
sensors

Article

Detecting Matching Blunders of Multi-Source
Remote Sensing Images via Graph Theory

Cailong Deng , Xiuxiao Yuan *, Lixia Deng and Jun Chen

School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China;
dcl@whu.edu.cn (C.D.); denglixia@whu.edu.cn (L.D.); jchen_cug@whu.edu.cn (J.C.)
* Correspondence: yuanxx@whu.edu.cn

Received: 29 May 2020; Accepted: 30 June 2020; Published: 2 July 2020
����������
�������

Abstract: Large radiometric and geometric distortion in multi-source images leads to fewer matching
points with high matching blunder ratios, and global geometric relationship models between
multi-sensor images are inexplicit. Thus, traditional matching blunder detection methods cannot
work effectively. To address this problem, we propose two matching blunder detection methods
based on graph theory. The proposed methods can build statistically significant clusters in the
case of few matching points with high matching blunder ratios, and use local geometric similarity
constraints to detect matching blunders when the global geometric relationship is not explicit.
The first method (named the complete graph-based method) uses clusters constructed by matched
triangles in complete graphs to encode the local geometric similarity of images, and it can detect
matching blunders effectively without considering the global geometric relationship. The second
method uses the triangular irregular network (TIN) graph to approximate a complete graph to
reduce to computational complexity of the first method. We name this the TIN graph-based method.
Experiments show that the two graph-based methods outperform the classical random sample
consensus (RANSAC)-based method in recognition rate, false rate, number of remaining matching
point pairs, dispersion, positional accuracy in simulated and real data (image pairs from Gaofen1,
near infrared ray of Gaofen1, Gaofen2, panchromatic Landsat, Ziyuan3, Jilin1and unmanned aerial
vehicle). Notably, in most cases, the mean false rates of RANSAC, the complete graph-based method
and the TIN graph-based method in simulated data experiments are 0.50, 0.26 and 0.14, respectively.
In addition, the mean positional accuracy (RMSE measured in units of pixels) of the three methods is
2.6, 1.4 and 1.5 in real data experiments, respectively. Furthermore, when matching blunder ratio is no
higher than 50%, the computation time of the TIN graph-based method is nearly equal to that of the
RANSAC-based method, and roughly 2 to 40 times less than that of the complete graph-based method.

Keywords: multi-source remote sensing images; matching blunder detection; complete graph;
TIN graph; RANSAC

1. Introduction

Obtaining stable matching points between images is crucial for the accuracy and efficiency of
current applications of advanced photogrammetric and computer vision methods. However, due to the
large time span, big difference in shooting angles, and different platforms and sensors, there is large
radiometric and geometric distortion among multi-source images. Matching blunders are unavoidable,
and the matching blunders presented in multi-sensor images have two distinct features. Firstly, there are
fewer matching points with higher matching blunder ratios. Matching blunder ratio represents the
ratio of number of matching blunders to the number of whole matching point pairs. Secondly, it is
difficult to derive the transformation models between images from different sensors, that is, the global
geometric relationship models for matching blunder detection in multi-source images cannot be obtained
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easily, and sometimes even do not exist. The geometric relationship model is a mathematical model
under which two corresponding matching points are precisely related. Various researchers have made
contributions to solving the matching blunder detection problems of multi-sensor images, and their
research can be summarized as follows.

(1) For high matching blunder ratios, random sample consensus (RANSAC) [1] is a powerful tool
since it is not sensitive to matching blunder ratios. If all the inliers have a precise geometric relationship
model between images, then RANSAC can always distinguish outliers from inliers. Many researchers
modified either the sampling process [2–4] or the geometric relationship model [5–9] of RANSAC
to make it suitable for certain applications. However, RANSAC and its variants cannot accurately
describe local deformation in images, and are likely to fall into the local minimum when there are
more than two models of a comparable number of observations. Other than RANSAC and its variants,
there are other matching blunder detection methods based on global approximate models. Vector field
consensus (VFC) [10] was robust when used with a large number of outliers, but only experimented
in close-range images. Based on the lq-estimator and an affine model, Li et al. [11] proposed a robust
feature-matching method which can deal with up to 90% outliers, while the experimental image pairs
were from the same sensor. It is difficult for the above-mentioned methods based on global approximate
models to deal with large local geometric deformation caused by large elevation differences. The global
geometric relationship models for matching blunder detection in particular cannot be obtained easily
in multi-source images, or even do not exist.

(2) As there is local deformation in images and sometimes no global geometric relationship models
for detecting matching blunders, many researchers have derived local similarity-based methods.
These methods are generally realized via the neighborhood relations of matching points in the local
image. For example, Zhang et al. [12,13] eliminated mismatching points quickly based on the local
vector field, while mismatching points were assumed to be normally distributed. Chen et al. [14]
alternately carried out the Hough transform and inverted it to establish local feature correspondences,
as well as improved matching precision and recall rate. However, local similarity-based methods
generally depend on the statistical properties of matching blunders. If there are insufficient matching
points, matching blunders will be concealed and cannot be detected.

Graph-based methods [15] pave a possible way to solve this problem as they can build plenty of
redundancy of measurements to calculate meaningful statistical parameters, which are very helpful
for matching blunder detection. Furthermore, the redundancy of measurements for local geometric
similarity can be built via the relation information (such as distance or angle) associated with the edges
in the graphs [16]. Some graph-based methods have found feature correspondences based on the
statistical clusters of edge-to-edge (or pairwise) similarities between matching points. For example,
spectral graph matching (SGM) [17], balanced graph matching (BGM) [18], probabilistic graph matching
(PGM) [19], reweighted random walks for graph matching (RRWM) [20], graph transformation matching
(GTM) [21], and max-pooling matching (MPM) [22] considered pairwise similarities, such as the distance
of an edge pair. However, the methods based on pairwise relationships are only rotation-invariant,
and neither scale-invariant nor affine-invariant. Other graph-based methods have been studied to
solve the limitation, by considering affine-invariant similarities between tuples of feature points.
For instance, weighted graph transformation matching (WGTM) [23], efficient high order matching
(EHOM) [24], high-order graph matching (HOGM) [16], and reweighted random walks hyper-graph
matching (RRWHM) [25] considered angle similarities of triangles formed by triple nodes between
two graphs. These methods have shown good performance in accuracy. However, they have barely
been experimented in multi-source remote sensing images, and generally have high computational
complexity, especially when the matching blunder ratio is high. In addition, Chen et al. [26] used
an affinity tensor to represent the complete graph for detecting matching blunders in multi-sensor
images, while their tenor power iteration method is very time consuming.

To deal with the above distinct features of matching blunders in multi-sensor images, i.e., fewer
matching points with higher matching blunder ratios and unknown global geometric relationship
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models, we study a complete graph-based method which adopts matched triangles between two
complete graphs to encode the local geometric similarity of images to handle unknown global geometric
relationship models. Though there are fewer matching points, statistically significant clusters of matched
triangles can be constructed by the graphs to provide redundant measurements for matching blunder
detection. Meanwhile, the clusters of matched triangles can also identify matching blunders by node
attributes of the induced graph in spite of high matching blunder ratios. The complete graph-based
method can obtain robust experimental results of matching blunder detection in multi-source images.

Besides, in the case of relatively low matching blunder ratios, a triangular irregular network (TIN)
graph can effectively retain geometric properties of a complete graph and hugely reduce computational
complexity of encoding the local similarity of an image. Thus, we propose the TIN graph-based
method, using matched triangles between two TIN graphs for matching blunder detection. The TIN
graph-based method can achieve a good balance between robustness and efficiency in the experiments
of multi-source images. According to different graph forms adopted in graph theory, there are two
graph theory-based methods in this paper: the complete graph-based method for matching blunder
detection (COM graph), and the upgraded version of COM graph, the TIN graph-based method,
which is also used for matching blunder detection (TIN graph). On the whole, the novelties of the
proposed methods are that they can build statistically significant clusters of matched triangles in the
case of few matching points with high matching blunder ratios, and use local geometric similarity
constraints to detect matching blunders when the global geometric relationship is not explicit. In most
cases, the proposed methods have nearly equal recognition rates to RANSAC, but can improve the
performance of detecting matching blunders in a false rate and positional accuracy by about two times
that of RANSAC.

This paper is organized as follows: Firstly, the workflow and principle of TIN graph are described in
detail, and the differences between TIN graph and COM graph are analyzed (Section 2). Secondly, extensive
experiments of simulated data and real data are conducted to comprehensively test the capability and
applicable situations of COM graph, TIN graph and classical RANSAC (Section 3). Finally, this paper is
summarized (Section 4).

2. Methods

The height variations of terrain and building cause some geometric deformation in the stereo
pair of remote sensing images. As the ratio of the height variations to altitudes of the image sensors
is very small, the geometric deformation is generally in a small range, that is, the local geometric
features of the image pairs are almost invariant and similar. The complete graph can provide sufficient
measurements of local geometric similarity to estimate meaningful statistical parameters, which can be
used to distinguish outliers from inliers. Each node is connected with other nodes in the complete
graph. When there are adequate matching points, TIN graph can effectively retain some geometric
properties of the complete graph and hugely reduce computational complexity. Thus, we use TIN
graph to approximate the complete graph and propose a TIN graph-based method. In the following
section, we will provide a detailed descriptions of the complete graph-based method and the TIN
graph-based method for matching blunder detection.

2.1. Complete Graph-Based Method (COM Graph)

Given two initial matching point sets in the image pair from different sensors, the complete
graph-based method (COM graph) aims to detect the matching blunders between the two matching
point sets. COM graph involves three steps (shown in Figure 1). (1) Building the complete graphs.
Two complete graphs are built with the two matching point sets, respectively. (2) Building the induced
graph. The induced graph is computed via similarities of all matched triangle pairs between the two
complete graphs. (3) Iterating the induced graph. Matching blunders can be detected by iteratively
deleting the node of the minimum attribute value and rebuilding the induced graph until the minimum
attribute value meets the given condition.
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A complete graph is a simple undirected graph in which every pair of distinct nodes is connected
by a unique edge, and nodes of the complete graph represent corresponding matching points. As shown
in Figure 1 in the second column, there are 20(C3

6) matched triangle pairs between the two complete
graphs, and for each node pair, there are 10 matched triangle pairs that contain this node pair. That is,
the number of matched triangle pairs is much larger than the number of nodes in complete graphs.
Therefore, complete graphs can construct statistically significant clusters of matched triangle pairs
to encode local geometric similarity for detecting matching blunders. However, too many matched
triangles between complete graphs result in huge computational complexity of COM graph. Thus,
we use TIN graph to approximate the complete graph to improve computational efficiency and, for this
reason, we propose the TIN graph-based method.

2.2. TIN Graph-Based Method (TIN Graph)

Suppose there are n pairs of matching points in the image pair, the number of matched triangle
pairs in the two complete graphs is approximately proportional to n3, and this leads to redundant
information and high computational complexity of COM graph when the number n is very large.
In contrast, the number of matched triangle pairs in two TIN graphs is approximately proportional
to n, and TIN graph can effectively retain some geometric properties of the complete graph in the
case of abundant matching points and relatively low matching blunder ratios. Thus, complete graphs
can be approximated by TIN graphs for improving computational efficiency in some applicable
situations. The proposed TIN graph-based method (TIN graph, shown in Figure 2) also contains three
steps: (1) Building the TIN graphs. (2) Building the induced graph. (3) Iterating the induced graph.
The detailed descriptions of the three steps are as follows:
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2.2.1. Building the TIN Graphs

A TIN graph is a simple undirected graph which is composed of Delaunay triangles, and nodes
of the TIN graph represent corresponding matching points. As shown in Figure 2 in the first and
second column, both matching point sets P1 and P2 contain six matching points in the image pair,
and two TIN graphs G1 and G2 are built with sets P1 and P2 to encode local geometric similarity for
matching blunder detection, respectively. Furthermore, there are five matched triangle pairs between
the two TIN graphs, while the number of matched triangle pairs between the two complete graphs is
20 (shown in Figure 1 in the second column). Thus, in the case of the same number of matching point
pairs, TIN graph has a much smaller number of matched triangle pairs than COM graph.

2.2.2. Building the Induced Graph

The induced graph is the TIN graph with node attribute values that indicate the local geometric
similarity of the matching points (shown in Figure 3). There are two steps for building the induced
graph: (1) Calculate the similarity of matched triangles. (2) Calculate the attribute value of the induced
graph node. The detailed descriptions of the two steps are as follows:

Sensors 2020, 20, x FOR PEER REVIEW 5 of 17 

 

2.2.1. Building the TIN Graphs 

A TIN graph is a simple undirected graph which is composed of Delaunay triangles, and nodes 

of the TIN graph represent corresponding matching points. As shown in Figure 2 in the first and 

second column, both matching point sets P1 and P2 contain six matching points in the image pair, 

and two TIN graphs G1 and G2 are built with sets P1 and P2 to encode local geometric similarity for 

matching blunder detection, respectively. Furthermore, there are five matched triangle pairs between 

the two TIN graphs, while the number of matched triangle pairs between the two complete graphs is 

20 (shown in Figure 1 in the second column). Thus, in the case of the same number of matching point 

pairs, TIN graph has a much smaller number of matched triangle pairs than COM graph. 

2.2.2. Building the Induced Graph 

The induced graph is the TIN graph with node attribute values that indicate the local geometric 

similarity of the matching points (shown in Figure 3). There are two steps for building the induced 

graph: (1) Calculate the similarity of matched triangles. (2) Calculate the attribute value of the induced 

graph node. The detailed descriptions of the two steps are as follows: 

 Complete graphs

 Matched 
triangles

0.92

0.53

0.77

0.82

0.91 0.75

0.92 0.93

0.94

0.91 0.92

1

2

3γα
β

1ʹ

2ʹ

3ʹβʹ γʹαʹ 6

 Induced graph  Induced graph

Iterative 
computation

1

4
5

6

4ʹ
5ʹ

6ʹ

3

2

4
5

1 3

2

4
5

 

Figure 3. The main workflow of building and iterating the induced graph. 

(1) Calculating the similarity of matched triangles 

As shown in Figure 3 in the first column, , (1 1 )  , (2 2 )  , (3 3 )  are three pairs of corresponding 

nodes in the two complete graphs, and triangles Δ123  and   Δ1 2 3  are two corresponding matched 

triangles. The similarity between the two triangles can be computed by Equation (1) [16,24]: 

  s t exp t t
ε

2
Δ123 Δ1 2 32

1
( ) = [- ( - ) ]  (1) 

where s t( )  is the similarity between triangles Δ123  and   Δ1 2 3 , ε  is the Gaussian kernel band 

width (its value is 1 in this paper), 
2

.  is the length of a vector, the vectors tΔ123  and   tΔ1 2 3  are the 

geometric descriptors of triangles Δ123  and   Δ1 2 3 . 

The geometric descriptor of a triangle is usually expressed as cosines of three interior angles in 

the triangle, and they are invariant to translation, rotation and scaling. The triangle descriptors of 

triangles Δ123  and   Δ1 2 3  can be computed by Equation (2): 

  tΔ123 = (cos ,cos ,cos ) ,     
  tΔ1 2 3 = (cos ,cos ,cos )  (2) 

where vectors tΔ123  and   tΔ1 2 3  are the geometric descriptors of triangles Δ123  and   Δ1 2 3 , 

  ( , , )  and     ( , , )  are the interior angles of triangles Δ123  and   Δ1 2 3 , respectively 

(shown in Figure 3 in the first column). 

(2) Calculating the similarity of matched triangles 

Figure 3. The main workflow of building and iterating the induced graph.

(1) Calculating the similarity of matched triangles

As shown in Figure 3 in the first column, (1, 1′) (2, 2′) (3, 3′) are three pairs of corresponding
nodes in the two complete graphs, and triangles ∆123 and ∆1′2′3′ are two corresponding matched
triangles. The similarity between the two triangles can be computed by Equation (1) [16,24]:

s(t) = exp[−
1
ε2 (‖t∆123 − t∆1′2′3′‖)

2] (1)

where s(t) is the similarity between triangles ∆123 and ∆1′2′3′, ε is the Gaussian kernel band width
(its value is 1 in this paper), ‖.‖2 is the length of a vector, the vectors t∆123 and t∆1′2′3′ are the geometric
descriptors of triangles ∆123 and ∆1′2′3′.

The geometric descriptor of a triangle is usually expressed as cosines of three interior angles in the
triangle, and they are invariant to translation, rotation and scaling. The triangle descriptors of triangles
∆123 and ∆1′2′3′ can be computed by Equation (2):

t∆123 = (cosα, cos β, cosγ), t∆1′2′3′ = (cosα′, cos β′, cosγ′) (2)

where vectors t∆123 and t∆1′2′3′ are the geometric descriptors of triangles ∆123 and ∆1′2′3′, (α, β,γ)
and (α′, β′,γ′) are the interior angles of triangles ∆123 and ∆1′2′3′, respectively (shown in Figure 3 in
the first column).



Sensors 2020, 20, 3712 6 of 17

(2) Calculating the similarity of matched triangles

The attribute value of one node is the mean value of summing up similarities of matched triangle
pairs that contain this node. The number of all nodes in the induced graph is set to n, the number of
matched triangle pairs that contain the node i (1 ≤ i ≤ n) is Ni in TIN graphs. Then these Ni matched
triangle pairs can be constructed as one cluster I = {(∆i jk; ∆i′ j′k′), (∆imn; ∆i′m′n′), (∆ipq; ∆i′p′q′), . . .}.
Each element in the cluster I represents one matched triangle pair It, the cluster I can be expressed as:

I = {1 ≤ t ≤ Ni, t ∈ IR|It } (3)

Then, the attribute value vi of the node i can be calculated by Equation (4):

vi =
1

Ni

t=Ni∑
t=1

s(It) (4)

where vi is the attribute value of the node i in the induced graph, s(t) is the similarity of one triangle
pair It, and Ni is the number of all triangle pairs in the cluster I.

The computing method of the node attribute vi can be observed in Figure 3 in the first column.
The cluster I of node 2 has five triangle pairs, namely

{
(∆123; ∆1′2′3′) ,

{
(∆124; ∆1′2′4′) ,

{
(∆245; ∆2′4′5′) ,{

(∆256; ∆2′5′6′) , and
{
(∆236; ∆2′3′6′) , the similarities of the above-mentioned triangle pairs can be

computed by Equation (1), and the attribute value of node 1 can be calculated by Equation (4). Then,
we can obtain the attribute values of all nodes and build the induced graph (shown in Figure 3 in the
second column).

2.2.3. Iterating the Induced Graph

The matched triangle pairs in the cluster I of node i can be divided into the two following cases:
(1) matched triangle set Ia—all matched triangles consist of correct matching points, and (2) matched
triangle set Ib—every matched triangle in the set has at least one erroneous matched point. Therefore,
one triangle pair in Ia has larger similarity than one triangle pair in Ib.

Suppose there are #(Ia) and #(Ib) pairs of matched triangles in Ia and Ib, respectively; and the sum of

similarities of matched triangles in Ia and Ib are
t=#(Ia)∑

t=1
[s(It)] and

t=#(Ib)∑
t=1

[s(It)], respectively. Thus, the attribute

value vi of node i, which contains the cluster Ia and Ib, is vi =
1

#(Ia)+#(Ib)

t=#(Ia)∑
t=1

[s(It)] +
t=#(Ib)∑

t=1
[s(It)]

.

Then, Equation (4) can be transformed as:

vi = [s(Ia) + s(Ib)]/[#(Ia) + #(Ib)] (5)

where vi is the attribute value of node i in the induced graph, s(Ia) is the sum of similarities of matched
triangles in Ia, #(Ia) is the number of matched triangles in Ia, as are s(Ib) and #(Ib). The nodes in the
induced graph represent matching points in the image pair. A correct matching point has the cluster
that contains Ia and Ib, and a matching blunder has the cluster that only contains Ib. Thus, a correct
matching point generally has a larger attribute value than a matching blunder, and the attribute value
of a node represents the probability that the node is a matching blunder, namely, matching blunder
detection can be realized by eliminating the node with a smaller attribute value. For example, as shown
in Figure 3 in the second and third column, node 6 has a much smaller attribute value than the other
nodes (1 to 5), so it is a matching blunder and should be eliminated.

However, in the case of high matching blunder ratios, the cluster I of a correct matching point
contains small Ia and large Ib, that is, a ratio of #(Ia) to #(Ib) may be very low, and the ratio is roughly
inversely proportional to the matching blunder ratio. Thus, attribute values of some correct matching
points may be very close to those of matching blunders, and correct matching points are likely to be
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treated as matching blunders. In order to avoid this case, we adopt the iterative algorithm to filter
induced graph nodes that represent matching blunders (algorithm details are illustrated in Algorithm 1).

Algorithm 1: Matching blunder detection by iterating the induced graph
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matching blunder. 

In Algorithm 1, the threshold V1 for TIN graph can be calculated by Equation (4) based on the
correct matching points in the TIN graphs, and the threshold V2 is generally 0.01. This is also the
case for the thresholds V1 and V2 in COM graph. When there are too many matching points in the
image pair, the iterative computation of Algorithm 1 for COM graph will be too complex, leading to
excessive computation time. Therefore, the image pair can be divided into small regions first, and then
Algorithm 1 can be used to detect matching blunders. Contrastingly, TIN graph generally can achieve
much higher computational efficiency even applying Algorithm 1 to the whole image pair.

2.3. Differences between TIN Graph and COM Graph

When comparing Figures 1 and 2, it is clear that there are much fewer matched triangle pairs
in TIN graphs than in complete graphs, which results in different performances of computational
complexity and robustness for matching blunder detection. The reasons are as follows:

Firstly, fewer matched triangle pairs of TIN graph result in higher computational efficiency than
COM graph. Suppose there are n pairs of matching points in the image pair, the number of matched
triangle pairs in two complete graphs and two TIN graphs is approximately proportional to n3 and n,
respectively. As the main iterative calculation steps (step 3 to step 9 of Algorithm 1) for COM graph
and TIN graph are all based on matched triangle pairs, TIN graph can greatly reduce the overall
computational complexity.

Secondly, fewer matched triangle pairs of TIN graph lead to lower robustness than COM graph.
In the case of high matching blunder ratios, a correct matching point may be surrounded by matching
blunders in graphs. For example, as shown in Figure 4, nodes 1, 6, 7 represent correct matching points,
and nodes 2 to 5 represent matching blunders. Node 1 is affected by nodes 2 to 5 in TIN graph and has
a small cluster that only contains Ib, its attribute value is too small to be distinguished from matching
blunders and even Algorithm 1 cannot work effectively. Contrarily, node 1 is affected by nodes 1 to 7
in the complete graph, thus COM graph can ensure that a correct matching point has a larger cluster
which contains a certain number of both Ia and Ib, and its attribute value is generally larger than
a matching blunder.
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Thus, only in the case of abundant matching points and relatively low matching blunder ratios
should complete graphs be simplified by TIN graphs. In Section 3, we will use simulated data
experiments to show within what range of matching blunder ratios COM graph can be replaced by
TIN graph.

Besides, compared with complete graphs, all matched triangles in TIN graphs are in a small local
image, thus, their geometric features are barely affected by image deformation. Therefore, matched
triangles in Ia for TIN graph have higher similarities than most of matched triangles in Ia for COM
graph, such as ∆123 and ∆267 in Figure 4 (nodes 1, 2, 3, 6, 7 are assumed to be correct matching points
here). In the case of relatively low matching blunder ratios, ratios of #(Ia) to #(Ib) for TIN graph
and COM graph are approximately equal and relatively high. According to Equation (5), TIN graph
can generally obtain a larger attribute value for the same correct matching point than COM graph,
and is less likely to regard correct matching points as matching blunders. Capabilities and applicable
situations of COM graph and TIN graph will be discussed in experiments of simulated data and real
data in Section 3. Generally, TIN graph are less robust in matching blunder detection, and have much
less computational complexity and high detection efficiency.

3. Experimental Results and Discussions

In this section, we select four pairs of complete images captured by the sensors of Gaofen1 (GF1),
near infrared ray of Gaofen1 (GF1-NIR), Gaofen2 (GF2), panchromatic Landsat (Landsat-PAN), Ziyuan3
(ZY3), Jilin1 (JL1) and digital camera of unmanned aerial vehicle (UAV) as real dataset, and extract
four pairs of sub-images from the above complete images as a simulated dataset. Then, based on six
evaluation criteria, experiments of simulated data and real data are conducted to comprehensively
test and compare the capability and applicable situations of COM graph, TIN graph and classical
RANSAC. The simulated data experiments and real data experiments are presented in detail in the
following sections.

3.1. Simulated Data Experiments

The simulated dataset includes four sub-image pairs with 400 × 400 pixels. As shown in Figure 5,
sub-image pairs 1 to 4 are from GF1-NIR and Landsat-PAN, GF-1 and ZY-3, GF-2 and ZY-3, and JL-1
and UAV, respectively. Moreover, 30, 40, 30 and 30 evenly distributed correct matched points were
manually selected as the ground truth in the four sub-image pairs, respectively. The ground truth
represents the confirmed correct matching points between image pairs, used as benchmarks to evaluate
the performance of detection methods in the experiments. In order to test the capability of the methods
for different matching blunder ratios, seven sets of evenly distributed matching blunders are randomly
generated and added into the above four sets of correct tie points, and the matching blunder ratios are
set from 10% to 70%. All the matching blunders are also manually confirmed.
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In order to evaluate the proposed methods in the simulated data experiments, we use three criteria
including recognition rate a, false rate b, and computation time t. The practically used detection method
is likely to detect most, but not all, matching blunders from matching points in practice, and may falsely
treat correct matching points as matching blunders. That is to say, detection methods have different effects
of (1) recognizing matching blunders correctly and (2) misjudging correct matching points. These two
effects can be quantified by two criteria: (1) recognition rate a, (2) false rate b. Besides, recognition rate
a is equal to the recall rate (i.e., the ratio of detected matching blunders to the total matching blunders).

Suppose the initial matching point set contains f pairs of matching blunders and c pairs of correct
matching points. After processing by a detection method, we can obtain a detection result of matching
blunders. Suppose the detection result contains d f1 pairs of true matching blunders and dc1 pairs of
correct matching points. Then, recognition rate a and false rate b can be calculated as follows:

a =
d f1

f
, b =

dc1

c
(6)

Recognition rate a measures the positive effect of the matching blunder detection method, and false
rate b measures the negative effect, that is, greater a and smaller b are always favorable in experiments
and real tasks.

Then, RANSAC, COM graph and TIN graph are conducted in the simulated data, and the
experimental results of recognition rate a, false rate b, and computation time t are shown in Figure 6,
Figure 7 and Table 1, respectively. In the RANSAC scheme, the homography transformation models
are embedded, as the model can give good approximation to the geometric relationship of pine hole
and push-broom sensors [26]. Furthermore, the back-projective error threshold of the homography
transformation model is set to 3.0 pixels.
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Figure 7. Experimental results of false rate b.

The experimental results of recognition rate a (shown in Figure 6) indicate different positive effect
of matching blunder detection for the three methods. With an increase in matching blunder ratios,
the recognition rates of RANSAC and COM graph are mostly around 1.0, indicating that the two
methods can detect nearly all the matching blunders. However, the recognition rates of TIN graph
decrease rapidly when the matching blunder ratios exceed 50% (shown in Figure 6 sub-image pairs 2, 3,
4). As described in Section 2.3, when the matching blunder ratio is too high, a correct matching point is
mostly surrounded by matching blunders, and has a small cluster that only contains Ib in TIN graphs.
Therefore, the attribute value of the correct matching point calculated by TIN graph nearly equals
a matching blunder, that is, TIN graph cannot effectively detect matching blunders. On the other hand,
a correct matching point has a very large cluster that contains a number of Ia and Ib in complete graphs,
and its attribute value is generally larger than a matching blunder. Thus, COM graph can ensure
high recognition rates in spite of high matching blunder ratios, and is more robust than TIN graph.
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Nevertheless, if matching blunder ratio is lower than 50%, COM graph can be replaced by TIN graph
for higher computational efficiency. Alternatively, Algorithm 1 can be transform to a hybrid of TIN
graph and COM graph.

Experimental results of false rate b (shown in Figure 7) indicate that RANSAC has worse negative
effect of matching blunder detection than COM graph and TIN graph, namely, it falsely treats the
largest number of correct matching points as matching blunders. The mean false rates of RANSAC
and COM graph in the four sub-image pairs are 0.3 and 0.5, respectively. Meanwhile, the false rates
of TIN graph are mostly no more than 0.2 within relatively low matching blunder ratios (lower than
50%). The reason is that RANSAC randomly samples matching points to fit the global approximate
transformation model (homography transformation). Both high matching blunder ratios and large local
deformation in the four sub-image pairs lead to large errors in the homography transformation model
and the tendency to trap in local optimum; thus, a large number of correct matching points are falsely
treated as matching blunders. However, both COM graph and TIN graph are local similarity-based
methods that adopt strategies of clustering matched triangles and iterating induced graphs. Therefore,
their false rates are less affected by local image deformation and matching blunder ratios, and are
generally lower than RANSAC.

Within a relatively low matching blunder ratio (generally no higher than 50%), TIN graph has
smaller false rates than COM graph. This can be explained as follows: Let Ia_TIN and Ib_TIN be the
matched triangle sets Ia and Ib for TIN graph, and Ia_COM and Ib_COM be the matched triangle sets Ia and
Ib for COM graph. Apparently, Ia_COM contains Ia_TIN. As analyzed in Section 2.3, matched triangles in
(Ia_COM − Ia_TIN) cover a larger area of the sub-images than matched triangles in Ia_TIN, thus matched
triangles in (Ia_COM − Ia_TIN) are affected by larger image deformation and have lower similarities.
Besides, within the relatively low matching blunder ratios, the ratio of #(Ia_COM) to #(Ib_COM) is
approximately equal to the ratio of #(Ia_TIN) to #(Ib_TIN). According to Equation (5), TIN graph can
generally obtain a larger attribute value for the same correct matching point than COM graph, namely,
TIN graph is less likely to treat the correct matching point as a matching blunder.

Table 1. Experimental results of computation time t (ms, t within 1 ms is not recorded). RANSAC—classical
random sample consensus.

Matching Blunder Ratio 10% 20% 30% 40% 50% 60% 70%

Sub-image pair 1
RANSAC <1 <1 15 16 47 47 47

COM graph <1 <1 16 31 63 110 250
TIN graph <1 16 <1 15 15 31 62

Sub-image pair 2
RANSAC <1 <1 <1 <1 31 47 46

COM graph 15 31 47 62 125 266 532
TIN graph <1 16 16 31 <1 <1 62

Sub-image pair 3
RANSAC <1 16 <1 15 47 62 47

COM graph 15 31 32 47 78 140 296
TIN graph <1 <1 15 16 16 <1 <1

Sub-image pair 4
RANSAC 16 15 15 32 47 47 46

COM graph <1 16 31 46 63 109 250
TIN graph <1 <1 <1 <1 15 <1 16

In the experiments of four pairs of sub-images, there are two remarkable characteristics of
computation time for the three methods (shown in Table 1). (1) The computation time of the three
methods presents an increasing trend with an increase in matching blunder ratios. This is because
RANSAC needs more iterations to generate a correct sample, and both COM graph and TIN graph need
more time to iterate induced graphs (illustrated in Algorithm 1). (2) The computational complexity
of TIN graph nearly equals that of RANSAC, while COM graph has a much higher computational
complexity than TIN graph and RANSAC. The reason is that COM graph needs plenty of time to build
complete graphs and induced graphs in the same situation (as analyzed in Section 2.3).
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3.2. Real Data Experiments

The main parameters of the four image pairs in a real dataset are shown in Table 2, all image
pairs are typically characterized with non-linear density differences and considerable textural changes.
As shown in Figure 8, experiments 1 to 4 represent the four complete images pairs of GF1-NIR and
Landsat-PAN, GF-1 and ZY-3, GF-2 and ZY-3, and JL-1 and UAV, respectively. We adopt the matching
algorithm based on graph theory [27] to obtain 898, 10,523, 7178, and 231 pairs of initial matching
points, and manually measure evenly distributed 22, 41, 34 and 13 pairs of correct matching points as
the checkpoints, respectively. These checkpoints are the ground truth in the performance evaluation of
the proposed algorithms.

Table 2. Parameters of experimental complete image pairs.

No. Image Pair Landform Image Size (Pixels) GSD (m) Acquisition Date

1
GF1-NIR High

mountain
5108 × 6255 2.0 November 2013

Landsat-PAN 5438 × 6090 2.1 July 2013

2
GF-1

Mountain
20,766 × 20,662 2.0 November 2013

ZY-3 30,008 × 30,100 2.1 December 2012

3
GF-2

Urban area
9375 × 9231 1.0 February 2015

ZY-3 20,516 × 20,613 2.1 October 2012

4
JL-1

Hill
4765 × 4070 1.0 July 2014

UAV 4990 × 3908 0.5 January 2014

Sensors 2020, 20, x FOR PEER REVIEW 12 of 17 

 

computational complexity than TIN graph and RANSAC. The reason is that COM graph needs plenty 

of time to build complete graphs and induced graphs in the same situation (as analyzed in Section 

2.3). 

3.2. Real Data Experiments 

The main parameters of the four image pairs in a real dataset are shown in Table 2, all image 

pairs are typically characterized with non-linear density differences and considerable textural 

changes. As shown in Figure 8, experiments 1 to 4 represent the four complete images pairs of GF1-

NIR and Landsat-PAN, GF-1 and ZY-3, GF-2 and ZY-3, and JL-1 and UAV, respectively. We adopt 

the matching algorithm based on graph theory [27] to obtain 898, 10,523, 7178, and 231 pairs of initial 

matching points, and manually measure evenly distributed 22, 41, 34 and 13 pairs of correct matching 

points as the checkpoints, respectively. These checkpoints are the ground truth in the performance 

evaluation of the proposed algorithms. 

Table 2. Parameters of experimental complete image pairs. 

No. Image Pair Landform Image Size (Pixels) GSD (m) Acquisition Date 

1 
GF1-NIR 

High mountain 
5108 × 6255 2.0 November 2013 

Landsat-PAN 5438 × 6090 2.1 July 2013 

2 
GF-1 

Mountain 
20,766 × 20,662 2.0 November 2013 

ZY-3 30,008 × 30,100 2.1 December 2012 

3 
GF-2 

Urban area 
9375 × 9231 1.0 February 2015 

ZY-3 20,516 × 20,613 2.1 October 2012 

4 
JL-1 

Hill 
4765 × 4070 1.0 July 2014 

UAV 4990 × 3908 0.5 January 2014 

 

 
Experiment 1 

 

 
Experiment 3 

 
Experiment 2 

 

 
Experiment 4 

Figure 8. All the obtained matching points in the four complete image pairs. Yellow crosses represent 

the initial matching points and red crosses represent the checkpoints. 

In order to evaluate the proposed methods in the real data experiments, we use four criteria, 

namely, number of remaining matching point pairs, dispersion, positional accuracy (RMSE—root 

mean square error), and computation time. Dispersion and positional accuracy are determined as 

follows: Dispersion represents the spatial distribution of the matching points in the image, and it is 

Figure 8. All the obtained matching points in the four complete image pairs. Yellow crosses represent
the initial matching points and red crosses represent the checkpoints.

In order to evaluate the proposed methods in the real data experiments, we use four criteria,
namely, number of remaining matching point pairs, dispersion, positional accuracy (RMSE—root
mean square error), and computation time. Dispersion and positional accuracy are determined as
follows: Dispersion represents the spatial distribution of the matching points in the image, and it is
closely related to the positional accuracy of satellite images. Dispersion of the matching points can be
computed by Equation (7) [28]:
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D = DS ×DA =

√√ n∑
i=1

(Ai/A− 1)
2
/
(n− 1) ×

√√ n∑
i=1

(Si − 1)2
/
(n− 1) (7)

where D is the dispersion of the matching points, n is the number of all triangles in the TIN constructed
by matching points, DS is the quantified value of area changes of all triangles, DA is the quantified
value of shape changes of all triangles, Ai is the area of triangle i, A is the average area of all triangles,
Si is the largest interior angle of triangle i. Smaller dispersion of the matching points means more
uniform spatial distribution of the matching points. The larger dispersion value between an image
pair is generally selected as the final dispersion D.

The positional accuracy (RMSE) of satellite images is usually calculated by the method of TIN
analysis [29]:

RMSE = RMSE =

√√ n∑
i=1

(Xi −X′i )
2
/
n (8)

where n is the number of checkpoints, Xi is the real coordinates of checkpoint I in image plane, and X′i is
the coordinates of checkpoint i calculated by the corresponding affine transformation model. First, two
TINs are constructed using all matching points of an image pair, and n pairs of evenly distributed
checkpoints are added to the Delaunay triangle pairs in the two TINs. Then, an affine transformation
model is fitted by the triangle pairs with checkpoint i, and X′i can be calculated. Lastly, RMSE is
calculated through n pairs of checkpoints.

Then, RANSAC, COM graph and TIN graph are conducted in the real data, and experimental
results of a number of remaining matching point pairs (NRPairs), dispersion, positional accuracy,
and computation time are shown in Figures 9–11 and Table 3, respectively. Additionally, NONE
represents the statistical results of the initial matching points which are not handled with any
detection methods.
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Figure 9. Experimental results of the number of remaining matching point pairs (NRPairs).

The number of remaining matching point pairs (NRPairs) is closely related to the recognition rate
and false rate of the matching blunder detection method. As shown in Figure 9, RANSAC acquires
much less NRPairs than COM graph and TIN graph in experiments 1 to 4, and TIN graph acquires more
NRPairs than COM graph in experiments 2 to 4. The experimental results of NRPairs indicate that TIN
graph can work effectively and matching blunder ratios of the four experiments are within relatively
low ranges (no higher than 50%). Thus, the three methods have a recognition rate of about 1.0 and can
almost detect all matching blunders in experiments 1 to 4. Besides, a higher false rate means the method
falsely treats more correct matching points as matching blunders. Thus, the NRPairs of RANSAC is
slightly less than that of COM graph, and much less than that of TIN graph in experiments 2 to 4.

However, TIN graph acquires the least NRPairs in experiment 1. The reason is that high mountains
in the whole images of experiment 1 lead to huge local image deformation, and the matching triangles
in Ia for TIN graph and COM graph are all affected by large image deformation and have relatively
low similarities. Moreover, the matching points distribute relatively sparsely and not evenly, that is,
a correct matching point may be surrounded by matching blunders. Therefore, TIN graph is more
likely to falsely treat a correct matching point as a matching blunder and obtain a very high false rate
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in experiment 1, while COM graph has a much larger matched triangle set Ia, and is more successful at
maintaining its low false rate.
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Figure 10. Experimental results of dispersion D.

In order to easily show and compare the experimental results of dispersion, we first take the
base-10 logarithm of the initial dispersion, then take the negative of the previous results to obtain the
dispersion D in the four experiments (shown in Figure 10). Thus, larger dispersion D in Figure 10 means
more even spatial distribution of the matching points. In experiments 1 to 4, all the three methods have
smaller dispersion D than NONE, indicating that spatial distribution of the matching points becomes
worse. Meanwhile, RANSAC has the smallest dispersion D, namely, the worst spatial distribution of
the matching points. Additionally, COM graph and TIN graph have nearly equal dispersion D.
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Figure 11. Experimental results of positional accuracy (RMSE, pixel).

Larger NRPairs, better dispersion and a lower matching blunder ratio generally mean better
positional accuracy of the remaining matching points. Since all the experimental results of the three
methods have low and approximately equal matching blunder ratios, and according to the experimental
results of NRPairs (shown in Figure 9) and dispersion (shown in Figure 10), RANSAC should have
a much worse positional accuracy than COM graph and TIN graph (shown in Figure 11). Compared
with NONE, the positional accuracy of RANSAC is somewhat better in experiment 2, is slightly worse
in experiment 3, and is especially worse in experiment 1 and experiment 4. Meanwhile, both COM
graph and TIN graph obtain a better positional accuracy than NONE in experiments 1 to 4. Moreover,
COM graph has overall a higher positional accuracy than TIN graph. Though RANSAC, COM graph
and TIN graph all have smaller NRPairs, worse dispersion and lower matching blunder ratios than
NONE, their positional accuracies have remarkably different performances. The reason is that COM
graph and TIN graph have much larger NRPairs and better dispersion than RANSAC, and this may be
somehow related to the calculation method of positional accuracy (Equation (8)).

Table 3. Experimental results of computation time t (ms).

Experiment 1 Experiment 2 Experiment 3 Experiment 4

NONE - - - -
RANSAC 17 27 8 12

COM graph 52 1034 691 10
TIN graph 13 31 16 2

Computation time results of the three methods (shown in Table 3) indicate two significant
characteristics in real data experiments. (1) TIN graph has the almost equal computational complexity



Sensors 2020, 20, 3712 15 of 17

to RANAC, and they have much lower computational complexity than COM graph, as verified in the
simulated data experiments (shown in Table 1). (2) The computation time of RANSAC is related to
image terrain, while both COM graph and TIN graph are barely affected by the terrain. When geometric
deformation between images is large, traditional homography transformation adopted by RANSAC
cannot express the geometric relationship between images accurately, thus, it needs more iterations to
produce an optimal consensus. Contrarily, both COM graph and TIN graph adopt clusters of matched
triangle pairs to encode the local similarity of images, and they are independent of geometric deformation
between images.

4. Conclusions

To solve the matching blunder detection problems of multi-source remote sensing images, namely,
fewer matching points with higher matching blunder ratios and unknown global geometric relationship
models between images, we studied the complete graph-based method (COM graph) and the TIN
graph-based method (TIN graph). Both the above-mentioned methods first construct clusters of
matched triangle pairs in two graphs to encode the local geometric similarity of images, then calculate
node attribute values of the induced graph to identify matching blunders.

Based on simulated data and real data experiments, both COM graph and TIN graph can acquire
reliable detection results and outperform the classical RANSAC method in terms of recognition rate,
false rate, the number of remaining matching point pairs, dispersion, and positional accuracy in
most cases. This is because the biggest disadvantage of RANSAC is that it cannot handle large local
geometric deformation, especially in multi-source image pairs. In contrast, both COM graph and TIN
graph are rarely affected by geometric deformation.

In terms of multi-source images with large local geometric deformation, (1) in the case of high
matching blunder ratios (10% to 70%), COM graph can achieve a better performance of detecting
matching blunders than RANSAC, and it has a higher computational complexity and requires much
more computation time; (2) in the case of relatively low matching blunder ratios (generally no higher
than 50%), TIN graph can obtain better detection results than RANSAC, and the computation time of
TIN graph and RANSAC is approximately equal.

However, the proposed methods can only detect matching blunders, and cannot give an optimal
geometric model between multi-source images when the factor of matching noise is considered.
Furthermore, the proposed TIN graph has the disadvantage that it will not work if the matching
blunder ratio is higher than 50%. Besides, in experiments of simulated data and real data, the two graph
theory-based methods, namely COM graph and TIN graph, can only handle one pair of multi-source
images at a time. It is worth considering how to deal with matching blunders of multi-view images via
graph theory, as well as further enhancing the robustness of the proposed methods.
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