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Abstract: Energy and storage restrictions are relevant variables that software applications should
be concerned about when running in low-power environments. In particular, computer vision (CV)
applications exemplify well that concern, since conventional uniform image sensors typically capture
large amounts of data to be further handled by the appropriate CV algorithms. Moreover, much
of the acquired data are often redundant and outside of the application’s interest, which leads
to unnecessary processing and energy spending. In the literature, techniques for sensing and
re-sampling images in non-uniform fashions have emerged to cope with these problems. In this study,
we propose Application-Oriented Retinal Image Models that define a space-variant configuration of
uniform images and contemplate requirements of energy consumption and storage footprints for
CV applications. We hypothesize that our models might decrease energy consumption in CV tasks.
Moreover, we show how to create the models and validate their use in a face detection/recognition
application, evidencing the compromise between storage, energy, and accuracy.

Keywords: retinal image model; space-variant computer vision; foveation; low-power;
energy consumption

1. Introduction

By means of a conventional sensor, one can easily capture uniform high-resolution images and
describe what is depicted. However, for computers, interpreting images is not trivial, demanding
complex Computer Vision (CV) algorithms, along with a proper management of the available resources,
to allow the software applications to run efficiently in different hardware platforms. As a matter of fact,
a computational burden might come into play due to real-time restrictions that are often imposed by the
available hardware to process these high-resolution data [1]. In the mobile environment, for example,
managing energy (i.e., battery life) is mandatory, as its negligence might prevent users from enjoying
a satisfactory experience [2]. Whereas common strategies to save resources rely on uniform resolution
reductions and frame-rate decreases, another one is to mimic the space-variant configuration of the
human eye. Because some tasks as tracking and pattern recognition do not demand high resolution
data across the whole image [1], it is reasonable to work with space-variant images.

The paradigm of capturing and processing uniform images co-exists with mechanisms to manage
a biology-inspired image representation in the Space-Variant CV field. The overall insight comes from
the nature of the human eye, where cones and rods—the photo-receptors that are responsible for
detecting color and luminance, respectively—show a non-uniform spatial configuration that induces
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variable visual acuity levels across the retina [3]. The highest density of cones lies in the fovea, the
central area of the retina, whereas the lowest one is found across the periphery. This provides a wide
field of view and a high-resolution region that is used to foveate a point in a real scene, thereby reducing
data processing to a dense, smaller region (fovea), or to a wider, sparse one (periphery) [3,4]. Both
regions can also operate in synergy: the periphery examines coarse data in order to trigger a detailed
analysis through foveation.

Despite the progress in CV research fields in exploiting space-varying models, there is
a lack of a single generic framework for handling seamlessly images generated by heterogeneous
pixel sampling strategies. In this paper, we address this issue by proposing a framework for
designing Application-Oriented Retinal Image Models (ARIM) that establish a non-uniform sampling
configuration of uniform images. We propose defining the appropriate model for an application
on-demand, while taking specific requirements of the target application into account. By exploiting
such models, we hypothesize that it might be possible to decrease the energy spent in computer
vision tasks. We show how to create the models and validate their use in a face detection/recognition
application, when considering the compromise among storage rates, energy, and accuracy. We use
a regular image sensor and perform the sampling procedures by means of a software layer, thus
simulating the operation of a specific-purpose space-variant sensor and providing some flexibility.
Our main contributions are the following:

• we provide a framework for designing Application-Oriented Retinal Image Models (ARIM)
towards computer vision (CV) applications;

• we evaluate the use of ARIMs in a CV application of the biometry field in terms of memory
storage and energy reductions;

• we discuss the trade-offs between the application’s accuracy and the reductions in the computing
resources induced by the ARIMs;

• we compare our results to other common setups (original and downsized uniform-resolution
images) and show that the obtained storage and energy savings are relevant; and,

• we briefly discuss the use of ARIMs in real-life application scenarios and the nuances of having
an ideal hardware layer that resamples images according to ARIMs.

The paper is organized, as follows. We conduct a literature review on the subject in Section 2.
In Section 3, we detail the proposed framework to generate ARIMs. In Section 4, we present information
regarding the experimental protocol for simulating the use of ARIMs, such as the employed dataset,
the application implementation, the evaluated models, and the evaluation criteria, along with the
adopted hardware setup. We present experimental results regarding storage, accuracy, and energy
in Section 5; in this section, we also discuss these results and show their implications in real-life
application scenarios. We conclude our work and describe the possibilities of future studies in
Section 6.

2. Literature Review

Concepts of the human visual system have already been explored from the hardware and software
perspectives. In this section, we review some of the works from each perspective. A more complete
review on space-variant imaging from the hardware and software perspectives while using log-polar
mappings is detailed in [5]. We also describe some works regarding recent clustering techniques.
Although we are not tackling the challenges of data clustering during the generation of ARIMs, the idea
of obtaining a low-dimensional representation for the points (extracted from face images) could further
reduce the memory storage use of the CV application.

2.1. Hardware-Based Approaches

On the hardware side, the problem has been dealt with, mainly, by two fronts: (i) the development
of imaging sensors with specific non-uniform spatial configurations [6] and (ii) the use of an
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intermediary hardware layer to remap uniform images into variable-resolution ones. The first front
allows to capture topology-fixed foveated images at sensing time, whereas the second one provides
more flexibility to change the mapping without relying on software routines. Specifically, some
initiatives, like [1], exploited the versatility of Field Programmable Gate Arrays (FPGA) to implement,
at a logical level, different space-variant mappings of uniform images, as with the case of a moving
fovea that is dynamically adjusted according to the application’s requirements.

A similar study [7] integrated attention and segmentation mechanisms into a foveal vision system.
The architecture of the solution comprised (i) a hardware layer responsible for mapping uniform
cartesian images to space-variant ones and (ii) a software layer where segmentation and saliency
estimation are done. In short, the salient regions from a frame might trigger a foveal shift to be
performed by hardware when the next frame arrives.

2.2. Software-Based Approaches

Pure software-based approaches, in opposition to hardware-oriented ones, offer more flexibility
to simulations, albeit with higher computational costs. In [8], a saccadic search strategy that is based
on foveation for facial landmark detection and authentication is presented. The authors apply a
log-polar mapping to some image points and extract Gabor filter responses at these locations, thus
imitating the characteristics of the human retina. For training, Support Vector Machine classifiers
are used to discriminate between positive and negative classes of facial landmarks (eyes and mouth)
represented by the collected Gabor responses. When testing, the saccadic search procedure evaluates
several image points in the search of candidate landmarks that are further used to authenticate the
depicted individual.

A foveated object detector is proposed in [9]. The detector operates on variable-resolution images
obtained by resampling uniform ones with a simplified model of the human visual cortex. The results
showed that the detector was capable of approximating the accuracy of a uniform-resolution-oriented
one, thereby providing satisfactory insight to evolutionary biology processes.

In another work [10], image foveation is exploited along with a single-pixel camera architecture
to induce a compromise between resolution and frame rate. The images are resampled by a
space-variant model that is constantly reshaped to match the regions of interest detected in the
image by a motion tracking procedure, thus effectively simulating a moving fovea that increasingly
gathers high-resolution data across frames.

An appropriate method is described in [11] to facilitate comparisons among different sensor
arrangements. The idea is to provide a common space for creating lattices of any kind. To demonstrate
the viability of the method, the rectangular and hexagonal lattices are implemented and images built
according to both arrangements are further compared.

2.3. Recent Clustering Techniques

As a very popular unsupervised learning approach, clustering has been deeply explored by
researchers and used in several contexts. This technique aims to partition a set of data into groups
where the elements share similar properties [12]. For instance, clustering is useful to group unlabeled
images (represented by feature vectors) according to some desired criteria. In fact, many CV
applications employ clustering at some point of their architectural design, such as content-based
image retrieval systems [13] and face image clustering [14].

Recently, deep learning-based approaches have arisen to improve the results of clustering
procedures. In [15], a deep subspace clustering technique is proposed. The core of the approach
resides in mapping the data points into latent subspaces and preserving local and global structural
properties simultaneously. The method also provides good scalability, since the nonlinear mapping
is progressively done for the input dataset. The method is shown to perform better than many
state-of-the-art subspace clustering techniques in terms of clustering quality, but also presents higher
execution times as compared to the evaluated literature.
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In [16], a novel clustering method is proposed. The method’s central idea is based on the
observation that a metric-invariant space can be learned, thus leading to the invariant sample
assignment property of the clustering. Such a property is of much relevance, because it allows
for distinct distance metrics to map a sample point to similar (sometimes even to equal) clusters.
A deep neural network is employed to learn a better representation for the points, so that the clustering
accuracy and discrepancy between clusters are satisfactory. The method works, even in the scenario
where no manual annotation is provided and generates good clustering results due to the better
representations found for samples.

Inspired by the ideas of these previous initiatives, we elaborated a framework to design ARIMs.
The models represent the expected configuration of space-variant images, as defined by a prior analysis
of the CV application’s domain. As we will show in the next section, an image resampled by using an
ARIM presents variable resolutions across its space. These areas may be exploited in different ways
in order to save computing resources and still allow for satisfactory accuracy rates for the desired
application.

3. Proposed Approach

In this section, we describe our methodology to generate ARIMs. Figure 1 shows the steps of the
proposed framework, which we detail in this section. The components of the proposed methodology
will be presented in the context of a biometric application.

Figure 1. The proposed framework to generate application-oriented retinal image models (ARIMs).
The workflow begins by defining the application’s requirements regarding operation (e.g., objects’
positioning, illumination) and efficiency (e.g., storage, accuracy). Then, a proper implicit function
(e.g., l2) and the spatial configuration of the retinal image model—comprising foveal and peripheral
regions—are chosen. The next step is the generation of the model by means of an optimization
procedure that considers the implicit function and the spatial configuration to resample points in the
2D cartesian space. The final artifact is an ARIM comprised by uniformly- and non-uniformly-sampled
foveal and peripheral regions, respectively. This model is used to resample uniform images, taking them
to a space-variant domain and potentially contemplating the requirements determined beforehand.

3.1. Definition of Application Requirements

Instead of using a traditional image, coming from a general uniform sensor, we argue that the
best approach is to examine the target application and investigate its requirements and demands.
CV applications can comprise a very diverse set of requirements, ranging from efficiency-related
ones, such as storage, speed, energy, and accuracy, to other very application-specific ones, such as
the need for objects to move slowly or be positioned in specific locations in the scene, be situated in
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a minimum/maximum distance from the camera, be illuminated by a close light source, and so further.
The application considered in this paper is concerned with user authentication based on his/her face:
the individual enters and leaves the scene by any sides, placing himself in front of a camera that
captures the scene in a wide field of view.

Although the authentication across a wide field of view is a good idea, because more faces are
collected throughout the video, it is usual that the central part of the image be the protagonist of the
process. In this vein, it is recommended that the individual stands or walks near the center of the
image to proper positioning his/her face (e.g., to avoid severe rotations and perspective changes)
for a more accurate authentication process. Thus, if one intends to reduce energy consumption,
collecting faces only in a bounded central region (e.g., a square window) might be enough. On the
other hand, restricting the image to its central part, albeit effective, might be seen as a very extreme
decision, since other image areas may contribute with useful information for the authentication. In this
sense, retaining some pixel data in such areas, even in a sparse manner, is also appropriate. Finally,
another suitable strategy towards energy reduction is downsampling the image before performing
face detection/recognition. This might reduce the energy that is spent in the whole authentication
process, but at the cost of a drop in accuracy.

The issues that are discussed above illustrate examples of requirements to be defined by the
analysis of an application’s domain. In this paper, they were essential to guide the definition of a
model for the biometric application.

3.2. Implicit Function Selection

The design of the model starts with selecting a proper implicit function. The idea is that the
function will act as a control mechanism to spread out the non-uniform sampled points over a desired
image region. Figure 2 depicts examples of implicit functions that we explored (l1, l2, and l∞).
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Figure 2. Examples of implicit functions: (a) l1, (b) l2, and (c) l∞.

3.3. Definition of Spatial Configuration

This step is concerned with the spatial characteristics that the model must obey. We developed
hybrid space-variant models inspired on the human retina. In general, the models comprise two very
distinct regions: the fovea and the periphery. The fovea is a fixed-size region of uniformly sampled
pixels according to a predefined grid. For instance, a region of size 26 × 26 pixels can be uniformly
sampled by a grid of size 25 × 25 pixels. Given these characteristics, we can apply conventional CV
algorithms in the fovea. In opposition, the periphery is a fovea-surrounding region with a non-uniform
pixel density that decreases with the distance from the fovea.

The following four parameters should be informed prior to the creation of the hybrid model:

• Number of foveas: surely a human eye has only one fovea, but it is perfectly fine for a model
to comprise more than one region of uniform sampling, depending on the application on hand.
In our biometric application, we took into account only one fovea.

• Location of foveas: the foveas should be spatially organized adhering to the specific requirements
of the application. In ours, the fovea is centralized in the image.
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• Density of foveas: the foveas can be downsampled to simulate a uniform image resolution
reduction. We tested different densities (grids) for our fovea.

• Density of periphery: the periphery is an important region that encompasses few sparse data
in a non-uniform sampling configuration. As discussed previously, by retaining and wisely
handling sparse peripheral information (e.g., detecting motion and coarse objects in such an area),
the application’s resource usage might be optimized.

3.4. Model Generation

There are several ways to achieve a non-uniform point distribution. Our approach is inspired by
the computer graphics literature and previous works [17,18]. Besides the implicit function, the number
of peripheral (non-uniform) points and the aspect ratio of the sensor must be provided. We generate a
point distribution via a local non-linear optimization procedure that, from an initial distribution, tries to
minimize a global energy function that is defined in Equation (1), where ~x is a point in image space.

En ({~xi}) = ∑
i

∑
~xj↔~xi

(
||~xi −~xj|| − ( f (~xi) + f (~xj))

)
(1)

The optimum solution for Equation (1), i.e., when En = 0, would be a placement of every ~xi,
such that the distance to its “neighbors” is the sum of the values of the implicit function at their
locations. However, there is no closed-solution for this problem (the implicit function can be anything)
or any guarantees of a perfect solution for a scenario with an arbitrary number of points and implicit
functions. Thus, we propose an approximation by means of a non-linear optimization procedure
based on Mass-Spring Models. When doing so, each pair of points tries to attract each other if they
are too far, and try to repel each other when they are too close. We do not use Newton’s physical
model of forces from springs. Instead, we have a mass-free system, so springs generate “velocity
forces.” Figures 3 and 4 show the behavior of the global energy optimization for models with different
configurations, implicit functions, and number of points.
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Figure 3. Convergence analysis for ARIMs with a single fovea and based on the l∞ implicit function.
Examples of ARIMs containing (a) 96, (b) 192, and (c) 384 non-uniform points in the periphery. For each
ARIM, the resulting global energy curve over 1000 iterations of the generation process is shown in the
model’s respective column.
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Figure 4. Convergence analysis for ARIMs with no fovea and based on the l2 implicit function.
Examples of ARIMs containing (a) 96, (b) 192, and (c) 384 non-uniform points in the periphery.
For each ARIM, the resulting global energy curve over 2000 iterations of the generation process is
shown in the model’s respective column.

The optimization process is very sensitive to its initial conditions. A uniform distribution of the
initial positions over the valid domain coupled with a careful choice of the implicit function allows
for the system to converge under 2000 iterations. Figure 5 illustrates the generation of an ARIM,
where the optimization of uniform point distribution is carried out using the l∞ implicit function.
Upon convergence, we obtain the full neighborhood map (Voronoi diagram) of the model.

Figure 5. The evolution of an example of ARIM with 256 foveal (uniform), and 192 peripheral
(non-uniform) pixels. The l∞ is the implicit function.

4. Materials and Methods

In this section, we present the experimental setup that is necessary for simulating the usage of the
proposed models. The chosen dataset closely resembles one of a biometric application.

4.1. Target Application: Face Detection / Recognition

In this paper, we selected a CV application from the biometry domain to evaluate the proposed
framework.

4.1.1. On the Application Selection

Although the framework may be appropriated to many CV applications, such as those that are
related to surveillance and remote sensing, the biometry domain is characterized by well-consolidated
techniques and datasets, due to the several studies in the area over the years. Moreover, the considered
application could fit the complete process that is described in Section 3. In this case, the application’s
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characteristics and requirements could be examined by reasoning about each step of the framework
(Figure 1), which we report herein:

• Step 1: We analysed the CV application’s demands and characteristics. In the biometry application
considered, we observed aspects regarding:

1. the use of computational resources, which should be preferably low when running in
environments of large energy and storage limitations;

2. the intrinsic characteristics of the application’s domain, such as the task to be executed
(face authentication), the expected “behavior” of the input data (person movement and
positioning in the images), camera angles, the most relevant part of the image to process, etc.;

3. the possibility of balancing the pixel density of different image regions. In this sense,
given the application on hand, we decided that the processed image would have different
resolutions across its space. This will induce a compromise between energy, storage,
and accuracy; and,

4. the possibility of adopting distinct pixel representations across the image in order to save
computational resources. In the current case, an additional motion analysis is performed by
taking advantage of an optical flow pixel representation in some image regions.

• Step 2: subsequently, by the previous analysis, we selected an appropriate implicit function to
represent the pixel distribution of the image;

• Step 3: next, we defined the spatial configuration of foveal and peripheral regions by knowing,
for instance, that individuals often move to the central part of the image to allow a better
authentication. In this case, we defined a single central fovea;

• Step 4: finally, we created ARIMs encompassing and consolidating the expected properties of the
images defined in the previous steps.

4.1.2. On the Application Implementation

The face recognition process is based on the classical nearest neighbor strategy. In the training
stage, we took the P1E_S1_C1 sequence and extracted the faces of all 25 individuals. We chose that
sequence because the camera angle favored the position of faces. Then, we created a face training
dataset consisting of 25 classes, each one having five samples. To train the faces, the DNN model
extracted the 128-d features from all samples. In the test stage, we extracted the features from
an unknown detected face and compared it to all the others from the training dataset using the
Euclidean distance metric. The label of the closest face was considered as the label for the unknown
face, thus resembling a 1-Nearest Neighbor (1-NN) strategy.

4.1.3. Simulation Details

We simulated the operation of a specific-purpose sensor by re-sampling images according to our
ARIMs. The idea was to generate images containing two regions: (i) the fovea, encompassing a small
area where resolution is uniform, and (ii) the periphery, where pixels are arranged non-uniformly over a
wider area. With such a configuration, we were able to perform experiments when considering different
foveal resolutions, while also taking advantage of the periphery according to the specific requirements
of the application. In this sense, we adopted an optical flow representation (orientation and magnitude)
for peripheral pixels. The motivation around that representation is that the detection/recognition
in the fovea could only be triggered when there is movement towards it coming from the periphery.
Additionally, both the detection and recognition procedures turn off when no face is found under a
predefined time interval. Therefore, in this scenario, more energy can be saved.

Figure 6 shows an example of a simulation using one of our ARIMs and a sample sequence
from the employed dataset [19]. The first and third rows show the original frames, while the
second and fourth rows show images reconstructed with a model that considers an optical flow
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peripheral representation. Green and yellow arrows indicate motion direction to the right and left
sides, respectively, whereas the ON and OFF labels refer to the operational status of the foveal
(face detection/recognition) and peripheral (optical flow) regions. Besides triggering foveal analysis,
the motion analysis is also able to restart conveniently, as long as faces are not detected in the fovea
during a time interval of frames (see Figure 6p).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 6. Example of a simulation using one of our ARIMs and a sample sequence from the
employed dataset [19]. Images (a–e) and (k–o) are the original frames; images (f–j) and (p–t) are
the reconstructions with a model that considers an optical flow peripheral representation. Green and
yellow arrows indicate motion direction to the right and left sides, respectively, whereas the ON and
OFF labels refer to the operational status of the foveal (face detection/recognition) and peripheral
(optical flow) regions. Note that the motion analysis, besides triggering foveal analysis, is also able
to restart conveniently, as long as faces are not detected in the fovea during a time interval of frames
(left-most frame in the fourth row).

Ideally, an ARIM should be first computed by software in an offline step. Subsequently, at the
application’s run-time, the computed model should be an input to a reconfigurable hardware layer
that will extract the necessary pixel information from a full-size image captured by a conventional
uniform image sensor. Additionally, optical flow should be computed only for the peripheral points,
thereby further discarding more image data. As foveal and peripheral pixel configurations do not
change often for a specific application, the computational cost to control this discarding procedure by
hardware should be low.

The workflow of the simulation process is depicted in Figure 7, where we distinguish between the
software and hardware layers to illustrate a hypothetical case where a specific-purpose (space-variant)
sensor was available. In an ideal scenario, the ARIM, a captured image frame, and the chosen pixel
representations for foveal and periphery areas are input to an hypothetical specific-purpose sensor
that changes its configuration at run-time. Both layers are connected by a 1-d vector (named as
bytestream) that stores the foveal and peripheral pixel values captured by the sensor (i.e., the sampled
image), and are input to the application. For simulation purposes, however, this architecture is
fully implemented by software. We adopted bytestreams instead of a two-dimensional (2D) image
representation in the software simulation to bring the process closer to the ideal conceived scenario.
The simulator was implemented in C++ using the OpenCV 3.0.0 library.
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Figure 7. Implemented workflow for simulating the use of ARIMs in a specific Computer Vision
(CV) application. In an ideal scenario, the ARIM, a captured image frame, and the chosen pixel
representations for foveal and periphery areas are input to an hypothetical specific-purpose sensor that
changes its configuration at run-time. Such a sensor would yield a stream (bytestream) of pixel data
from each region of the captured image. The stream (not the 2D image) would be forwarded to the CV
application. However, for simulation purposes, this architecture is fully implemented by software.

4.1.4. Technical Information

The biometric application uses the Viola–Jones [20] algorithm, which is a well-consolidated and
widely used face detection method in the literature. As for recognizing faces, we used a descriptor
based on a pretrained Deep Neural Network (DNN) model, which is essentially a ResNet network
with 29 convolutional layers (based on [21]) trained on a dataset containing approximately 3 million
faces. The model is publicly available and integrates the Dlib C++ Library [22]. These and other
technical information, such as the methods and parameters used, are displayed in Table 1.

Table 1. Technical information regarding the implemented CV application. Only non-default parameter
values are shown.

Theoretical Reference Library Method Input Parameters

Face Detection Viola-Jones [20] OpenCV 3.0.0 detectMultiScale scaleFactor = 1.1
minNeighbors = 3

Face Recognition DNN model [21] + 1-NN Dlib 19.16 [22] get_face_chip_details size = 150
padding = 0.25

Optical Flow Lukas-Kanade [23] OpenCV 3.0.0 cvCalcOpticalFlowPyrLK

winSize = (31, 31)
maxLevel = 3
criteria.maxCount = 20;
criteria.epsilon = 0.03
minEigThreshold = 0.001

4.2. Dataset

In our evaluations, we employed the ChokePoint dataset [19] aimed at person identification/
verification. The dataset comprises 48 sequences of images of 800× 600 pixels resolution and is publicly
available. Each sequence depicts several individuals entering or leaving a portal, one at a time. There
are 25 and 29 individuals walking through portals 1 and 2, respectively. Moreover, each sequence
is registered by three cameras that are placed above the portals to provide diverse sets of faces in
different illumination and pose conditions. Due to the adopted settings, one of the cameras is able to
capture image sequences of near-frontal faces. Figure 6 shows a sample sequence from the employed
dataset in the first and third rows.

4.2.1. Justification for the Selected Dataset

The dataset was chosen because it represents a satisfactory scenario where a CV biometry
application may take place via a detailed investigation of its characteristics and requirements. When
an individual is about to cross the portal, his/her face gets well centered in the image, providing the
application with the necessary data to perform the biometry procedures. Furthermore, individuals do
not suddenly appear in the center of the images; they slowly move towards the portal. This peripheral
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movement data could be exploited to activate the authentication in the central region of the image
(where a face is supposed to be).

4.2.2. Dataset Organization

The dataset is partitioned into the following four subsets:

• P1E and P1L: the subsets of frame sequences of people entering and leaving portal 1, respectively;
• P2E and P2L: the subsets of frame sequences of people entering and leaving portal 2, respectively.

A subset is comprised of four (4) frame sequences (S1, S2, S3, and S4), each of which is registered
by three cameras (C1, C2, and C3). For instance, the frame sequence P1E_S2_C3 refers to the second
sequence (S2) of people entering portal 1 (P1E) and captured by camera 3 (C3).

We used 34 image sequences (out of 48) from the dataset during our evaluations due to the
following reasons:

1. One (1) of the sequences of individuals entering a portal (P1E_S1_C1) was used to train the
face recognizer. Such sequence comes from camera 1, which obtains near frontal-face images.
That sequence is also captured by cameras 2 and 3 at different angles, hence, to avoid biased
evaluations, we ignored such sequences (P1E_S1_C2 and P1E_S1_C3), as both of these contain,
essentially, the same faces of the former up to slight angle variations.

2. Eleven (11) sequences where no face is found in the fovea were ignored. This decision was
taken because no face recognition accuracy evaluations (using our models) would apply to
these sequences.

4.3. Evaluated Models

We evaluated three different ARIMs. Each model comprises 384 non-uniform peripheral points
and a central foveal region of size 200 × 200 pixels. The models diverge from each other in the
uniform-sampling configuration sizes adopted for their foveas, which are 100× 100 (half density),
150× 150 (75% density), and 200× 200 (full density). These settings allow for us to simulate different
foveal resolutions. For all models, optical flow peripheral information is used to trigger the face
detection/recognition in the fovea. Figure 8 shows an illustration of the pixel map of these models and
their configurations.

Figure 8. The pixel map of the evaluated ARIM and its configurations. The experimented foveal
configurations comprised three uniform sampling setups: 100× 100 (half density), 150× 150, and
200× 200 (full density) pixels. The pixel representations for the fovea and periphery were based on the
grayscale and optical flow (magnitude and direction) values, respectively.
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4.4. Evaluation Criteria and Hardware Setup

We compared the storage usage by computing the amount of bytes for storing the video, measured
the energy spent (in Joules) in the biometric application for each evaluated model, and computed the
mean recognition accuracy of each evaluated model when considering all video frames. To measure
energy, we used the Intel RAPL (Running Average Power Limit) interface [24], which is a set of internal
registers from Intel processors, called model specific registers (MSR). At the code level, we read these
registers before and after a block of instructions, and calculate the difference between these values.
More specifically, we read the MSR_RAPL_POWER_UNIT register to measure the energy spent in
image readings, face detection/recognition procedures, and optical flow analysis (when using ARIMs).
The hardware setup to perform the experiments comprised an Intel Core i7-5500U, with 2.04 GHz
clock, 4 MB cache, and 16 GB RAM.

5. Results and Discussion

In this section, we present the experimental results regarding storage allocated, face recognition
accuracy, and energy consumption induced by different ARIMs. We also discuss these results and their
implications for real-time applications.

5.1. Storage Reduction

Quantifying reductions in the numbers of pixels and image data sizes is essential for assessing
the benefits of using different ARIMs in practical situations. Table 2 shows these measurements for the
original (full-size) images, images uniformly resized, and the three evaluated models. When compared
to original images, ARIMs showed a reduction of more than 91% in the number of pixels and bytes,
whereas a uniform resize of the images to 25% of their original sizes provided a reduction of 75% in
both quantities.

Table 2. Number of pixels and data size reduction results for the evaluated models relative to the
original and uniformly resized images (to 25% of their original sizes).

Num. of
Pixels

Num. of Pixels
Reduction

Bytes per Region Total
Bytes

Data Size
ReductionFOV PER

Original 480,000 - - - 1440,000 -

Resized (25%) 120,000 75.00% - - 360,000 75.00%

Model_1 10,384 97.83% 30,000 768 30,768 97.86%

Model_2 22,884 95.23% 67,500 768 68,268 95.25%

Model_3 40,384 91.58% 120,000 768 120,768 91.61%

5.2. Face Recognition Accuracy

We defined accuracy as the number of true positives (i.e., correctly labeled faces) in the foveal
region of a frame sequence, each of which has a benchmark for comparison. The employed dataset
informs all faces that appear in each image frame. However, for a fair accuracy comparison among the
uniform images and the ones re-sampled by our models, we only use the information regarding the
foveal region as benchmark, meaning that faces in the periphery are not considered.

First, our face recognizer alone has satisfactory accuracy. Figure 9 shows receiving operating
characteristic (ROC) curves regarding the face recognition task when considering the P1E_S2 (Figure 9a)
and P1L_S2 (Figure 9b) image sequences from all cameras. The figures comprise a mean ROC (blue)
curve from all 25 (light blue) class-specific curves, i.e., for each face class in the dataset. These
class-specific ROC curves were calculated via a one-versus-all classification procedure and they
evaluate the accuracy of our classifier in the experimented dataset (i.e., full-size images). We did not
consider any models to generate the curves. The area under the curve (AUC) is greater for the P1E_S2
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dataset (89.4%) in comparison to the P1L_S2 dataset (79.4%). This is possibly because the P1E_S2
sequences share similar traits to the P1E_S1_C1 sequence used to train the face recognizer.
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Figure 9. ROC curves regarding the face recognition task considering the (a) P1E_S2 and (b) P1L_S2
image sequences from all cameras. The figures comprise a mean ROC (blue) curve from all 25 (light
blue) class-specific curves, i.e., for each face class in the dataset. These class-specific ROC curves were
calculated via a one-versus-all classification procedure.

Figure 10 shows an expected face recognition accuracy decreasing of our ARIM-resampled frame
sequences when compared to their correspondent benchmarks and to images uniformly resized to
25% of their original sizes. ARIMs rely on movement analysis to authenticate users, which creates
a dependency between peripheral and the analysis of foveal information, some faces can be lost.
Another variable influencing the accuracy rates is the foveal resolution of each tested ARIM. In fact,
the accuracy rates increase with foveal resolution, and are not too low even under the 50% sampling
degradation induced by Model_1, for example. In the case of Model_3, where foveal resolution
matches that of the benchmark, the small loss in accuracy is justified by the quality of optical flow
analysis, which seems to be acceptable for the tested application. Table 3 presents the minimum, mean,
and maximum accuracy loss rates that are induced by each model in comparison to the benchmarks.
Whereas the maximum obtained loss was 50% for Model_1 and the P2E dataset, very small loss rates
(close to 0%) were registered in more than one scenario. Another interesting phenomenon is the high
loss rates observed for the P2E and P2L datasets, possibly due to slight divergent conditions relative to
the P1E and P1L datasets.

Table 3. Minimum, mean, and maximum accuracy loss rates induced by our ARIMs compared to the
provided benchmarks.

Dataset

Accuracy Loss

Model 1 Model 2 Model 3

Min. Mean Max. Min. Mean Max. Min. Mean Max.

P1E 0.032 0.123 0.264 0 0.050 0.108 0 0.006 0.021

P1L 0.060 0.248 0.613 0 0.094 0.255 0 0.023 0.103

P2E 0.174 0.353 0.500 0.032 0.172 0.318 0 0.006 0.037

P2L 0.143 0.300 0.529 0.033 0.086 0.265 0 0.063 0.206
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(a) (b)

(c) (d)

Figure 10. Mean face recognition accuracy regarding each evaluated model, the images resized to
25% of their original sizes, and the benchmark images from the (a) P1E, (b) P1L, (c) P2E, and (d) P2L
datasets.

The accuracy results on resized images are often lower than those of models, showing a constant
behavior on the P1L, P2E, and P2L datasets. However, in the P1E dataset, the accuracy for resized
images were unexpectedly high in some cases. We believe this behavior may be justified by the fact
that the evaluated sequences and the face training sequence share similar conditions (e.g., lighting).
Additionally, the superior accuracy results of the P1E_S2_C2 and P1E_S3_C3, as compared to the
benchmark, may be due to the removal of noise as a consequence of the huge resizing operation.
Nevertheless, we believe these rare cases do not conflict with our general results and conclusions.

5.3. Energy Consumption Evaluation

Figure 11 presents a comparison among the total energy spent by the processing of original
(full-size) images, images uniformly resized to 25% of their original sizes, and the three tested models.
The experiments show lower energy consumption values for scenarios that involve our models.
The difference in energy values among our models and the baseline results directly from the data
amount reduction caused by the combination of peripheral optical flow and the sampled foveal
face detection/recognition. Therefore, the robust and timely activation/deactivation of these latter
algorithms reduce the total energy spent in the whole authentication process, while keeping the
accuracy rates acceptable, as previously discussed. Table 4 presents the minimum, mean, and maximum
energy reduction rates that are induced by each model relative to the baseline, i.e., the obtained energy
savings. As expected, the reduction rates decrease with the increase in foveal resolution, because
there is more data to process. This is verifiable by a quick comparison between the mean rates of
Model_1 (half density) and Model_3 (full density), for example. For resized images, the energy values
are often higher than the ones produced by ARIMs, with the exception being the P2L dataset where
similar values were found. This result strengthens our hypothesis that the use of ARIMs might lead to
energy savings.
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(a) (b)

(c) (d)

Figure 11. Total energy consumption regarding each evaluated model, the images resized to 25%
of their original sizes, and the original (full-size) images from the (a) P1E, (b) P1L, (c) P2E, and (d)
P2L datasets.

Table 4. Minimum, mean, and maximum energy reduction rates induced by our ARIMs compared to
the provided benchmarks.

Dataset

Energy Reduction

Model 1 Model 2 Model 3

Min. Mean Max. Min. Mean Max. Min. Mean Max.

P1E 0.505 0.551 0.598 0.463 0.508 0.550 0.414 0.456 0.489

P1L 0.612 0.667 0.711 0.582 0.619 0.710 0.490 0.548 0.657

P2E 0.536 0.610 0.672 0.439 0.549 0.619 0.381 0.454 0.551

P2L 0.533 0.571 0.618 0.406 0.516 0.620 0.332 0.464 0.603

5.4. Implications in Real-Time Applications

Real-life imaging applications have a broad spectrum of possibilities, associated technologies, and
challenges. These applications often need to capture and process high volumes of data—materialized
in uniform images—in real-time to provide their users with the desired outputs. However, the users’
experience may be affected by these high processing demands in some degree, and should be
considered during the application’s conception. On the one hand, in visual entertainment applications,
users want the largest possible amount of details in pictures and videos; such a requirement can be
accomplished using uniform images. On the other hand, when the final objective is related to real-time
authentication, movement analysis, and action recognition, for example, non-uniform images might
come into play to provide an interesting balance among accuracy, storage resources, and energy, thus
possibly favoring the users’ experience.

In our simulations, the combination of uniform and non-uniform areas induced by our ARIMs
allowed significantly fewer data to be processed. Besides, we noticed that the use of different pixel
representations may be a good strategy in certain situations, because peripheral data may be inherently
related to the application’s domain. These data may be exploited to decide when to process denser
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data volumes. This modeling itself already provided a significant reduction in data processing, thereby
contributing to real-time performance.

Furthermore, if a hardware layer that is dedicated to extract and resample conventional images
is available (e.g., implemented into an FPGA), real-time pre-processing constraints may be balanced,
maintained, or even reduced, if necessary. In this scenario, the time to process frames, data volumes,
energy, and computational processing power could be relieved, because many operations would be
performed previously by hardware routines.

6. Conclusions

A crucial observation that led to the present study is that image data captured by uniform sensors
are often dense and redundant, leading to computationally expensive solutions in terms of storage,
processing, and energy consumption. We addressed this issue by exploiting a space-variant scheme
that was inspired by mechanisms of biological vision, in particular, the way that humans sense through
the retina. We introduced a generic framework for designing application-oriented retinal image
models (ARIM). The models should be used to re-sample the input images prior to executing an
specific CV task. We selected a biometric application to illustrate the conception and usefulness of
appropriate models.

The experiments with three ARIMs having different point configurations demonstrate the
flexibility of the proposed framework in devising models with different properties regarding storage
requirements, energy consumption, and accuracy performance. We could observe, for example, that
the use of different space-variant strategies may lead to a big reduction in terms of storage resources
and energy consumption, whereas the accuracy loss rates were low in most cases. Such a trade-off
evidences the viability of the proposed models and the conformity to our initial expectations regarding
saving computational resources.

In future work, we intend to use our framework in other CV applications, such as surveillance
and assembling line inspection. Another possibility is to represent the periphery of our models as
super-pixel-like artifacts (voronoi cells) that could be filled with the grayscale pixel value at each cell’s
central point in the original image. The analysis of degraded peripheral regions that are represented in
grayscale might also be applied to the aforementioned application domains.

With respect to the hardware side, a promising avenue is the integration of our approach into
an FPGA responsible for resampling uniform images according to some predefined or dynamic
space-variant models. The models could be computed at the FPGA or by software, in which case
an efficient communication mechanism between these layers should be implemented. To provide more
flexibility, the collaborative use of different models and the use of computer graphics techniques to
dynamically reshape them (as with the case of deformable surface models) are relevant investigations
for further works. In these, a more complex repertoire of variables would need to be considered,
including the costs of computing and adapting the models, resampling uniform images inside the
FPGA, and the trade-off among accuracy, storage, and energy. Even with all of these variables in
the field, we believe that such an infrastructure could still favor savings in the use of computational
resources. Another idea that deserves some study is the use of our models along with alternative
technologies for data storage, such as Network Attached Storage (NAS) systems. In this setup,
bandwidth resources may benefit from the use of the space-variant image representation induced by
our models.
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