of little importance since it makes no sense—no matter what the camera is—to evaluate colors under
spiky spectra, especially spectra with zero power across a wide range of wavelengths.
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Figure 4. Relative spectral power distributions of CIE illuminants A, F11, D65, IES illuminants #221
(LED Phosphor Blue Pump (53)) and #317 (Tri-band Gaussian).

Table 1. Correlation coefficients between the CMMRIs calculated under different illuminants.

Illuminants A D65 F11 IES 221 IES 317

A 1.0 0.97 0.92 0.98 0.86
D65 1.0 0.91 0.97 0.85
F11 1.0 0.96 0.92

IES 221 1.0 0.9
IES 317 1.0

5.3. Effect of the Noise

The CMMRI measures the colorimetric accuracy of a digital color camera. Sharma criticized Vora’s
measure for considering the camera sensors noiseless and proposed combining the filter properties
and noise statistics into the single FOM measure. In particular, he takes white noise into account. The
Gaussian white noise in FOM is assumed to be signal-independent and zero-mean. The noise variance
is determined based on SNR values of 40, 50 and 60 dB. Quan [11] considered this as a drawback of
FOM and proposed using the sum of the dark current and shot noise in the signal covariance matrix
instead of white noise.

The problem with these two approaches is that in dim light the dark current noise will be the
dominant noise factor while in conditions with ample light the shot noise becomes more important.
This means that to select the appropriate camera for a certain application these parameters must
be specified separately. Hence, a single metric combining colorimetric accuracy with noise is not
particularly desirable. Colorimetric accuracy and noise need to be treated as independent variables
when evaluating a camera. The focus here is on colorimetric accuracy.

6. Conclusions

The degree of metamer mismatching resulting from a change from color camera sensors to the
human cones is used here to quantify a camera’s color accuracy. The amount of metamer mismatching
is evaluated in terms of the mean of the principal radii of the metamer mismatch body, normalized
relative to the object color solid. The radii describe the overall shape of the MMB and are more stable
than their volumes. The normalization relative to the OCS makes the method independent of any linear
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transformation of the sensor space. A key advantage of the proposed method over that of Jiang et al. [5]
is that it does not require selecting a finite, and necessarily incomplete, set of test reflectances.
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