
sensors

Article

A Certificateless Aggregate Arbitrated Signature
Scheme for IoT Environments

Dae-Hwi Lee 1 , Kangbin Yim 2 and Im-Yeong Lee 1,*
1 Department of Computer Science and Engineering, Soonchunhyang University, Asan 31538, Korea;

leedh527@sch.ac.kr
2 Department of Information Security Engineering, Soonchunhyang University, Asan 31538, Korea;

yim@sch.ac.kr
* Correspondence: imylee@sch.ac.kr; Tel.: +82-41-530-1323

Received: 16 June 2020; Accepted: 15 July 2020; Published: 17 July 2020
����������
�������

Abstract: The Internet of Things (IoT) environment consists of numerous devices. In general,
IoT devices communicate with each other to exchange data, or connect to the Internet through a
gateway to provide IoT services. Most IoT devices participating in the IoT service are lightweight
devices, in which the existing cryptographic algorithm cannot be applied to provide security, so a
more lightweight security algorithm must be applied. Cryptographic technologies to lighten and
provide efficiency for IoT environments are currently being studied a lot. In particular, it is necessary
to provide efficiency for computation at a gateway, a point where many devices are connected.
Additionally, as many devices are connected, data authentication and integrity should be fully
considered at the same time, and thus digital signature schemes have been proposed. Among the
recently studied signature algorithms, the certificateless signature (CLS) based on certificateless public
key cryptography (CL-PKC) provides efficiency compared to existing public key-based signatures.
However, in CLS, security threats, such as public key replacement attacks and signature forgery by
the malicious key generation center (KGC), may occur. In this paper, we propose a new signature
scheme using CL-PKC in generating and verifying the signature of a message in an IoT environment.
The proposed scheme is a certificateless aggregate arbitrated signature, and the gateway aggregates
the signatures of messages generated by the device group to reduce the size of the entire signature.
In addition, it is designed to be safe from security threats by solving the problems caused by public
key replacement attacks and malicious KGC, and adding arbitrated signatures of the gateway to
strengthen non-repudiation.

Keywords: IoT; certificateless signature; aggregate signature; arbitrated signature; public key
replace attack

1. Introduction

The Internet of things (IoT) means an environment or technology in which heterogeneous devices
are connected to the Internet. The devices participating in the IoT environment can be connected
to the Internet to provide various services to users. Thus, the services provided to users through
such environments and technologies can also be called IoT. Servers process data collected by “things”
(end devices), such as sensors and actuators, and users are provided with services through their
smartphones. The most common IoT service structures are things and gateways, storage or servers,
and consumers. It consists of things that collect data or perform commands, a gateway that is an
intermediate that transmits data collected from things, a storage or server that stores and analyzes
data in the form of data desired by users, and consumers who use it. Recently, with the advent of an
IoT-based hyper-connected society, technological innovation is ongoing in various fields. In particular,

Sensors 2020, 20, 3983; doi:10.3390/s20143983 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-8536-4262
http://dx.doi.org/10.3390/s20143983
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/14/3983?type=check_update&version=2

Sensors 2020, 20, 3983 2 of 21

as the fifth-genereation (5G) telecommunications standard has recently attracted attention, the number
of IoT devices connected to the Internet will increase rapidly, and various services can be provided [1–4].

With the development of communication technology, weight reduction and mass production
of devices became possible. Since then, following smart homes, more devices are evolving into
large-scale IoT services, such as smart buildings, factories, and cities that connect to the Internet.
Objects participating in the IoT service environment are each connected to the Internet to communicate
with other objects. The feature of the IoT environment is that all devices need to be connected to the
Internet, so small devices, such as electrical outlets and gas valves in smart homes, need to include
communication capabilities. Therefore, it is composed of ultra-light and low-power technologies,
unlike the existing environment. It is also difficult to apply existing public key infrastructure (PKI)
security technologies to IoT devices, so it is necessary to use lightweight cryptographic algorithms that
work well in this new environment of ultra-light and low-power devices [5,6].

In particular, a technology for providing integrity for messages in an IoT environment is
essential [7,8]. Figure 1 shows a scenario for the data signing and verification process in an IoT
environment. Sensors create a message, create a signature, and place them in cloud-like storage
through a gateway. Thereafter, the consumer (i.e., the verifier) who needs the message can secure
the integrity of that message through the message and the signature. Since the IoT environment
is composed of a wireless communication network, it is possible to provide a secure service only
by providing integrity for commands sent by a user to a device or for data collected from a device.
Of course, since the IoT is a lightweight environment, the signature must also be lightweight to be
applied to that IoT environment. Therefore, in this paper, we analyze the certificateless (CL) signature
(CLS) and CL aggregate signature (CL-AS), a signature scheme using the lightweight CL public key
cryptography (PKC, hence CL-PKC), which is suitable for IoT environments. In addition, we propose a
CL aggregate arbitrated signature (AAS, hence CL-AAS) that applies the gateway arbitrated signature
technique to enhance its non-repudiation and the aggregate signature technique to enhance its efficiency.
In particular, it is designed to be safe against the forgery of signatures, including against public key
replacement attacks that occur in CL-PKC-based cryptographic technologies, and to be suitable for IoT
environments by avoiding the use of a large number of computational pairing operations.

Figure 1. Data signing and verification scenario in an Internet of things (IoT) environment.

The contributions to the proposed scheme in this paper are as follows.

• Analyze existing CL-AS schemes and design scenarios for secure public key replacement and
malicious KGC attacks.

• In addition to the existing security requirements, the concept of the arbitrated signature
for the non-repudiation function is applied considering the security of the aggregator that
aggregates signatures.

• Aggregate signature is performed on messages and signatures of IoT devices, and the arbitrated
signature of the gateway is also aggregated in the aggregate signature of IoT devices. Through
this, we propose a secure and efficient CL-AAS scheme compared to the existing schemes.

More details on CL-PKC and security threats are covered in Section 2 on related work. Section 3
introduces the security requirements for each item in the cryptosystem, and Section 4 introduces the

Sensors 2020, 20, 3983 3 of 21

proposed scheme that satisfies those security requirements. Section 5 gives a comparative analysis of
the proposed scheme, with Section 6 giving the paper’s conclusions.

2. Background and Related Work

In this section, we consider background and related work, before suggesting the CL-PKC-based
CL-AAS scheme to satisfy security requirements and provide efficiency in an IoT environment.
Even before wireless sensor networks had become common, research had been conducted on digital
signatures to provide message integrity. Some cryptography schemes have been used recently in
IoT environments, such as the CLS and CL-AS used in the signature process proposed in this paper;
we now examine these, including their security threats.

2.1. Elliptic Curve Cryptography and ECDLP

The elliptic curve cryptography (ECC) is a public key cryptography based on the elliptic curve
theory, and provides a similar level of security while using a shorter key than the existing public key
cryptography. Therefore, it is applied to various cryptographic algorithms used in IoT environments.
The definition of the elliptic curve cipher is as follows.

Let Fq denote a finite field with a large prime order q. Let Eq denote an elliptic curve on Fq, which is
specified by the equation: y2 = x3 + ax + b(mod p), where a, b ∈ Fq and

(
4a3 + 27b2

)
mod p , 0 . Let the

notation O denote a point of infinity, form the additive cyclic group G of the elliptic curve under the
computation of point addition T = U + V for U, V ∈ G defined on the basis of a chord-and-tangent
rule. Suppose P is a generator of the cyclic group G, and the order of G is q. Let x ∈ Z∗q, and scalar
multiplication is defined by the equation: x× P = (P + P + . . .+ P) (x times).

The ECC was designed based on the elliptic curve discrete logarithm problem (ECDLP). Given two
random points P, Q ∈ G, the ECDLP is to find the integer x ∈ Z∗q, where Q = x× P.

2.2. Digital Signature

Digital signature is a security technology in which a signature has been changed into a digital
form; it serves as proof of the identity of a digital electronic document’s author. Digital signature
is a cryptographic technology created by PKI-based public key cryptography (PKC) technology,
starting with the authentication of messages [9–11]. Authentication can be divided into that of the user
and that of the message. The former confirms the identity of a valid user and is a basic element for
ensuring the responsibility of users. The latter may, for instance, provide assurance that the received
message has not been tampered with. Digital signature consists of a signature using a private key, a
verification using a public key, and provides a non-repudiation function, to ensure that it was sent
from the sender. For digital signatures, the following five items must be satisfied:

• Signer authentication: The signer of the electronic document must be verifiable;
• Unforgeable: The electronic document cannot be forged;
• Non-reusable: The electronic signature cannot be used as a signature for another document;
• Unmodifiable: The content of the electronic document cannot be changed; and
• Non-repudiation: The signature of the electronic document cannot be denied.

Digital signatures began with PKC and various other types have been developed, including blind,
arbitrated, group, multi-, and one-time signatures, and a variety of AS schemes that aggregate multiple
signatures into one [9,11–18].

2.3. Certificateless PKC (CL-PKC)

There is a problem with PKC in that it is difficult to apply in an environment requiring ultra-light
and low-power devices, such as the IoT. In particular, PKI, upon which PKC is based, uses a certificate,
to verify the public key for authentication of the user, and the user’s public key. For this reason,

Sensors 2020, 20, 3983 4 of 21

the computational overhead is exceptionally large for managing keys, signatures, and certificates and
their distribution, verification, and revocation.

To solve these problems of PKC, identity-based cryptography (IBC) was developed [19]. Since IBC
uses a public key based on a known user’s identifier, it can solve the problems of key distribution,
certificate verification, and memory overhead by eliminating the public key verification process.
However, identity-based encryption has a problem with key escrow [20,21]. In IBC, there is a key
generation center (KGC) that receives a user’s identifier to generate a private key based on it and
returns this to the user. The direct generation of the user’s private key in this way can expose the user’s
key to the KGC afterwards: The key escrow problem.

One proposed scheme to solve the key escrow problem in IBC is CL-PKC [22], in which the KGC
does not generate all public and private keys but only partially generates them and returns them to
the user. This “partial” key is called a partial secret key (PSK), and the user creates his or her full key
pair using this. Since the full key pair is not generated by the KGC but by the user, CL-PKC can solve
the key escrow problem, uses a smaller key than the existing PKI, and does not incur the overhead
for public key verification; it is thus suitable for ultra-light and low-power environments. Research
has been conducted on various aspects of CL-PKC, such as authentication and key agreement [23,24],
signatures [25,26], and encryption [27,28]. The main difference between the structures of CL-PKC and
its predecessor, PKC, is that there is no certificate for public key verification in the former and, in this
sense, the term “certificateless” is used.

2.4. Certificateless Aggregate Signature (CL-AS)

Before explaining CL-AS, we describe CLS, which is the basis for it. CLS is a signature technique
using CL-PKC: The signature for a message is generated using the private key of the signer, generated
via CL-PKC, and the verifier verifies it using the public key and identifier of the signer and the public
key of the KGC. CLS and CL-PKC are currently active research topics [22,25,26].

CLS is a scheme for signing a single message, whereas CL-AS is a scheme for creating an aggregated
signature for multiple messages. If there are multiple senders, the signature on the generated messages
will generate the signature of each sender. That is, N signatures are generated for N messages generated
by N senders. The verifier must perform verification of N messages individually, using N public keys
of N senders. Thus, the number of individual verifications will, likewise, be N. CL-AS aggregates these
N signatures into one signature. N public keys are used for verification, but the advantage of being
able to verify all of the signatures for N messages in one step is that only one verification process is
required. This can reduce the computational overhead on the verifier side and, on the storage side
(messages and signatures must be stored), only one signature, not N of them, needs to be stored,
thereby reducing memory overhead. The CL-AS scheme was proposed based on a pairing operation,
but, recently, pairing-free schemes to reduce the number of operations have been proposed [29–34].
Figure 2 shows the structure of CL-AS.

The basic CL-AS schemes include a CL-PKC-based signature that receives a PSK after registering
a user with a KGC. In general, the CL-based AS technique consists of the following eight steps.
Among them, the setup and partial-private-key-extract steps are performed by the KGC, and the
set-secret-value and set-public-key steps are performed by the user who generates the key. Thereafter,
the signer who wants to generate the signature does so for the message with his key through the CL-sign
step and can verify the message and signature through the CL-verify step. Signatures generated from
multiple signers are sent to the aggregator through the CL-aggregate step, which aggregates them into
one signature, and then on to the verifier. The verifier can acquire and verify messages through the
CL-aggregate-verify step.

• Setup: The KGC generates public parameters and a master secret key using a security parameter
as input.

Sensors 2020, 20, 3983 5 of 21

• Partial-private-key-extract: The KGC generates the user’s partial private key and partial public key
using the public parameters, master secret key, and the user’s personal identification information,
and delivers these keys to the user.

• Set-secret-value: The user creates his own secret information and secret key by inputting public
parameters and user identification information.

• Set-public-key: The user sets the public key by entering the public parameters, his partial public
key, and secret information.

• CL-sign: Among the users who generated the key, the user who wants to sign the message
becomes a signer, and signs the message using his private key. The message and its signature are
sent to the verifier.

• CL-verify: The verifier verifies the integrity of individual messages and signatures using the
signer’s public key.

• CL-aggregate: The aggregator, which receives the messages and signatures from multiple signers,
aggregates these signatures into a single one for multiple messages, to reduce their overall size,
and outputs this.

• CL-aggregate-verify: Upon receiving a message and an aggregated signature, the verifier can
verify the signature using the signer’s public key, verify the user who created the signature,
and verify the integrity of the message.

Figure 2. Structure of the general certificateless aggregate signature process. KGC: key generation center.

2.5. Security Threat of CL-AS

CL-AS has several advantages, but it also has problems with the forgery of messages and signatures.
The public key used in CL-PKC does not use a certificate, so the user’s identifier and public key
cannot be authenticated. Because of this, CLS has a weaker non-repudiation function than PKI, and a
malicious attacker can conduct an attack in which another user’s public key is replaced. This CLS
public key replacement attack is a method of forging the signature transmitted by device A to device B
and replacing the public key of user A with a public key generated by the attacker to verify that forged
signature. This is an attack that occurs because it is not possible to authenticate whether the public key,
which can bypass the verification of the signature generated using A’s private key, is that of A or that
of the attacker. It can be verified that the signature using the public key of device A, but the function of
non-repudiation to verify the signature is actually signed by A is weak. The act of being able to verify
by replacing the public key itself is an infringement of non-repudiation, and in order to prevent this,
CL-PKC must be considered for a public key replacement attack. Additionally, unlike IBC, there is no
problem of key escrow for the device’s secret key; however another problem may also occur: The KGC
can generate the partial key of A and forge user A’s signature using a partial key generated by itself.

Therefore, the security model for CL-AS can be roughly divided into two types of attack
model [29–34]. Each model is of a game by an attacker (AI or AII) communicating with a challenger to
successfully forge a signature. AI has the ability to arbitrarily replace the public key of a legitimate
user without the system’s master key. AII cannot replace the public key of users but knows the master
secret key of the KGC. Thus, each of them can perform different types of attacks.

Sensors 2020, 20, 3983 6 of 21

2.6. Analysis of Existing CL-AS Schemes

CLS was first proposed by Al-Riyami et al. in 2003 [21]. Based on this, the recently proposed
CL-AS has had many implementations published that are more efficient because they do not use
pairing operations. Table 1 summarizes some of these variants and their security threats.

Qu et al. [29] proposed an efficient CL-AS scheme that does not use a pairing operation.
Most commonly, CL-AS structures are based on the elliptic curve discrete logarithm problem (ECDLP).
This scheme is one such and adds the user-generated key and PSK to the signature. However, since the
identifier is not bound to the public key, there is a risk that the public key can be replaced.

Deng el al. [30] proposed a CL-AS scheme that prevents forgery of signatures by adding two kinds
of signatures in one signature statement, by adding an RSA signature along with an ECDLP-based
Schnorr signature. However, the size of the signature statement for the message is exceptionally large,
and the signature verification overhead is disadvantageous because two types of signatures must be
verified. In particular, the former signature is based on an exponential operation, unlike the latter
signature, which uses an elliptic curve, so it has a large overhead compared to other schemes.

Cui et al. [31] proposed a scheme to prevent the transmission of a forged signature due to the
replacement of the public key by adding a timestamp when sending the signature and message.
However, since the identifier is not actually bound to the public key, it does not provide direct defense
against a public key replacement attack.

Du et al. [32] proposed a scheme that was safe against public key replacement attacks by binding
an identifier and a verification key to a public key, but there is a risk of key leakage and subsequent
signature forgery.

Gayathri et al. [33] proposed a scheme to aggregate public parameters for signature verification.
Previous schemes required N public parameters to verify N signatures, but Gayathri et al. could reduce
the memory overhead by using a scheme that reduces the verification parameters. However, there is a
risk of a public key replacement attack because the identifier is not bound to the public key.

Zhao et al. [34] proposed a scheme to prevent signature forgery by adding a value for verifying
the signature directly to the overall transmitted value of the message and the aggregated signature.
However, the message that is transmitted is exceptionally large, and there is still a risk of a public key
replacement attack.

The above schemes suggest CL-AS for various environments. The security analysis and efficiency
comparison of existing schemes are summarized in Sections 5 and 6. In general, the risk of public
key replacement attack occurs when the user, identifier, and verifiable value are not bound to the
PSK received via the KGC. In other words, the signature can be verified with the public key of the
device A, but it occurs when the public key used to verify the signature cannot verify whether the
public key generated by the object with the actual identifier A is correct. This means that the existing
problem is related to non-repudiation, and this problem can be solved if the public key can verify the
identity of the identifier A. To solve this, in recent CL-PKC schemes, the partial key is received from
the KGC first, and the user does not generate the full key but, instead, first generates the verification
key pair and sends the identifier and public key for verification to the KGC. Using this, the KGC
binds the user’s identifier, the public key, for verification, and the verification tag to the PSK, and
then enables verification of the user’s public key [35,36]. Additionally, in the existing CL-AS schemes,
the aggregator that aggregates the signatures of the signer’s messages serves solely to aggregate these
signatures. The aggregator can be one of the signers or a third entity, depending on the environment.
If it is a third entity, the problem of trusting it may occur, which can make the AS unreliable. Therefore,
it is necessary that the aggregator in CL-AS has non-repudiation.

3. Security Requirements

• Integrity: The most important requirement for digital signatures, including CLSs, is integrity.
In particular, in the IoT environment, since data are transmitted and received using a wireless
communication network, it is particularly important to ensure integrity by signing important

Sensors 2020, 20, 3983 7 of 21

messages. In the existing CL-AS schemes, since the aggregator only aggregates the signature,
the entity that verifies the signer’s signature first is that aggregator. The integrity of the aggregate
signature itself must be ensured, as it can also be an attack point.

• Prevention of key leakage: The reason for performing the signature is to ensure the integrity of the
transmitted message, and the signer’s signature key must not be leaked to the outside or be possible
to derive via public parameters. If an attacker can derive or steal the signature key, they can forge
the signature on messages generated by themselves, reducing the reliability of the IoT service,
and create and transmit a malicious message that the attacker can have verified legitimately.

• Unforgeability: An attack on CL-PKC-based signatures is an attack with counterfeit signatures.
As described in Section 2.4, forgery of signatures can occur through the public key replacement
attack of adversary AI or the generation of the signer’s partial key using the KGC master key of
adversary AII. For adversary AI, even if public key replacement is performed, it should not be
possible to generate a valid signature. If the verifier could remove the private key portion of the
signature using the replaced public key, the attack would succeed. In particular, since a public key
certificate is not used in CL-PKC-based cryptographic protocols, it is essential to verify that the
public key used for signature verification is the actual signer’s public key, and the user’s identifier
and public key cannot be authenticated. So, the non-repudiation function must be strengthened.
For adversary AII, it should not be possible to generate a signature using only the signer’s partial
key. This means that both the PSK and the signer-generated key must be used when generating
the signature. In addition, even if the signature is generated using both, the signature can be
forged, so the verifier should not be able to verify the forged signature normally.

4. Proposed Scheme

In this paper, we propose CL-AAS, a scheme with an aggregated and arbitrated signature, for IoT
environments. Figure 3 shows the proposed scenario. In the IoT environment, sensor devices act as
signers to generate messages and directly generate signatures. Sensor devices gather to form a sensor
cluster, and each cluster has a gateway. A message is generated from the sensor device, and each
device signs the message through the private key generated by CL-PKC and sends it to the gateway,
which simultaneously acts as an arbitrator and an aggregator.

As a feature of the proposed scheme, it is possible to strengthen the non-repudiation of the
signature of the sensor device through the arbitrated signature of the gateway, and reduce both the size
of the signature stored in storage and the verification overhead of the verifier through the AS. In the
existing CLS scheme [37,38], an entity, such as an external time server or “helper”, synchronizes with
the signer to strengthen non-repudiation for the signature. In the IoT scenario proposed in this paper,
the messages generated by the sensor device are aggregated and transmitted through the gateway,
so we do not use other external entities but try to strengthen the non-repudiation by using the gateway
itself. In other words, the gateway does not merely act as an aggregator for combining multiple
signatures into a single one but also makes it an arbitrated signature.

The system parameters of the proposed scheme are as follows.

• ID∗: Identifier of entity;
• E: Elliptic curve on group G of prime order q;
• P: Generator of cyclic group G;
• pu∗, sv∗: Verification the public key and private key pair of entity;
• PU∗, PR∗: Full public key and private key pair of entity;
• msk: Master key of KGC;
• PPub: Public key of KGC (PPub = msk× P);
• D∗ = (R∗, z∗): Partial key of the entity;

• H1(·): Cryptographic hash function
(
{0, 1}∗ ×G×G→ Z∗q

)
;

• H2(·): Cryptographic hash function
(
{0, 1}∗ × {0, 1}∗ ×G×G→ Z∗q

)
; and

Sensors 2020, 20, 3983 8 of 21

• H3(·): Cryptographic hash function
(
{0, 1}∗ × {0, 1}∗ ×Z∗q ×G×G→ Z∗q

)
.

The proposed CL-AAS scheme consists of four phases: Setup, individual signing and verifying,
aggregated arbitrated signing, and aggregated verifying. In the setup phase, the KGC sets the public
parameters and distributes the participants’ partial keys. In the individual signing and verifying
phase, the participants (such as devices) use their partial keys to generate individual signatures and
the aggregator verifies them. In the aggregated arbitrated signing phase, the messages and signatures
of all the signer devices are turned into one signature and the gateway adds its arbitrated signature.

Figure 3. Scenario and advantages of the proposed scheme. KGC: key generation center.

Finally, in the aggregate verify phase, the signatures of the devices and the signature of the
gateway’s arbitrated signature are verified at once.

Each phase of the proposed scheme is modified from the eight algorithms described in Section 2.3.
The set-secret-value and set-public-key algorithms are replaced with set-device-key and set-full-key
ones, respectively. This is because the verification key pair of the user is generated first, not the
partial key. Additionally, the AS (aggregated signature) and verification algorithms are replaced by
CL-AA-sign to generate the AAS (aggregate arbitrated signature) and CL-AA-verify for aggregate
verification. Therefore, this proposed scheme consists of the following eight algorithms for the KGC;
A; gateway, G, acting as an aggregator and arbitrator; and verifier, V:

• Setup (k): The KGC creates public parameters and a master secret key with a security parameter,
k, as input.

• Set-device-key (params, IDA): A generates a verification key pair from the public parameters,
params, and A’s public identifier, IDA.

• Partial-private-key-extract (params, msk, IDS, puS): The KGC uses params, the master secret key,
msk, IDA, and the verification public key, puA, to generate the partial key, DA, of A and transmits
it to A.

• Set-full-key (params, IDA, DA, puA, svA): A sets its full key pair, PUA, PRA, using params,
DA received from the KGC, and the verification key pair, svA, puA.

• CL-sign (mA, IDA, PRA, PUA): A becomes a signer, and signs a single message, mA, using its
private key, PRA. Then, mA and its signature are transmitted to G.

Sensors 2020, 20, 3983 9 of 21

• CL-verify (mA, σA, IDA, PUA): Verification of mA and its signature, σA, is performed using IDA
and the public key, PUA. In the proposed scheme, the gateway performs verification, and the
signatures of all received messages are verified through this process.

• CL-AA-sign (m1, . . . , mn, σ1, . . . , σn, ID1, . . . , IDn, IDG, PU1, . . . , PUn): G, which has received
messages and signatures from multiple devices, reduces the size of the signature. The signature is
aggregated through the process, and an arbitrated signature is added: This algorithm outputs
one signature that has been aggregated for multiple messages. To reiterate, G creates a single
aggregated signature for all the signatures of the devices.

• CL-AA-verify (m1, . . . , mn, σAS, ID1, . . . , IDn, IDG, PU1, . . . , PUn): When V receives the message
and its aggregated signature from G, the signature and public keys can be used to verify the
signature and, thus, the integrity of the message.

Figure 4 shows the four phases and eight algorithms of the proposed scheme.

Figure 4. The relationship between the phases and algorithms of the proposed scheme. CL: certificateless,
AA: aggregate arbitrated.

4.1. Setup Phase

In the setup phase, KGC first performs the setup algorithm using k (the security parameter) to
generate the initial parameters, msk (the master secret key), and a master public key, PPub. The KGC is
responsible for generating the partial keys of the devices after generating params (the public parameters).
Subsequently, a verification key pair for each device is generated through the set-device-key algorithm;
then, a partial key is generated for each by performing the partial-private-key-extract algorithm by
sending information to the KGC. A device that receives a PSK generates its own full key pair through
the set-full-key algorithm. Figure 5 shows the sequence diagram of the setup phase.

Sensors 2020, 20, 3983 10 of 21

Figure 5. Sequence diagram of setup phase.

Step 1. The KGC selects k and generates msk. After that, Ppub = msk×P and params are generated
as follows, through the setup(k) algorithm:

params =
{
G, q, E, P, Ppub, H1, H2, H3

}
. (1)

Step 2. A, which needs to receive a partial key from KGC, first creates its own verification public
and private key pair, puA, svA, through the set-device-key (params, ID) algorithm. A selects xA ∈R Z∗q
and computes puA, svA as follows:

puA = xA × P, svA = xA. (2)

Step 3. A sends IDA and puA (its verification public key) to the KGC, which performs the
partial-private-key-extract (params, msk, IDA, puA) algorithm to generate DA (the partial key). The KGC
selects rA ∈R Z∗q and calculates the result of Equation (3). Then, the result of Equation (4) is calculated to
generate a signature for the public key. The KGC transmits DA = (RA, zA) to A over a secure channel:

RA = rA × P, (3)

zA = rA + msk×H1(IDA, puA, RA). (4)

Step 4. A, which has received DA, creates PRA (its full private key) and PUA (its full public key)
through set-full-key (params, IDA, DA, puA, svA) as follows:

ZA = zA × P, (5)

PRA = svA + zA, PUA = (puA, RA, ZA). (6)

4.2. Individual Signing and Verifying Phase

The individual signing and verifying phase use the CL-sign and CL-verify algorithms. A, which needs
to generate a signature, becomes a signer and signs a message using its own key. Figure 6 shows the
sequence diagram of the individual signing and verifying phase.

Sensors 2020, 20, 3983 11 of 21

Figure 6. Sequence diagram of individual signing and verifying phase.

Step 1. A selects an ephemeral secret key, tA ∈R Z∗q, and calculates an ephemeral public key,
TA = tA × P.

Step 2. A needs to send a signed message to the arbitrator, G, to send the message and signature to
V, to communicate. A calculates hA and τA as follows, to generate the signature for mA (the message):

hA = H2(mA, IDA, TA, puA), (7)

τA = tA + hA × PRA. (8)

Step 3. A sends mA, σA = (τA, TA) (the signature for mA), and IDA to G.
Step 4. G receives σA, IDA, and mA and performs the process of verifying σA. G calculates h′A as in

Equation (9), using the information from the message and that has been published by A, and verifies
the validity of τA via Equation (10). If the validity of τA is verified, G completes verification of the
individual message and its signature for A. G performs the signature not only for A but also for
the messages and signatures of the other devices that will form the aggregate of signatures, as in
Equations (9) and (10):

h′A = H2(mA, IDA, TA, puA), (9)

τA × P = TA + h′A × (puA + ZA). (10)

The validity of the verified contents can be confirmed as follows:

τA × P= (tA + hA × PRA) × P

= tA × P + hA × PRA × P

= TA + hA × (puA + ZA).

(11)

4.3. Aggregated Arbitrated Signing Phase

In the aggregated arbitrated signing phase, G aggregates signatures on messages and signatures
received from N devices, and creates an arbitrated signature that has been verified, and adds it to
the aggregated signature. An arbitrated signature is not simply a signature but is also the means of
confirming that G has completed verification for the messages and signatures received from each
included device; it is generated using G’s own private key. Thus, an aggregated signature is generated,
including the devices’ signatures and the gateway-generated arbitrated signature. The aggregated
arbitrated signing phase includes the CL-AA-sign algorithm. Figure 7 shows the sequence diagram of
the aggregated arbitrated signing phase.

Sensors 2020, 20, 3983 12 of 21

Figure 7. Sequence diagram of aggregated arbitrated signing phase.

Step 1. Each device sends the content of the message and signature created by itself (mi, IDi, and
σi, where these relate to the ith device) to G, for which G collected and verified each signature during
the signing and verifying phase.

Step 2. G selects an ephemeral secret key, tG ∈R Z∗q, and generates an ephemeral public key,
TG = tG × P, to generate the signature of the collected message, m = (m1, . . . , mN).

Step 3. G calculates the following to perform aggregation on the actual signature, τi, constituting
the signature, σi, and the verification value, Ti:

τ =

 N∑
t=1

τt

, T =

 N∑
t=1

Tt

. (12)

Step 4. G calculates the results of Equations (13) and (14) using its private key, PRG, to generate
the elements of the arbitrated signature to indicate that it has completed verification of each message.
Then, the results of Equation (15) are calculated to generate τAS and TAS:

hG = H3(m, IDG, τ, T, puG), (13)

τG = tG + hG × PRG, (14)

τAS = τ+ τG, TAS = T + TG. (15)

Step 5. Finally, G creates an AAS (aggregate arbitrated signature), σAS = (τAS, TAS), that aggregates
the arbitrated signature of G and all the signatures of the devices.

Step 6. To verify σAS,
{
m, (ID1, . . . , IDN, IDG), σAS, (PU1, . . . , PUN, PUG)

}
must be used. PUi is the

published public key of the ith device. Therefore, the gateway then sends
{
m, (ID1, . . . , IDN, IDG), σAS

}
to V (the verifier requesting the message).

4.4. Aggregated Verifying Phase

In the aggregated verifying phase, V verifies the signature and message received from G,
and verifies the signer’s signature and G’s arbitrated signature together. During this process, the initial
signer and the arbitrator are verified simultaneously, strengthening the non-repudiation function.

Sensors 2020, 20, 3983 13 of 21

This involves the final algorithm, CL-AA-verify, of the eight in this scheme. Figure 8 shows the
sequence diagram of the aggregated verifying phase.

Figure 8. Sequence diagram of aggregated verifying phase.

Step 1. G can store the generated σAS and the message in a repository or send it directly to V.
V performing the verification receives

{
m, (ID1, . . . , IDN, IDG), σAS

}
from G and confirms the identifiers

of the devices to obtain the public keys, PUi = (pui, Ri, Zi).
Step 2. V calculates the value h′G for the arbitrated signature verification of G as follows:

h′G = H3(m, IDG, τ, T, puG). (16)

Step 3. V can verify the validity of σAS by calculating the result of Equation (17). If valid, V has
completed verification of the N signer devices and G’s arbitrated signature in one step:

τAS × P = TAS + hG × (puG + ZG) +
∑N

t=1
ht × (put + Zt). (17)

The validity of the verified contents can be confirmed as follows:

τAS × P= (τ1 × P + . . . τN × P + τG × P)

= (t1 + h1 × PR1) × P + . . .+ (tN + hN × PRN) × P + (tG + hG × PRG) × P

= (T1 + h1 × (pu1 + Z1)) + . . .+ (TN + hN × (puN + ZN) + (TG + hG × (puG + ZG)

= (T1 + . . .+ TN + TG) + (h1 × (pu1 + Z1)) + . . .+ (hN × (puN + ZN)) + (hG × (puG + ZG))

= TAS + hG × (puG + ZG) +
∑N

t=1
ht × (put + Zt).

(18)

5. Security Analysis

This section describes how the proposed scheme satisfies the security requirements presented in
Section 3, including the requirements regarding integrity, key leakage, and forgery.

5.1. Integrity

In CLS or CL-AS, an existing CL-PKC-based signature scheme, a Schnorr signature, is used. In the
proposed scheme, the individual signature value, τA in σA, of A is in the same form as the Schnorr
signature, and the tag for verifying this is TA. τA is created using A’s private key, PRA, and the tag’s
secret value (its ephemeral secret key), tA, and can be verified through PUA. Here, the value that is

Sensors 2020, 20, 3983 14 of 21

actually verified is the content of the hashed value, hA. The values hashed from hA are the message,
mA; the identifier, IDA, of the device, A, that was the signer; the verification public key, puA; and the
verification tag, TA. Eventually, hA is signed using PRA to provide the integrity of the message and
can be verified using puA and the partial public key, ZA, which are elements of PUA for verification.
Therefore, it indicates that the signature, σA, was generated by A and was not forged in “the middle”,
between A and V.

In addition, the aggregated signature, σAS, generated by the gateway, G, using the individual
signatures is added to the τi and Ti of the signers who generated the message, and to τG and TG,
the arbitrated signature values generated by G with the private key, PRG. G’s signature takes the form
of a Schnorr signature, just like for the messages generated by the other devices, and can be verified in
the same way. However, there is one difference: The content of the arbitrated signature being verified,
hG, is the message set, m, and the identifier, IDG, of G and the aggregated devices’ signature elements,
τ and T. G can ultimately provide the integrity by signing the signature set itself of messages received
from devices via σAS, and can be verified using the public key, PUG, of G. If the message of the device
is forged, the verification of the individual signature or AAS will fail, and only the normal message can
be verified.

5.2. Prevention of Key Leakage

The signing key (full private key) and verification key (full public key) used in the proposed
scheme are CL-PKC-based key pairs generated by the KGC and the device itself. It is assumed that
when a device is first issued a partial key by the KGC, this is transmitted through a secure channel.
In addition, all other messages and signatures that are transmitted are transmitted through a public
channel. In the individual signing and verifying phase, the message sent to the public channel is the
entire message, mA, IDA, and σA, and if they can derive the signing key, the attacker will succeed in
leaking the key. In the aggregated arbitrated signing phase, the entire message transmitted to the
public channel is m, (ID1, . . . , IDN, IDG), and σAS, and if σAS can derive the signing key, the key can be
successfully leaked.

First, σA is composed of τA = tA + hA × PRA and TA = tA × P. The public key, PUA, of A consists
of puA, RA, and ZA, the values used in the verification of σA are puA and ZA, and RA is used to verify
the validity of the PSK, zA, generated by the KGC. Furthermore, it can be verified that the public key,
ZA, was made by A and the KGC.

The signature is verified as in Equation (10) and, even if the attacker knows the public key and
other published information, obtaining the signature key from the signature is the same as the difficulty
of solving the ECDLP in (puA + ZA) = (svA + zA)× P. Therefore, it is difficult for an attacker to derive
a public key using disclosed information. In particular, in the proposed method, since each value in the
form of the signature key, (svA + zA), is used as a single value by adding them together, rather than
independently using svA and zA as in many existing schemes, this helps against leaking keys: There
are fewer threats. Similarly, in σAS, calculating the private keys of each signature using τAS and TAS is
the same as solving the ECDLP problem, so it is difficult to leak or derive the signature key from the
proposed scheme.

5.3. Unforgeability

As described in Section 3, the attack that can occur in a CL-PKC-based signature protocol is, in fact,
an attack on unforgeability. A signature protocol is insecure if a tampered signature on any message
can be verified (as if it were legitimate). Attacks on unforgeability can be divided into those by AI and
those by AII.

5.3.1. Unforgeability from Adversary AI

The adversary AI has the ability to replace the public keys of other users with one generated by
themselves. Due to the safety of the ECDLP, a private key corresponding to the public key of a user

Sensors 2020, 20, 3983 15 of 21

cannot be generated, but validation can be bypassed by replacing the public key alone. The public
key replacement attack is mainly possible in existing schemes because the partial key, DA = (RA, zA),
generated by the KGC is not related to the public key of the device. In short, it is a CL scheme, and thus
lacks a certificate that can authenticate the public key of the signing device. By using this, it is possible
to bypass the verification process of the signature, so that the forged signature will be verified by the
verifier as if it were proper.

To solve the public key replacement attack, since it is a CL-PKC-based protocol (i.e., without a
certificate), the binding between the public key and the identifier must be strengthened. When verifying
a public key or verifying a signature signed with a private key, it is only necessary to confirm whether
the user has used a public key or a signature made with a key created using a partial key received
from the KGC. In summary, the partial public key, RA, in the partial key, DA, received from device A
from the KGC is a tag for verifying the PSK, zA, and if the public key, ZA, of A created using zA can
be confirmed to belong to A, it can be said to be safe against key replacement attacks. In generating
zA, the value hashed from Equation (4) to H1 later serves to verify the public key. If the public key
is replaced, it is said that it is safe against public key replacement attacks if the verification of the
signature cannot be bypassed using the public key replaced thus. On the other hand, when A’s public
key, PUA, is replaced by the attacker’s public key, PU′A, the public key replacement attack is successful
if the verifier successfully verifies the forged signature, σ′A, for the message, mA.

In the proposed scheme, the form of the individual signature is σA = (τA, TA) and the message can
be verified normally using the forged public key, PU′A =

(
pu′A, R′A, Z′A

)
, associated with the identifier of

AI. However, it should not be possible to generate the forged signature, σ′A =
(
τ′A, T′A

)
. The signature

generation for mA is according to Equation (8) and, since AI cannot know tA and PRA, a valid τA
cannot be generated. The signature verification is according to Equation (10) and can be generated
using Equation (9) and PUA. The published information is TA, puA, and RA and an attacker who
wants to forge it can perform an attack by replacing the public key with pu′A, R′A, and Z′A, and the
attacker will try to bypass the verification of hA by generating the same value as pu′A + Z′A = h−1

A × P.
However, the verifier can confirm that the public key Z′A has not been properly generated using
Z′A = R′A + H1(IDA, puA, RA) × Ppub, which can be verified using the public key of the KGC. As for
the σAS = (τAS, TAS), which is an AAS (aggregate arbitrated signature), it has the same form as the
individual signature in Equation (14), so the verifier can correctly verify this even if AI replaces G’s
public key. Therefore, AI cannot forge the signature.

5.3.2. Unforgeability from Adversary AII

The adversary AII is a malicious KGC, and since they know msk, they have the ability to know
all the partial keys of the participating devices. If AII wants to forge A’s signature, they will try to
generate one from the partial key, since they lack the ability to replace the public key.

The partial key of A is DA = (RA, zA), where RA is a partial public key and zA is a PSK. The signature
generation for the message, mA, is via Equation (8) and, since the full private key, PRA, generated by
the signer, A, is used for this, the KGC cannot forge a signature using only zA. It should be impossible
to forge the signer’s signature using only external public parameters, including in this AII scenario.

Sensors 2020, 20, 3983 16 of 21

Table 1. Security analysis of various certificateless aggregate signature schemes, including the proposed one.

Qu et al. [29] Deng et al. [30] Cui et al. [31] Du et al. [32] Gayathri et al. [33] Zhao et al. [34] Proposed Scheme

Key leakage attack O
Cannot derive key

X
Can derive key with
public parameters

O
Cannot derive key

X
Can derive key with
public parameters

O
Cannot derive key

O
Cannot derive key

O
Cannot derive key

Forgery with public
key replacement (AI)

X
No identifier binding

to public key

X
No identifier binding

to signature

X
No identifier binding

to public key

O
Binds identifier to

public key

X
No identifier binding

to public key

X
No identifier binding

to public key

O
Binds identifier to

public key

Forgery with KGC
master key (AII)

X
Can forge due to

public key
replacement

O
Uses two types of

signature

X
Can forge due to

public key
replacement

X
Can forge due to key

leakage

O
Uses two types of

signature

O
Sends signature
verification tag

directly

O
Uses

gateway-arbitrated
signature

O (X): scheme is strong (weak) in this category, KGC: key generation center.

Sensors 2020, 20, 3983 17 of 21

In particular, in the proposed scheme, since the arbitrated signature is performed through a
gateway called the arbitrator, it is possible to strengthen non-repudiation. The arbitrated signatures
involve this arbitrator, between the signer and the verifier, to protect the validity of the signature and
prevent repudiation of the signer; if the gateway performs its arbitrated signature properly, it can
prevent forgery of the signature.

6. Efficiency Analysis

Another important requirement in the IoT environment is efficiency. In this environment, in which
a large number of heterogeneous devices participate in communication, efficiency of the protocol is
required so that it can operate even for devices with low computational performance. This includes
reducing the amount of computation, and this section compares the existing schemes with the execution
time of the proposed CL-AAS.

The simulation environment constructed in this paper is an Intel i5-4690 processor with 3.50 GHz,
16 GB memory, and Windows 10 operating system. Additionally, to provide security strength like
1024-bit RSA and ECC group, it uses the Koblitz elliptic curve y2 = x3 + ax + b(mod p), where a = 1
and b is a 163-bit random prime defined on F2163 . Table 2 is a comparison of the execution times with
cryptographic operation. The proposed CL-AAS scheme provides computational efficiency compared
to the existing [29–34] schemes, as shown in Figure 9, by a graph showing the total execution time
according to the number of signatures being aggregated, and Table 3. As the number of messages
and signatures being aggregated increases, the total times for the aggregated signature and for the
verification process increase in direct proportion.

Table 2. Comparison of execution times with cryptographic operation.

Notations Description Run Time (ms)

TEM The execution time of scalar multiplication operation in ECC 0.4420
TEA The execution time of point addition operation in ECC 0.0018
Th The execution time of hash operation 0.0082
TE The execution time of scalar exponential operation 5.3100

Figure 9. Comparison of execution time between proposed and existing schemes.

Sensors 2020, 20, 3983 18 of 21

Table 3. Efficiency analysis of the proposed scheme.

Qu et al. [29] Deng et al. [30] Cui et al. [31] Du et al. [32] Gayathri et al. [33] Zhao et al. [34] Proposed Scheme

Form of signature σi = (Ui, si) σi = (Ti, Bi, ri, Ri) σi = (Ri, Si) σi = (Si, vi) σi = (Y1i, ui, wi) σi = (Ri,φi) σi = (τi, Ti)
Signing operation 1H + 2EA + 2EM 1H + 2E + 1EA + 3EM H + EA + 2EM 2H + 2EA + 3EM 3H + 3EA + 5EM 2H + 2EA + 2EM 1H + 2EA + 2EM

Verifying operation 2EA + 3EM E + 1EA + 4EM 2H + 2EA + 3EM 3H + 3EA + 3EM 2H + 3EA + 5EM 2H + 3EA + 4EM 1H + 2EA + 2EM
Aggregating

operation nEA 2nEA nEA nEA 3n(EA + EM) nEA 1H + (2n + 3)EA +
2EM

Aggregated verifying
operation

n(1H + 4EA + 2EM) +
1EA + 1EM

n(1H + 2EA + 2EM + E)+
1EM

n(2H + 2EA + 1EM) +
2EM + 2EA

n(3H + 4EA + 3EM) +
2EA + 1EM

n(1H + 1EA + 2EM) +
2EA + 1EM

n(2H + 4EA + 4EM) +
3EA + 2EM

n(1H + 2EA + 1EM) +
1H + 3EA + 1EM

Total operations
(n + 1)H +

(5n + 4)EA +
(2n + 6)EM

(n + 1)H + (n + 2)E +
(4n + 2)EA +
(2n + 8)EM

(2n + 3)H +
(3n + 5)EA +
(n + 7)EM

(3n + 5)H +
(5n + 7)EA +
(3n + 7)EM

(n + 5)H +
(4n + 8)EA +
(5n + 11)EM

(2n + 4)H +
(5n + 8)EA +
(4n + 8)EM

(n + 3)H +
(4n + 10)EA +
(n + 7)EM

Total operation time
(ms, n = 100) 92.7874 635.1078 49.5076 139.1076 227.4574 182.9232 48.8766

H: One-way hash function, E: Modular exponential operation. EA: Elliptic curve addition operation, EM: Elliptic curve scalar multiple operation. See references for definitions of variables
in the forms of the signatures.

Sensors 2020, 20, 3983 19 of 21

In this proposed scheme, without using a pairing operation, compared with other pairing-free
schemes, elliptic-curve cryptography-based addition and multiplication operations are efficiently
applied to reduce the total operation time. In addition, since the tag, T, for verification is also aggregated
for all the messages together, only the part of the public key that the verifier actually acquires and
directly calculates is included. Because of this, storage, such as that of a gateway or server, can save
space and the verification overhead for the verifier is reduced.

7. Conclusions

To maintain the integrity of messages transmitted in an increasingly large IoT service environment,
digital signatures for messages are required. Digital signature protocols have been studied for a
long time, and many studies are underway to make them suitable for such environments. They are
being studied to satisfy various security requirements while respecting the “lightweight” nature of the
IoT environment. Although research has been conducted to apply lightweight signature techniques,
such as CL-AS, to IoT environments, solutions are needed for the problems of CL-PKC-based schemes,
specifically, public key replacement attacks and malicious KGCs. In particular, it is necessary to study
solutions that satisfy the requirements for both security and computational efficiency. Therefore,
this paper proposes an efficient secure CL-AAS scheme.

The proposed scheme provides the integrity of messages transmitted in an IoT environment using
the concepts of an arbitrated signature and an AS (aggregated signature). The role of the AS is to
provide efficiency, and that of the arbitrated signature is to enhance non-repudiation by aggregating
the arbitrated signatures of a gateway and its devices together. Through this, in this paper, we
designed a secure scenario against existing security threats, and considered the security of the gateway,
which is an intermediate to transmit data. The proposed scheme is designed to satisfy various security
requirements (Section 3), such as such as public key replacement attack, malicious KGC attack, and key
leakage. In the existing schemes, as shown in Table 1, there were problems with key leakage and
forgery of the message and signature via attacks either by public key replacement or a malicious KGC.
To solve this, non-repudiation was strengthened by applying the arbitrated signature of the gateway,
and it is possible to provide efficiency by applying an AS to reduce the memory overhead and the
verification overhead of the verifier.

In the future, not only as a simple signer and verifier but also in a more complex, grouped,
and device-involved environments, the provision of a suitable security scheme is needed. The IoT
service may transmit sensitive data, such as personal privacy, depending on the environment. In the
future, research on practical security technologies to provide confidentiality and integrity for sensitive
data should be conducted.

Author Contributions: Conceptualization, D.-H.L., K.Y. and I.-Y.L.; data investigation, D.-H.L.; analysis and
validation, D.-H.L., K.Y. and I.-Y.L.; writing—original draft, D.-H.L.; writing—review and editing, D.-H.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the MSIT (Ministry of Science, ICT), Korea, under the ITRC (Information
Technology Research Center) support program (IITP-2020-0-00403) supervised by the IITP (Institute for Information
& Communications Technology Promotion). This research was also supported by the National Research Foundation
of Korea (NRF) grant funded by the MSIT (NRF-2018R1A4A1025632).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Li, S.; Da Xu, L.; Zhao, S. 5G Internet of Things: A survey. J. Ind. Inf. Integr. 2018, 10, 1–9. [CrossRef]
2. Yassein, M.B.; Aljawarneh, S.; Al-Sadi, A. Challenges and features of IoT communications in 5G networks.

In Proceedings of the 2017 International Conference on Electrical and Computing Technologies and
Applications (ICECTA), Ras Al Khaimah, UAE, 21–23 November 2017.

3. Griffiths, F.; Ooi, M. The fourth industrial revolution-Industry 4.0 and IoT [Trends in Future I&M]. IEEE Instrum.
Meas. Mag. 2018, 21, 29–43. [CrossRef]

http://dx.doi.org/10.1016/j.jii.2018.01.005
http://dx.doi.org/10.1109/MIM.2018.8573590

Sensors 2020, 20, 3983 20 of 21

4. Sadeghi, A.-R.; Wachsmann, C.; Waidner, M. Security and privacy challenges in industrial internet of things.
In Proceedings of the 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), San Francisco,
CA, USA, 8–12 June 2015.

5. Khajenasiri, I.; Estebsari, A.; Verhelst, M.; Gielen, G. A review on Internet of Things solutions for intelligent
energy control in buildings for smart city applications. Energy Procedia 2017, 111, 770–779. [CrossRef]

6. Khatoun, R.; Zeadally, S. Cybersecurity and Privacy Solutions in Smart Cities. IEEE Commun. Mag. 2017,
55, 51–59. [CrossRef]

7. Mahmoud, R.; Yousuf, T.; Aloul, F.; Zualkernan, I. Internet of things (IoT) security: Current status, challenges
and prospective measures. In Proceedings of the 2015 10th International Conference for Internet Technology
and Secured Transactions (ICITST), London, UK, 14–16 December 2015.

8. Zhang, Z.K.; Cho, M.C.Y.; Wang, C.W.; Hsu, C.W.; Chen, C.K.; Shieh, S. IoT security: Ongoing challenges
and research opportunities. In Proceedings of the 2014 IEEE 7th international conference on service-oriented
computing and applications, Matsue, Japan, 17–19 November 2014.

9. Diffie, W.; Hellman, M. New directions in cryptography. IEEE Trans. Inf. Theory 1976, 22, 644–654. [CrossRef]
10. Goldwasser, S.; Micali, S.; Rivest, R.L. A Digital Signature Scheme Secure Against Adaptive Chosen-Message

Attacks. SIAM J. Comput. 1988, 17, 281–308. [CrossRef]
11. Schnorr, C.P. Efficient identification and signatures for smart cards. In Proceedings of the Conference on the

Theory and Application of Cryptology, Daejeon, Korea, 6–10 December 1989.
12. Chaum, D. Blind signature system. In Proceedings of the Advances in cryptology, Paris, France, 9–11 April

1984.
13. Chen, L.; Pedersen, T.P. New group signature schemes. In Workshop on the Theory and Application of

Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 1994.
14. Ateniese, G.; Camenisch, J.; Joye, M.; Tsudik, G. A Practical and Provably Secure Coalition-Resistant Group

Signature Scheme. In Annual International Cryptology Conference; Springer: Berlin/Heidelberg, Germany, 2000.
15. Harn, L. Group-oriented (t, n) threshold digital signature scheme and digital multisignature. IEE Proc.

Comput. Digit. Tech. 1994, 141, 307–313. [CrossRef]
16. Perrig, A. The BiBa One-Time Signature and Broadcast Authentication Protocol. Available online: https:

//dl.acm.org/doi/abs/10.1145/501983.501988 (accessed on 2 May 2020).
17. Boneh, D.; Gentry, C.; Lynn, B.; Shacham, H. Aggregate and Verifiably Encrypted Signatures from Bilinear

Maps. Available online: https://link.springer.com/chapter/10.1007/3-540-39200-9_26 (accessed on 2 May 2020).
18. Zhang, L.; Zhang, F. A new certificateless aggregate signature scheme. Comput. Commun. 2009, 32, 1079–1085.

[CrossRef]
19. Shamir, A. Identity-Based Cryptosystems and Signature Schemes. Available online: https://link.springer.co

m/chapter/10.1007/3-540-39568-7_5 (accessed on 2 May 2020).
20. Oh, J.; Lee, K.; Moon, S. How to Solve Key Escrow and Identity Revocation in Identity-Based Encryption

Schemes. Available online: https://link.springer.com/chapter/10.1007/11593980_22 (accessed on 3 May 2020).
21. Yuen, T.H.; Susilo, W.; Mu, Y. How to construct identity-based signatures without the key escrow problem.

Int. J. Inf. Secur. 2010, 9, 297–311. [CrossRef]
22. Al-Riyami, S.S.; Paterson, K.G. Certificateless Public Key Cryptography. Available online: https://link.sprin

ger.com/chapter/10.1007/978-3-540-40061-5_29 (accessed on 4 May 2020).
23. He, D.; Chen, J.; Hu, J. A pairing-free certificateless authenticated key agreement protocol. Int. J. Commun.

Syst. 2012, 25, 221–230. [CrossRef]
24. Mandt, T.K.; Tan, C.H. Certificateless Authenticated Two-Party Key Agreement Protocols. Available online:

https://link.springer.com/chapter/10.1007/978-3-540-77505-8_4 (accessed on 5 May 2020).
25. Yum, D.H.; Lee, P.J. Generic Construction of Certificateless Signature. Available online: https://link.springer.

com/chapter/10.1007/978-3-540-27800-9_18 (accessed on 6 May 2020).
26. Huang, X.; Mu, Y.; Susilo, W.; Wong, D.S.; Wu, W. Certificateless Signature Revisited. Available online:

https://link.springer.com/chapter/10.1007/978-3-540-73458-1_23 (accessed on 6 May 2020).
27. Dent, A.W. A survey of certificateless encryption schemes and security models. Int. J. Inf. Secur. 2008,

7, 349–377. [CrossRef]
28. Libert, B.; Quisquater, J.J. On Constructing Certificateless Cryptosystems from Identity Based Encryption.

Available online: https://link.springer.com/chapter/10.1007/11745853_31 (accessed on 6 May 2020).

http://dx.doi.org/10.1016/j.egypro.2017.03.239
http://dx.doi.org/10.1109/MCOM.2017.1600297CM
http://dx.doi.org/10.1109/TIT.1976.1055638
http://dx.doi.org/10.1137/0217017
http://dx.doi.org/10.1049/ip-cdt:19941293
https://dl.acm.org/doi/abs/10.1145/501983.501988
https://dl.acm.org/doi/abs/10.1145/501983.501988
https://link.springer.com/chapter/10.1007/3-540-39200-9_26
http://dx.doi.org/10.1016/j.comcom.2008.12.042
https://link.springer.com/chapter/10.1007/3-540-39568-7_5
https://link.springer.com/chapter/10.1007/3-540-39568-7_5
https://link.springer.com/chapter/10.1007/11593980_22
http://dx.doi.org/10.1007/s10207-010-0110-5
https://link.springer.com/chapter/10.1007/978-3-540-40061-5_29
https://link.springer.com/chapter/10.1007/978-3-540-40061-5_29
http://dx.doi.org/10.1002/dac.1265
https://link.springer.com/chapter/10.1007/978-3-540-77505-8_4
https://link.springer.com/chapter/10.1007/978-3-540-27800-9_18
https://link.springer.com/chapter/10.1007/978-3-540-27800-9_18
https://link.springer.com/chapter/10.1007/978-3-540-73458-1_23
http://dx.doi.org/10.1007/s10207-008-0055-0
https://link.springer.com/chapter/10.1007/11745853_31

Sensors 2020, 20, 3983 21 of 21

29. Qu, Y.; Mu, Q. An efficient certificateless aggregate signature without pairing. Int. J. Electron. Secur.
Digit. Forensics 2018, 10, 188–203. [CrossRef]

30. Deng, L.; Yang, Y.; Chen, Y.; Wang, X. Aggregate signature without pairing from certificateless cryptography.
J. Internet Technol. 2018, 19, 1479–1486.

31. Cui, J.; Zhang, J.; Zhong, H.; Shi, R.; Xu, Y. An efficient certificateless aggregate signature without pairings
for vehicular ad hoc networks. Inf. Sci. 2018, 451, 1–15. [CrossRef]

32. Du, H.; Wen, Q.; Zhang, S. An Efficient Certificateless Aggregate Signature Scheme Without Pairings for
Healthcare Wireless Sensor Network. IEEE Access 2019, 7, 42683–42693. [CrossRef]

33. Gayathri, N.B.; Thumbur, G.; Rajesh Kumar, P.; Rahman, M.Z.U.; Reddy, P.V.; Lay-Ekuakille, A. Efficient
and Secure Pairing-Free Certificateless Aggregate Signature Scheme for Healthcare Wireless Medical Sensor
Networks. IEEE Internet Things J. 2019, 6, 9064–9075. [CrossRef]

34. Zhao, Y.; Hou, Y.; Wang, L.; Kumari, S.; Khan, M.K.; Xiong, H. An efficient certificateless aggregate signature
scheme for the Internet of Vehicles. Trans. Emerg. Telecommun. Technol. 2020, 31, e3708. [CrossRef]

35. Seo, S.-H.; Won, J.; Bertino, E. pCLSC-TKEM: A Pairing-free Certificateless Signcryption-tag Key
Encapsulation Mechanism for a Privacy-Preserving IoT. Trans. Data Priv. 2016, 9, 101–130.

36. Yang, Q.; Zhou, Y.; Yu, Y. Leakage-Resilient Certificateless Signcryption Scheme. In Proceedings of the 2019
IEEE Globecom Workshops (GC Wkshps), Waikoloa, HI, USA, 9–13 December 2019.

37. Du, H.; Wen, Q.; Zhang, S. A Provably-Secure Outsourced Revocable Certificateless Signature Scheme
Without Bilinear Pairings. IEEE Access 2018, 6, 73846–73855. [CrossRef]

38. Xiong, H.; Mei, Q.; Zhao, Y. Efficient and Provably Secure Certificateless Parallel Key-Insulated Signature
Without Pairing for IIoT Environments. IEEE Syst. J. 2020, 14, 310–320. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1504/IJESDF.2018.090961
http://dx.doi.org/10.1016/j.ins.2018.03.060
http://dx.doi.org/10.1109/ACCESS.2019.2907298
http://dx.doi.org/10.1109/JIOT.2019.2927089
http://dx.doi.org/10.1002/ett.3708
http://dx.doi.org/10.1109/ACCESS.2018.2880875
http://dx.doi.org/10.1109/JSYST.2018.2890126
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Related Work
	Elliptic Curve Cryptography and ECDLP
	Digital Signature
	Certificateless PKC (CL-PKC)
	Certificateless Aggregate Signature (CL-AS)
	Security Threat of CL-AS
	Analysis of Existing CL-AS Schemes

	Security Requirements
	Proposed Scheme
	Setup Phase
	Individual Signing and Verifying Phase
	Aggregated Arbitrated Signing Phase
	Aggregated Verifying Phase

	Security Analysis
	Integrity
	Prevention of Key Leakage
	Unforgeability
	Unforgeability from Adversary AI
	Unforgeability from Adversary AII

	Efficiency Analysis
	Conclusions
	References

