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Abstract: Trans-radial prosthesis is a wearable device that intends to help amputees under the elbow
to replace the function of the missing anatomical segment that resembles an actual human hand.
However, there are some challenging aspects faced mainly on the robot hand structural design itself.
Improvements are needed as this is closely related to structure efficiency. This paper proposes a robot
hand structure with improved features (four-bar linkage mechanism) to overcome the deficiency
of using the cable-driven actuated mechanism that leads to less structure durability and inaccurate
motion range. Our proposed robot hand structure also took into account the existing design problems
such as bulky structure, unindividual actuated finger, incomplete fingers and a lack of finger joints
compared to the actual finger in its design. This paper presents the improvements achieved by
applying the proposed design such as the use of a four-bar linkage mechanism instead of using the
cable-driven mechanism, the size of an average human hand, five-fingers with completed joints where
each finger is moved by motor individually, joint protection using a mechanical stopper, detachable
finger structure from the palm frame, a structure that has sufficient durability for everyday use
and an easy to fabricate structure using 3D printing technology. The four-bar linkage mechanism
is the use of the solid linkage that connects the actuator with the structure to allow the structure
to move. The durability was investigated using static analysis simulation. The structural details
and simulation results were validated through motion capture analysis and load test. The motion
analyses towards the 3D printed robot structure show 70–98% similar motion range capability to the
designed structure in the CAD software, and it can withstand up to 1.6 kg load in the simulation and
the real test. The improved robot hand structure with optimum durability for prosthetic uses was
successfully developed.

Keywords: 3D printed; four-bar linkage mechanism; prosthetic hand; robot hand structure;
static analysis; motion capture analysis
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1. Introduction

Malaysia is a developing country with about 32.6 million population in 2019 [1], and the population
is estimated to reach up to approximately 38 million in 2040. The World Health Organization (WHO)
stated that about 0.5% of the population of a developing country have a disability that requires a
prosthesis/orthosis and related rehabilitation services [2]. This will be more than 200 thousand people
in 2040. This estimation indicates that research in prosthetic device development is of paramount
importance to support the increasing demand for improved and affordable upper and lower extremity
prostheses. In the literature, there are many studies on the development of a prosthesis device,
especially the robotic hand that resembles the human hand and its function. The human hand is a
complicated part in a human body to be duplicated due to its delicate and complex structure that
enables a wide variety of functions, including gross and fine motor movements. In order to achieve
the goal, the structural design has become the critical perspective that needs to be taken into account.
It is because it majorly affects the robot hand movement capability; the durability and variation of the
postures can be done by the robot hand for daily life use.

There are some sophisticated commercial robot hands available in the market today, such as
Vincent Hand by Vincent Systems, iLimb by Touch Bionics, iLimb Pulse by Touch Bionics, Bebionic
hand range by RSL Steeper, and Michelangelo Hand by Otto Bock. However, the structures of these
robot hands do not meet the human hand characteristics due to the lack of the finger joint used,
where the distal interphalangeal joint is excluded from the finger structure [3].

Recently, the structural design of the robot hand using the wired-driven mechanism as the
movement mechanism became popular among researchers [4–9]. However, it is found that the use
of wire or flexible linkage in this approach gives inaccurate joint movement due to the mechanical
properties of the cable. Its shape is effortless to change, and its length often extends every time it is
used due to the elasticity of wires [10,11]. Moreover, some researchers have released a robot hand with
better features, such as five fingers, that uses a four-bar linkage mechanism. Still, the fingers do not
individually move, and the dimensions are larger than the average size of the human hand [12,13].
We also found a design that has similar characteristics as the one mentioned above, but the structure of
the robot hand was built with a metal material [14]. However, the structure of the robot is weighty
as compared to that of a plastic material and is thus not suitable to be used as the material for a
prosthetic hand. Over the years, there has been advancement in terms of the use of new plastics and
other materials such as carbon fiber in the construction of hand prosthetic structures and 3D printing
technology is also in line with this demand [5,7,9,15]. Furthermore, detachable finger structure and
mechanical stopper are crucial features, which are useful for finger replacement and joint protection
purposes, respectively. Table 1 shows the existing robot hand devices available in both commercial and
research fields, and their mechanical characteristics.
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Table 1. General characteristic of the existing robot hands.

Reference Complete
Finger (5)

Complete
Joint (14)

Cable-Driven
Actuator

Individual
Actuated
Finger

Average
Human
Hand Size

3D Printed
Structure

Detachable
Finger
Structure

Mechanical
Stopper

Commercial device

Vincent hand [16] X X X X X X X X
iLimb hand [17] X X X X X X X X
iLimb pulse [17] X X X X X X X X
Bebionic hand [18] X X X X X X X X
Bebionic V2 [18] X X X X X X X X
Michelanglelo
hand [19] X X X X X X X X

Research prototype

Prototype A [4] X X X X X X X X
Prototype B [5] X X X X X X X X
Prototype C [6] X X X X X X X X
Prototype D [8] X X X X X X X X
Prototype E [9] X X X X X X X X
Prototype F [10] X X X X X X X X
Prototype G [11] X X X X X X X X
Prototype H [12] X X X X X X X X
Gifu hand II [13] X X X X X X X X
Robonaut hand [20] X X X X X X X X
Prototype I [21] X X X X X X X X
Prototype J [22] X X X X X X X X
Gifu hand III [23] X X X X X X X X
Prototype K [24] X X X X X X X X
Prototype L [25] X X X X X X X X
Tact Hand [26] X X X X X X X X

This paper outlines the improvements made to some features of the robot hand structure that
have been improved from existing robot hand structural designs. Moreover, our proposed robot
structure was built using 3D printing technology, as suggested by previous studies. Additionally,
the structure of the robot being built was determined to ensure similarity in terms of mobility and
durability, as specified in the structural design.

2. Materials and Methods

The development of the robot hand structure’s overall process consisted of three main stages:
planning, design and simulation, and structure fabrication [27]. In the planning stage, the general
characteristic information of structural design was collected, and this consisted of two phases:
design behaviour and design specification. The design behaviour phase was the primary consideration
in the development of the structural design of the robot hand, focusing on the actual hand behaviour
such as the number of joints and movement capabilities, etc. In the design specification phase,
structure limitation was investigated and improved features were identified and applied to the
structural design.

The design and simulation stage was the detailed design stage whereby the most suitable structural
elements in terms of the proportions, dimensions, and other specifications and estimates based on actual
adult human hands were determined. Furthermore, the finalized structural design was visualised
and constructed in a three-dimensional drawing using CAD software. Then, the durability of the
finger structural design was simulated to calculate the safety factor of the structure through the static
analysis technique.

The robot hand structure was constructed using 3D printing technology (UPBOX+ 3D Printer)
with Acrylonitrile Butadiene Styrene (ABS) thermoplastic material in the fabrication. The fabricated
hand structure’s movement capability and durability were then measured in a motion capture analysis
and load test, respectively. The evaluations were done towards the fabricated robot structure to
validate the durability obtained in the simulation and the movement capability similarity towards the
designated range of motion (ROM) was obtained in the design stage.
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2.1. Planning

2.1.1. Design Behavior

The actual human hand consists of five fingers: the thumb, index, middle, ring and baby fingers.
Each finger has three bones: Distal Phalanx (DP), Intermediate Phalanx (IP) and Proximal Phalanx (PP),
except the thumb has the DP and PP only. The connections between the bones are known as joints.
They are the Distal Interphalangeal (DIP), Proximal Interphalangeal (PIP) and Metacarpophalangeal
(MCP), respectively, as illustrated in Figure 1. The total number of joints is about 14 joints excluding
the wrist joint, and these joints allow the hand to be bent when the muscle is contracted. The fingers
are individually actuated by the muscles, which allow them to move as required. There are two muscle
types known as the flexor and extensor. The flexor is the muscle used to reduce the angle between
the bones on both sides of the joint, such as bending the fingers, and is also known as the flexion.
The extensor muscle is used to increase the angle between the bone components and the motion,
also known as extension. Either the contraction of the flexor or extensor will enable a variety of hand
postures such the opened hand palm motion, Grasping: Thumb–4 fingers, Thumb–3 fingers, Thumb–2
fingers, Thumb–1 finger, and Prismatic prehensile: Sphere object, small object and large cylinder object
and many more [28], as shown in Figure 2.
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Figure 1. The anatomy of the human right-hand: 1 = Distal Interphalangeal, 2 = Proximal
Interphalangeal, and 3 = Metacarpophalangeal.
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Figure 2. The hand postures for (a) opened hand palm, grasping: (b) Thumb–4 fingers, (c) Thumb–3
fingers, (d) Thumb–2 fingers, (e) Thumb–1 finger, and Prismatic prehensile: (f) Sphere object and
(g) Prismatic prehensile, (h) Large cylinder object.

2.1.2. Design Specification

This section shows the specification of the structural design of the robot hand, including the
limitation and improved features applied to the design, as listed below:

• Using the solid connector that connects the actuator and the robot structure to move the joint
called planar four-bar linkage mechanism. Planar quadrilateral four-bar linkage are constructed
from four links connected in a loop by four degrees of freedom. A link that grounds and connects
the input and output links called the fixed link. The input and the output links are called the
grounded links and it also can be classified into several classes such crank or rocker link. The crank
link revolves around the grounded joint at about 360◦ while rocker link rotates the grounded
joint at a limited range of angles. The other link, which connects the input and output links,
and opposes the fixed link, is called the coupler. This link allows the motion generated from the
input link to be transferred to the output link. In the robot design, both input and the output links
are classified as rocker and are known as the double-rocker type. There are three double-rocker
mechanisms needed in a complete finger, which are connected in series to connect four structure
parts called the actuator—structure, DP, IP, and PP. These four structure parts are combined to
become a complete finger structure [29]. The extension and flexion motion are represented in a
four bar mechanism diagram and a stick diagram as shown in Figures 3 and 4. In this research,
each of the finger joints are dependent on each other, thus their phalanxes motion are correlated
for each finger. This dependent finger joint concept is used to reduce the complexity and size of
the system due to each finger only requiring an actuator to move against the system, whereas
independent joints require multiple actuators for each finger. This concept is widely used in all
of the robot hand designs as listed in Table 1. The four-bar linkage under-actuated concept was
suggested to improve the drawbacks of the cable-driven under-actuated mechanism in terms of
its motion range accuracy capability and durability [10,11].
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• The bone length is a significant part that affects the finger structure size. The adult human hand is
used as a reference to the structural design of the robot hand structure [5]. The length of the finger
bones details, as shown in Table 2. The index, middle, ring, and baby finger are assumed to have
a similar bone length.

Table 2. The length of the finger bones.

Bone
Fingers

Thumb Index, Middle, Ring & Baby

DP 2.325 cm 2.325 cm
IP - 2.400 cm
PP 3.960 cm 3.960 cm
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• The motion range of the finger joints is shown in Table 3. The index, middle, ring, and baby
fingers are assumed to have a similar motion range.

Table 3. The motion range of the finger bones.

Bone
Fingers

Thumb Index, Middle, Ring & Baby

DIP 85◦ 90◦

PIP - 105◦

MCP 90◦ 85◦

• The abduction and adduction motion of the actual finger, as shown in Figure 5, is excluded from
the robot hand structure design.
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2.2. Design

2.2.1. Structural Design

The structural design was constructed by applying the four-bar linkage mechanism and all the
improved features listed in Table 1, such five fingers, complete finger joint, individual actuated finger,
follows the average human hand size, applies the mechanical stopper, detachable finger structure
and 3D printed structure. The design was drawn by using the Autodesk Inventor Professional 2018
software. The structural design of the robot hand structure was as shown in Figure 6. It consisted of
five fingers, and an actuator was allocated for each finger to move the finger individually. The actuators
for the index, middle, ring, and baby fingers were located at the back of the robot hand structure,
as shown in Figure 6a. The actuator for the thumb was located at the front of the robot hand structure,
as shown in Figure 6b.
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(b) front view.

Each of the fingers had an actuator as shown in Figure 7. The actuator shaft was coupled with the
finger using a solid coupler linkage which was to allow each finger move independently according
to its motor shaft motion. The actuator used in this design was a servo motor due to its capability
to control the motion angle. The extension and flexion motion of the finger structure are shown in
Figure 7a,b, respectively. Solid coupler linkage was used to overcome the cable driven actuator in
terms of the motion accuracy and durability issues.
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Figure 7. Finger actuation system: (a) extension and (b) flexion.

In order to limit the motion range of the finger joint, the mechanical stopper feature was applied
to the structural design. There were two mechanical stoppers, namely I and II, as shown in Figure 8.
The mechanical stoppers were also used to protect the structure from being damaged when the excess
load was exerted on it and excessive joint motion drawn by the actuator. In addition, the structural
design for each finger had three joints per finger except the thumb that had two joints only. Therefore,
the total number of joints in this robot hand was 14.
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The mechanical stopper I was used to limit the pull motion done by the actuator. The motion would
be stopped when the finger structure hit the palm structure as shown in Figure 9a. The mechanical
stopper II was used to limit the maximum and the minimum motion exerted on the fingertip by
allowing the pin to move along the designated curve hole as shown in Figure 9b.Sensors 2020, 20, x 10 of 23 
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Figure 9. The mechanical stopper of the finger structure (a) mechanical stopper I; (b) mechanical 

stopper II. 
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Figure 10. The thumb of the robot hand tilted 45° to the left. 

Figure 9. The mechanical stopper of the finger structure (a) mechanical stopper I; (b) mechanical
stopper II.

Figure 10 shows the thumb tilted 45◦ to the left, and perpendicular to the hand palm. This feature
was applied to the structural design to improve the grip of the grasping posture. The detachable finger
structure allowed the finger to be attached and detached from the palm structure to allow the user to
replace the finger easily as shown in Figure 11a,b, respectively.
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2.2.2. Electrical and Electronic System

The electrical and electronic hardware configuration of the system and the specification of the
components are shown as in Figure 12 and Table 4, respectively. The Myoware electromyography (EMG)
sensor was used to detect the muscular activity of the user. The muscular activity (flexion and extension
motion) was detected and used to control the hand robot system. Besides, four units of infra-red sensors
were used as additional sensors to detect the presence of objects on the palm. In addition, there were five
units of the mini servo motors to operate the five-finger structure independently. The mini servo motors
were connected in parallel to the microcontroller. Thus, the output signal from the microcontroller
for each motor could be generated simultaneously. The signals could be monitored on the personal
computer (PC) monitor by connecting the USB port of the microcontroller to the PC. The power supply
of the system was supplied from the power grid, and it was connected to the power converter to
distribute the 5 V and 4 A of the power supply to the microcontroller and the mini servo motors.

2.3. Structural Design Evaluation

Static Analysis

Static analysis is the durability evaluation, which calculates the safety factor of the structure on
the specific area by using the Autodesk Inventor Professional 2018. It is the ratio between the structure
strength and the force with direction exerted on it. The colour region can be observed, and it is used to
indicate whether the structure can withstand the static load or not. The green yellowish to red colour
region is a dangerous condition (safety factor lower than 1), while the blue to green colour region
represents that the structure can withstand the load (safety factor greater than 1).
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Table 4. The electrical and electronic components of the system.

Component Specification

Myoware Electromyography sensor
Operating Voltage: 2.9 V–5.7 V
Operating Current: 9 Ma–14 mA
Output mode: EMG envelope and raw signal

S-LFS-4-4 ways Infrared (IR) Sensor
S-LFS-4-4 ways Infra-red sensor
Operating voltage: 3.3 V–5 V
Operating current: >1 A

Arduino Microcontroller

Microcontroller: ATmega328
Operating Voltage: 5 V
Operating Current: 1 A

Input Voltage (Recommended): 7 V–12 V
Input Voltage: 5 V–20 V
Digital I/O pins: 14 (6 PWM, Output)
Analog I/O pins: 6
DC Current per I/O pin: 40 mA
DC Current for 3.3 V: 50 mA
Clock Speed: 16 MHz
Flash Memory: 32 KB
SRAM: 2 KB
EEPROM: 1 KB

Mini Servo Motor

Operating Voltage: 4 V–7.2 V
Operating Current: 220 ± 50 mA
Speed Operation: 0.1 s/60◦ at 4.8 V
Torque: 1.8 Kg*cm at 4.8 V
ROM: 180◦

Power Converter

Input DC: 3.0 V–35 V
Output voltage: 1.5 V–35 V (Input must greater
1.5 V than output)
Output current: 2 A max
Conversion efficiency: 92%
Minimum drop voltage: 1.5 V

Power grid and adapter

ACDC converter
Operating Voltage: 240 V 50 Hz
Output Voltage: 12VDC
Output Current: 2 A
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Static load measurement is a crucial process that needs to be carried out in this kind of study.
In the static load test, the load that can withstand the finger structure is investigated. Durability of
the structure is one of the important aspects that must be take into account in order to develop a long
lasting and safe device. Furthermore, a durable finger structure will be able to allow the application
of high torque actuator in the robot system without getting any structure damage, and whether the
actuator can be changed depends on the needs of the application, so the grasping force may be varied
depending on the torque of the actuator used.

The material of the structure used in the experiment was the Acrylonitrile Butadiene Styrene (ABS)
thermoplastic. The experiment was set up as shown in Figure 13. The finger structure was faced upward,
and the load was applied incrementally by 100 g on it with a downward direction at the tip of the
finger, which was about 98.8 mm from the structure constraint. The strength properties such the yield
strength and tensile strength of the ABS material were 2.901× 103 psi and 4.293× 103 psi, respectively.
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2.4. Structure Fabrication

3D Printing Technology Method

Specification of the 3D Printed Product

Table 5 lists the parameters that have been determined for the fabrication process of the 3D printed
robot hand structure components.

Table 5. The specification of the parameters for the 3D printed product.

Specification Quantity

Type of printer Fused deposition modelling
Infill percentage 30%
Shell thickness Ten layers
Infill type Rectilinear
Infill line thickness (Nozzle hole diameter) 0.2 mm

Resolution
X = 0.2 mm
Y = 0.2 mm
Z = 0.1 mm

Filament ink 1.75 mm UP Fila Acrylonitrile Butadiene Styrene (ABS)

2.5. 3D Printed Structure Evaluation

2.5.1. Motion Capture Analysis

The motion capture analysis is a method that can be used to measure and analyse the motion
of actual human body parts accurately. This method is found to be able to give the most accurate
result as compared to that of other existing methods [30]. However, this method has never been
employed to measure and analyse robot hand motion. The experiment based on the motion capture
analysis was conducted and the results were used to measure the similarity achieved by the constructed
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structure and the structural design. The maximum and minimum angles of each joint were measured,
and their difference was calculated to obtain the motion range achieved by the joints. The structure
was controlled to perform opened hand palm and the grasping posture for 2 s alternately, for three
times for one samples. Five samples/sets were recorded with a sampling rate of 100 Hz by using
3D Venus software. The equipment used for this experiment was eight units of OptiTrack Flex 13
motion tracking cameras, a unit of Basler acA640-120gs synchronising camera and nine units of passive
reflective markers. The reflective markers were placed as shown in Figure 14, and the experimental
setup is shown in Figure 15. The structure was placed in the middle of the workspace and all the
cameras were facing it.
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2.5.2. Load Test

The load test is a method employed in this study to measure the durability of the actual structure,
which is used to validate the simulation result obtained in Static analysis. However, the test that was
done on the 3D printed robot hand built with Nylon material was used in the previous study [31],
while the Acrylonitrile Butadiene Styrene (ABS) thermoplastic material was used in this experiment.
An adjustable load hung on the tip of the finger structure, which is about 98.88 mm apart from the
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structure constraint. The structure faced upward, and the load was exerted downward, as shown in
Figure 16. The load was increased incrementally by 100 g during the experiment until the structure
started to break. Three samples with similar fabrication process were tested in the experiment to get an
accurate result in the durability test.
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3. Results and Discussion

3.1. Static Analysis

From the observation of the simulation result obtained, Pin (A) of the joint coupling connector
(JCC) is found to be the weakest component of the robot structure with a static analysis value, as shown
in Figure 17. Any components of the structure that reached the safety factor lower than 1 are shown to
be the weakest component. A safety level below 1 is an indicator of a structure starting to break.
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Figure 17. Simulation result of the static analysis towards Pin (A) of the joint coupling connector (JCC)
of the robot structure made of Acrylonitrile Butadiene Styrene (ABS) material.
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The graph in Figure 18 illustrates the safety factor value of the Pin (A) of the JCC of robot hand
structure of the ABS material against the load weight with an increment of 0.1 kg. In contrast, the safety
factor of the Pin (A) of JCC is decreased exponentially along the graph. As a result of static analysis,
the structure made of ABS started to break at 1.4 kg of the load.
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3.2. 3D Printed Robot Hand Structure

The components of the finger structure are made up of 3D printed parts (using ABS material) as
body structures and some steel parts such as bolts and nuts as joint connectors, as shown in Figure 19.
Figure 20 shows the complete prototype of the robot hand; an integration of the structure and electrical
and electronics parts.Sensors 2020, 20, x 17 of 23 
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3.3. Load Test

Figure 21 depicts a noticeable change in Pin (A) of JCC when the pin on the structure made of
ABS begins to bend at an average load weight equivalent to 1633 g. The experiment was extended,
where additional loads were added up until the structure started to break. As a result, the ABS structure
only withstood up to 2.7333 kg as shown in Table 6. The results obtained from the load test are close to
the results obtained in the simulation (Static analysis), and the differences between the two are not
significant; the load test results are approximately 200 g more than the simulated result.Sensors 2020, 20, x 18 of 23 
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Table 6. The load test results obtained from the three samples.

Material ABS

Sample No. 1 2 3

Load when Pin (A) (kg) started to bend 1.600 1.700 1.600
Average load (kg) 1.633

Load when the structure started to break 2.700 2.800 2.700
Average load 2.7333

3.4. Motion Capture Analysis

This analysis was performed to ensure that the movement capabilities of the 3D printed robot
hand structure reached the optimum equilibrium with the expected range of motion as determined
in the structural design. However, a limitation was identified during this experiment in which the
reflective markers could not be affixed to all fingers except for the thumb and index finger due to
insufficient space on the other finger structures. Thus, the reflective markers were only placed on the
index finger and the thumb. As the index finger shares the same and identical structure as the middle,
ring and baby fingers, these fingers were assumed to be similar to the index fingers. By referring to
Table 7, the ROM similarity achieved is about 72.62–98.43%. The lowest ROM similarity occurred at
the PIP joint of the index finger, whereas the highest ROM similarity occurred at the DIP joint of the
finger. However, the similarity percentage of the ROM motion range obtained is still satisfactory.

Table 7. The range of motion (ROM) similarity between the fabricated finger joint and the
structural design.

Joints
Thumb

Minimum Angle
(Measured)

Maximum Angle
(Measured)

Calculated ROM Expected ROM Similarity

DIP 76.1969◦ 159.8606◦ 83.6637◦ 85◦ 98.43%
PIP NA NA NA NA NA

MCP 95.2821◦ 172.8265◦ 77.5444◦ 90◦ 86.16%

Index

Minimum angle
(Measured)

Maximum angle
(Measured)

Calculated ROM Expected ROM Similarity

DIP 90.6170◦ 165.0229◦ 74.4059◦ 90◦ 82.67%
PIP 101.5059◦ 177.7636◦ 76.2577◦ 110◦ 72.62%

MCP 99.4107◦ 173.351◦ 73.9410◦ 85◦ 86.70%

3.5. Individual Controlled of the Finger

This experiment investigated the capability of the fingers where each finger was controlled
individually. In this experiment the robot hand was tested to grasp a small and a large cylindrical
object in order to demontrate that the finger can be controlled individually as shown in Figures 22
and 23.
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(d) All fingers movement and (e) Opened hand palm.

4. Conclusions

The 3D printed robot hand prototype was developed, with improved features of the structural
design, such as a four-bar linkage mechanism, the same size as an average human hand, five-fingers
with completed joints where each finger was moved by a motor individually, joint protection using a
mechanical stopper, and a detachable finger structure from the palm frame features. The movement
capability and durability were validated through motion capture analysis, static analysis, and load test.
A similarity of 70–98% between the 3D design and the built robot structure was achieved, and it could
withstand up to 1.6 kg load in both the simulation and the real test.

5. Future Works

The robot hand design with arm socket feature shown in Figure 24 is designated for the trans-radial
amputation type. The arm socket structure is used to attach the robot structure to the patient arm.
The arm socket size is designed based on the patient’s arm and can be produced easily with 3D printing
technology. The robot hand can be controlled by attaching the EMG sensor on the skin near to the
targeted muscles to control the hand motion. Besides, the controller box is used to store the electrical
hardware including the battery (mobile power source). Due to these features, the mobile robot hand
can be used for prosthetic use.
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