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Abstract: We consider measures of nonlinearity (MoNs) of a polynomial curve in two-dimensions
(2D), as previously studied in our Fusion 2010 and 2019 ICCAIS papers. Our previous work
calculated curvature measures of nonlinearity (MoNs) using (i) extrinsic curvature, (ii) Bates and Watts
parameter-effects curvature, and (iii) direct parameter-effects curvature. In this paper, we have
introduced the computation and analysis of a number of new MoNs, including Beale’s MoN,
Linssen’s MoN, Li’s MoN, and the MoN of Straka, Duník, and S̆imandl. Our results show that
all of the MoNs studied follow the same type of variation as a function of the independent variable
and the power of the polynomial. Secondly, theoretical analysis and numerical results show that
the logarithm of the mean square error (MSE) is an affine function of the logarithm of the MoN for each
type of MoN. This implies that, when the MoN increases, the MSE increases. We have presented an
up-to-date review of various MoNs in the context of non-linear parameter estimation and non-linear
filtering. The MoNs studied here can be used to compute MoN in non-linear filtering problems.

Keywords: polynomial curve in 2D; measures of nonlinearity (MoNs); extrinsic curvature;
Beale’s MoN; Linssen’s MoN; Bates and Watts parameter-effects curvature; direct parameter-effects
curvature; Li’s MoN; MoN of Straka, Duník, and S̆imandl; maximum likelihood estimator (MLE);
Cramér-Rao lower bound (CRLB)

1. Introduction

The Kalman filter (KF) [1–4] is an optimal estimator (in the minimum mean square error (MMSE)
sense) for a filtering problem with linear dynamic and measurement models with additive Gaussian
noise. However, many real-world filtering problems are non-linear due to nonlinearity in the dynamic
and measurement models. Common real-world non-linear filtering (NLF) problems are bearing-only
filtering [5–8], ground moving target indicator (GMTI) filtering [9], passive angle-only filtering
in three-dimensions (3D) using an infrared search and track sensor [10–12], etc.

In the early stages of NLF, the extended Kalman filter (EKF) [1–4] was widely used. It was
observed in some problems, e.g., falling of a body in earth’s atmosphere with high velocity [13,14]
and bearing-only filtering [5,7,8] that the EKF performs poorly due to linearization. The high degree
of nonlinearity in these problems was the attributed cause for the poor performance of the problem
without a quantitative measure of nonlinearity (MoN). To overcome the poor accuracy and convergence
problems of the EKF, a number of improved approximate non-linear filters, such as the unscented
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Kalman filter (UKF) [14,15], cubature KF (CKF) [16], and particle filter (PF) [8,17] have been proposed
during the last two decades.

It is important to address the following questions for NLF problems:

1. Is it possible to find a quantitative MoN for a nonlinear filtering problem?
2. Can we establish a correspondence between the MoN of a NLF problem and the performance of

a filtering algorithm?
3. Can we show that the UKF, CKF, or PF gives better results than the EKF, when the degree of

nonlinearity (DoN) is high?

Remark 1. In this paper we consider a parameter estimation problem with polynomial nonlinearity. We hope that
insights and results from this analysis would encourage further study of MoN in NLF problems. Next, we describe
some historical developments in the field of parameter estimation and NLF.

Beale in his pioneering work [18] proposed four MoNs for the static non-random parameter estimation
problem. Two MoNs were empirical and two were theoretical. Guttman and Meeter [19] and Linssen [20]
observed that Beale’s method gives lower MoN for highly non-linear problems and proposed a
modified MoN. Using differential geometry based curvature measures, Bates and Watts [21,22]
and Goldberg et al. [23] extended Beale’s work and developed curvature measures of nonlinearity
(CMoN) for the static non-random parameter estimation problem. Bates and Watts formulated two
CMoN, the parameter-effects curvature and intrinsic curvature [21,24–26].

In [27], we first extended the method of Bates and Watts to the non-linear filtering problem
with unattended ground sensor (UGS) to calculate CMoN. Next, we computed the parameter-effects
curvature and intrinsic curvature for the bearing-only filtering (BOF) problem [28–31], GMTI filtering
problem [30,32,33], video tracking problem [34], and polynomial nonlinearity [35].

In our previous work [35], we considered a polynomial curve in two-dimensions (2D)
and calculated CMoN using differential geometry (e.g., extrinsic curvature) [36–38], Bates and Watts
parameter-effects curvature [21,25,26], and direct parameter-effects curvature [29]. The computation
of these curvatures requires the Jacobian and Hessian of the measurement function [2] evaluated at
the true or estimated parameter. The extrinsic curvature uses the true parameter, whereas the other
two CMoN use the estimated parameter.

In [35], we obtained the maximum likelihood (ML) estimate [2,39] of the parameter x while using
a vector measurement by numerical minimization. In [40], we derived analytic expressions for the ML
estimator (MLE) [2,39] and associated variance using a vector measurement. This approach is simple
and efficient, since it does not require numerical minimization. We also showed through Monte Carlo
simulations in [40] that the variance of the MLE and the Cramér-Rao lower bound (CRLB) [2,41] are
nearly the same for different powers of x. We also found that the bias error was small and the mean
square error (MSE) [2] was close to the CRLB and variance of the MLE. Our numerical results showed
that the average normalized estimation error squared (ANEES) [42] was within the 99% confidence
interval most of the time. Hence, the variance of the MLE was in agreement with the estimation error.

Li constructed a combined non-linear function while using the non-linear time evolution function
and measurement function in a discrete-time nonlinear filtering problem, and he proposed a global
MoN at each measurement time [43]. This MoN minimizes the mean square distance between
the combined non-linear function and the set of all affine functions with the same dimension at
each measurement time. An un-normalized MoN and a normalized MoN were proposed in [43].
These MoNs can also be unconditional or conditional. The normalized MoN lies in the interval [0, 1].
A journal version of the paper with enhancements was published in [44].

The normalized MoN that was proposed in [43] was calculated for non-linear filtering problems,
including one with the nearly constant turn motion and a non-linear measurement model [45],
a video tracking problem using PF [46], and a hypersonic entry vehicle state estimation problem [47].
In these cases, the normalized MoN were rather low. In [33], we compared the normalized MoN for
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the BOF and GMTI filtering problems. Contrary to our expectation, we found that the GMTI filtering
problem had a higher conditional normalized MoN than that of the BOF problem in the examples that
we investigated.

Using the current mean (e.g., predicted mean) and associated covariance, Duník et al. [48] generate
a number of sample points (e.g., sigma points using unscented transform [14]) and transform these
points using a non-linear function (e.g., non-linear measurement function or time evolution function).
Subsequently, they try to predict the transformed points using a linear transformation and estimate
the parameter of the transformation using linear weighted least squares (WLS) [39]. They use the cost
function of the WLS evaluated at the estimated parameter as a local MoN.

In [35], we showed analytically and through Monte Carlo simulations that affine mappings with
positive slopes exist among the logarithm of the extrinsic curvature, Bates and Watts parameter-effects
curvature, direct parameter-effects curvature, MSE, and CRLB. For completeness, we have included
these key results from [35] in Section 4. New contributions in this paper include the computation
and analysis of following MoNs:

• Beale’s MoN [18],
• Least squares based Beale’s MoN,
• Linssen’s MoN [20],
• Least squares based Linssen’s MoN,
• Li’s MoN [43,44], and
• MoN of Straka, Duník, and S̆imandl [48,49].

It is not possible to derive a mapping analytically between the logarithm of Beale’s MoN,
Linssen’s MoN, Li’s MoN, MoN of Straka, Duník, and S̆imandl, and the logarithm of the MSE.
The numerical results from Monte Carlo simulations also show that affine mappings with positive
slopes exist among the logarithm of the MSE and the logarithm of two of these MoNs.

The paper is organized, as follows. Section 2.1 describes the measurement model for polynomial
nonlinearity. The MLE for parameter estimation and CRLB using polynomial nonlinearity and a
vector measurement is presented in Section 2. Section 3 presents different types of MoN, such as
extrinsic curvature based on differential geometry, Beale’s MoN, Linssen’s MoN, Bates and Watts
parameter-effects curvature, direct parameter-effects curvature, Li’s MoN, and MoN of Straka, et al.
Section 4 discusses mappings among logarithms of extrinsic curvature, parameter-effects curvature,
CRLB, and MSE. Section 5 presents the numerical simulation and results. Finally, Section 6 summarizes
our contribution and concludes with future work.

Notation Convention: For clarity, we use italics to denote scalar quantities and boldface for vectors
and matrices. A lower or upper case Roman letter represents a name (e.g., “s” for “sensor”, “RMS” for
“root mean square”, etc.). We use “:=” to define a quantity and A′ denotes the transpose of the vector
or matrix A. The n−dimensional identity matrix, m−dimensional null matrix, and m× n null matrix
are denoted by In, 0m, and 0m×n, respectively.

2. MLE Parameter Estimation and CRLB

2.1. Measurement Model

We studied CMoN of a polynomial smooth scalar function h of a non-random variable x
in [35], where

h(x) = axn, (1)

and a is a non-zero scalar. In scenarios considered, x > 0 and n = 2, 3, 4, 5.

Remark 2. For MoN of other forms of nonlinearity, such as the bearing-only [27], GMTI [32], and video
filtering [34] problems in radar communities, we shall discuss in detail in the end of Section 3.
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The measurement model for the polynomial function is given by

zi = h(x) + vi, i = 1, . . . , N, (2)

where vi is a zero-mean white Gaussian measurement noise with variance σ2,

vi ∼ N (0, σ2). (3)

We assume that the measurement noises are independent.
The measurement model can be written in the vector form

z = h(x) + v, (4)

where
z :=

[
z1 z2 . . . zN

]′
, (5)

v :=
[

v1 v2 . . . vN

]′
, (6)

h(x) := h(x)d, (7)

d :=
[

1 1 . . . 1
]′

, (8)

v ∼ N (0, R), R = INσ2. (9)

2.2. ML Estimate of Parameter

The likelihood function of x is [2,50,51]

Λ(x; z) = p(z|x) = [(2π)N |R|]−1/2 exp{−(1/2)[z− h(x)]′R−1[z− h(x)]}. (10)

The maximization of the likelihood in (10) is equivalent to the minimization of the cost function [2,51]

J(x) = [z− h(x)]′R−1[z− h(x)] = [z− h(x)]′[z− h(x)]/σ2. (11)

The maximum likelihood (ML) estimate x̂ of x is obtained by setting the derivative of J(x) to
zero [2,51],

dJ(x)
dx

= 0. (12)

From (11) and (12), we obtain

[z− h(x̂)]′
dh(x̂)

dx
= 0. (13)

Because the derivative of h(x) with respect to x is not zero, we obtain

z− h(x̂) = 0N×1. (14)

Hence, the ML estimate satisfies,
h(x̂)d = z. (15)

Left-multiplying both sides of (15) by d′, we obtain

h(x̂)d′d = d′z =
N

∑
i=1

zi. (16)
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We note that
d′d = N. (17)

Using (1) and (17) in (16) we get
ax̂n = z̄, (18)

where z̄ is the sample mean of z,

z̄ =
1
N

N

∑
i=1

zi. (19)

Thus, from (18), the ML estimate of x is given by

x̂ = (z̄/a)1/n, n = 2, 3, . . . . (20)

Remark 3. In general, the MLE for a nonlinear measurement model is biased [51]. We can calculate the variance
of x̂ under the small error assumption using the linearization approximation. To guarantee the validity of
the variance, the bias in the MLE must be calculated. The bias can be numerically calculated using Monte
Carlo simulation.

The bias in the MLE is defined by [2,51]

b(x) := x− x̂. (21)

Remark 4. The ML estimate of x in [35] was obtained by minimizing the cost function in (11) numerically.
The estimator in (20) provides simple and efficient way of estimating x using a vector measurement z without
numerical optimization.

2.3. Variance of the MLE

The variance of x̂ is given by [51]

σ2
x = (Ḣ′R−1Ḣ)−1, (22)

where

Ḣ =
dh(x)

dx

∣∣∣
x=x̂

. (23)

Using the special form of R from (9) in (22), we get

σ2
x = σ2(Ḣ′Ḣ)−1. (24)

Using (7) in (23), we get

Ḣ =
dh(x)

dx

∣∣∣
x=x̂

d. (25)

Differentiating (1) with respect to x, we obtain

dh(x)
dx

= anxn−1. (26)

Using (26) in (25), we get
Ḣ = anx̂n−1d. (27)

From (27), we obtain
Ḣ′Ḣ = (anx̂n−1)2 d′d, (28)
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Using (28) and (17) in (24), we obtain

σ2
x = σ2(Ḣ′Ḣ)−1 =

σ2

N(anx̂n−1)2 , (29)

σx =
σ√

Nanx̂n−1
. (30)

2.4. Cramér-Rao Lower Bound

The CRLB [2,41] for the MSE in the current problem is given by

CRLBx =

[
dh′(x)

dx
R−1 dh(x)

dx

]−1

. (31)

Remark 5. Calculation of the variance σ2
x and CRLBx are similar. For σ2

x , we use the estimate x̂ while
calculating the Jacobian of the measurement function, whereas, for CRLBx, we use the true x while calculating
the Jacobian of the measurement function.

Using similar procedure, we obtain

CRLBx =
σ2

N(anxn−1)2 , (32)

√
CRLBx =

σ√
Nanxn−1

. (33)

From (30) and (33), we find that, for a given x, the standard deviation (SD) and square root
of CRLB are inversely proportional to the power n. Secondly (33) shows that, for a given power,
the square root of CRLB decreases as x increases.

3. Measures of Nonlinearity

To explain the key concepts of nonlinearity, consider the scalar function h(x) = 5 sin (4x)/x
shown in Figure 1. We observe in Figure 1 that the function is nearly linear at A and E. If we draw
a tangent to the curve at A and E, then the curve is close to the tangent in the neighborhood of A
and E. However, tangents to the curve at points B, C, and D differ by large amounts from the curve
in the neighborhood of these points. The tangent represents an affine approximation to the curve at
a point. We observe that, among points B, C, and D, the curve bends the most at B and the least at
point D. If we draw a circle (called the osculating circle) at these points, then the radius of the circle
can be used to judge nonlinearity. The rate of bending is high when the radius of the circle is small.
In differential geometry [37,38], the curvature κ is inverse of the radius of the osculating circle and,
hence, curvature can be viewed as a measure of nonlinearity. The radii of the osculating circles at A
and E are nearly infinity and, hence, the curvatures are nearly zero. From Figure 1, we observe that,
in general, the nonlinearity of a function can vary with x. Hence, the nonlinearity is a local measure.
If the second derivative of a function is non-zero, then the function is non-linear.

In [35,40], we analyzed the CMoN of a polynomial scalar function h of a non-random variable
x, as described in Section 2.1. The CMoN were based on the extrinsic curvature using differential
geometry, Bates and Watts parameter-effects curvature, and direct parameter-effects curvature. In this
paper, we study the following MoNs:

• extrinsic curvature using differential geometry [36–38],
• Beale’s MoN [18],
• least squares based Beale’s MoN,
• Linssen’s MoN [20],
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• Least squares based Linssen’s MoN,
• parameter-effects curvatures [21,25,29],
• Li’s MoN [43,44], and
• MoN of Straka, Duník, and S̆imandl [48,49].
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Figure 1. y = 5 sin(4x)/x versus x.

If a MoN has a high value, then the nonlinearity is high and if it has a low value, then the Therefore,
it is impossible to compare them based on numerical values. We can only study their variations.

Consider the m-dimensional vector non-linear function h of the non-random n−dimensional
parameter x. Let x̂ be a known estimate of x. Using the Taylor series expansion of h(x) about x̂
and keeping the first order term gives

h(x) ≈ T(x) = h(x̂) + Ḣ(x− x̂), (34)

where T(x) represents the tangent plane approximation (an affine mapping) to h(x) and

Ḣ =
dh(x)

dx

∣∣∣
x=x̂

. (35)

If m > n, then h is an n−dimensional manifold embedded in an m−dimensional space [37,38].
The tangent plane is tangent to the surface h at x̂. The concept of tangent plane is used in Beale’s MoN,
Linssen’s MoN, Bates and Watts parameter-effects curvatures [21,25], and direct parameter-effects
curvature [44].

For polynomial nonlinearity, the CMoN using differential geometry is calculated at the true value x
and, hence, it is non-random. The Bates and Watts parameter-effects curvature, direct parameter-effects
curvature, Beale’s MoN, Li’s MoN, and the MoN of Straka et al. are calculated while using an estimate
x̂ of x. The estimate x̂ is obtained from a measurement model involving the measurement function
h. Since x is a scalar, we need one or more scalar measurements to estimate x. Table 1 summarizes
features of various MoNs.
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Table 1. Features of Various MoNs

MoN Parameters Used Local/Global Need? Basic Idea Random?
Measurements Jacobian/Hessian Covariances

Extrinsic
Curvature

True Local No
Jacobian and Hessian
at true value No Differential

Geometry
Non-random

Beale’s MoN True & estimated Local Yes Jacobian No
Scaled sum
square distance Random

Linssen’s MoN True & estimated Local Yes Jacobian No
Root scaled sum
square distance Random

Parameter-effects
Curvature True & estimated Local Yes

Jacobian and Hessian
at estimated value No Differential

Geometry
Random

Li’s MoN True Global Yes No Yes
min. mean
square distance Random

MoN by
Straka et al. True & estimated Local Yes No No WLS cost function Random

The CMoN using differential geometry [36–38] is calculated at the true value x, whereas the Bates
and Watts parameter-effects curvature [21,25,26], direct parameter-effects curvature [29], Beale’s MoN,
Li’s MoN, and the MoN of Straka et al. are calculated while using an estimate x̂ of x. The estimate
x̂ is obtained from a measurement model involving the measurement function h. Since x is a scalar,
we need one or more scalar measurements to estimate x. Next, we describe various MoN.

3.1. Extrinsic Curvature Using Differential Geometry

The curvature of a circle at every point on the circumference is equal to the inverse of the radius
of the circle. Thus, the curvature of a circle is a constant. A circle with a smaller radius bends more
sharply and, therefore, has a higher curvature.

We assume that the first and second derivatives of the nonlinear smooth scalar function h exist.
The curvature of the curve y = h(x) at a point x is equal to the curvature of the osculating circle at that
point. The extrinsic curvature at the point x is defined by [36–38],

κ(x) :=

∣∣∣ d2h(x)
dx2

∣∣∣
[1 + ( dh(x)

dx )2]3/2
=

∣∣ḧ(x)
∣∣

[1 + ḣ(x)2]3/2
. (36)

The first derivative of h at a point x is given in (26). The second derivative of h with respect to x is
given by

ḧ(x) =
d2h(x)

dx2 = an(n− 1)xn−2, n = 2, 3, . . . . (37)

Thus, using ḣ(x) and ḧ(x) in (36), we can calculate the extrinsic curvature κ(x) at any point x by

κ(x) =
an(n− 1)xn−2

[1 + (an)2x2(n−1)]3/2
. (38)

3.2. Beale’s MoN

Consider the nonlinear measurement model for the non-random n-dimensional parameter x

z = h(x) + v, (39)

where z, h, and v are the measurement, non-linear measurement function, and measurement noise,
respectively. Let x̂ be an estimate of x. Subsequently, a Taylor series expansion of h(x) about
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x̂ and keeping the first order term is as (34). Suppose we choose m vectors xi, i = 1, 2, . . . , m
in the neighborhood of x. Then Beale’s first empirical MoN [18] is given by

N̂x = ρ2 ∑m
i=1 ‖h(xi)− T(xi)‖2

∑m
i=1 ‖h(xi)− h(x̂)‖4 , (40)

where ρ is the standard radius and it is defined by

ρ2 := ‖z− h(x̂)‖2/(n(N − n)). (41)

Guttman and Meeter [19] observed that the empirical MoN underestimates severe nonlinearity.
When m approaches infinity, the empirical MoN N̂x approaches the theoretical MoN Nx.

3.3. Least Squares Based Beale’s MoN

Consider the scalar function h for polynomial nonlinearity, as described in (1). As described
in Beale’s MoN, we choose m points xi, i = 1, 2, . . . , m in th neighborhood of x. Let

yi = axn
i , i = 1, 2, . . . , m. (42)

An affine mapping as approximation to yi is given by

L(xi) = A + Bxi, i = 1, 2, . . . , m. (43)

We compute A and B by minimizing the cost function

J(A, B) :=
m

∑
i=1

(yi − A− Bxi)
2 (44)

by the method of least squares (LS) [2,39]. The LS minimization of the cost function yields [52]

B̂ = (Cxy − x̄ ȳ)/(Cxx − x̄2), (45)

Â = ȳ− B̂x̄, (46)

where

x̄ =
1
m

m

∑
i=1

xi, ȳ =
1
m

m

∑
i=1

yi, (47)

Cxx =
1
m

m

∑
i=1

x2
i , Cxy =

1
m

m

∑
i=1

xiyi. (48)

Then we can use the affine mapping with Â and B̂ in Beale’s MoN.

3.4. Linssen’s MoN

In order the correct the deficiency in Beale’s MoN, Linssen proposed a modification to
obtain the following MoN [20]

M∗ =

√
ρ2 ∑m

i=1 ‖h(xi)− T(xi)‖2

∑m
i=1 ‖h(x̂)− T(xi)‖4 . (49)

3.5. Least Squares Based Linssen’s MoN

Using the same procedure as in Section 3.3, we can use an affine mapping with Â and B̂ as an
approximation to yi in computing Linssen’s MoN.
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3.6. Parameter-Effects Curvatures

The parameter-effects curvature and intrinsic curvature defined by Bates and Watts [21,25,26] are
associated with a non-linear parameter estimation problem and are defined at the estimated parameter.
We note that in (1), h : R→ R. Since h is a scalar function, the intrinsic curvature of Bates and Watts
KN(x̂) [21] or the direct intrinsic curvature βN

δ (x̂) [29] is zero. Thus, only the parameter-effects
curvature of Bates and Watts KT(x̂) and the direct parameter-effects curvature βT

δ (x̂) are non-zero.
Since the intrinsic curvature is zero, for simplicity in notation, we drop the superscript “T” from
the parameter-effects curvature and they are given by

K(x̂) :=
||Ḧδ2||
||Ḣδ||2

=
||Ḧ||
||Ḣ||2

, (50)

βδ(x̂) :=
||Ḧδ2||
||Ḣδ||

=
|Ḧ||δ|
||Ḣ||

, (51)

where

Ḧ =
d2h(x)

dx2

∣∣∣
x=x̂

, (52)

δ := x− x̂. (53)

From (26), we get
Ḧ = an(n− 1)x̂n−2d. (54)

Hence, from (27) and (52), we obtain

||Ḣ|| = anx̂n−1
√

N. (55)

||Ḧ|| = an(n− 1)x̂n−2
√

N. (56)

Substitution of results from (55) and (56) in (50) and (51) gives

K(x̂) =
n− 1

na
√

N
1
x̂n , (57)

βδ(x̂) =
(n− 1)|δ|

x̂
. (58)

We note that the extrinsic curvature in (36) is evaluated at the true x, while the parameter-effects
curvatures K(x̂) in (50) and βδ(x̂) in (51) are evaluated at the estimate x̂. Because x̂ is a random variable,
K(x̂) and βδ(x̂) are random variables. When we perform Monte Carlo simulations and estimate x from
measurements, x̂ varies among Monte Carlo runs. Therefore, K(x̂) and the set of all linear βδ(x̂) vary
with Monte Carlo runs.

3.7. Li’s MoN

For a scalar random variable x, the un-normalized MoN proposed by Li [43,44] represents the
square root of the minimum mean square distance between the nonlinear measurement function h and
the set of all affine functions L,

J = min(E{(L(x)− h(x))2})1/2, (59)
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where L(x) = Ax + B. The scalar parameters A and B are determined in the minimization process. For
the current problem, where x is non-random, the un-normalized MoN J and normalized MoN ν ar
given, respectively, by

J = σh

√
1−

c2
hx

σ2
h σ2

x
. (60)

ν = J/σh =

√
1−

c2
hx

σ2
h σ2

x
. (61)

Given x̂ and σx (30), the unscented transformation (UT) [14,15], cubature transformation (CT) [16],
or Monte Carlo method [8] can be used to compute σ2

h and chx. We find that the UT gives good results
in calculating the two MoNs. Next we dscribe computing J and ν using the UT. We use κUT = 2 [14].
The three weights and sigma points are given, respectively, by

w0 = 2/3, w1 = 1/6, w2 = 1/6, (62)

χ0 = x̂, χ1 = x̂ +
√

3σx, χ2 = x̂−
√

3σx. (63)

The measurement transformed points are

hi = a χn
i , i = 0, 1, 2. (64)

Then the mean and variance of h a given by

h̄ =
2

∑
i=0

wihi, (65)

σ2
h =

2

∑
i=0

wi(hi − h̄)2, (66)

The cross-covariance chx is computed by

chx =
2

∑
i=0

wi(hi − h̄)(χi − x̂). (67)

3.8. MoN of Straka, Duník, and S̆imandl

Straka, Duník, and S̆imandl presented two local MoNs in [48,49]. Given the estimate x̂
and variance σ2

x , these MoNs use a number of points χi, i = 1, 2, . . . , m in the neighborhood of x̂.
We analyze the first MoN proposed by the authors. The transformed points by the non-linear function
h are given by

zi = h(χi), i = 1, 2, . . . , m. (68)

Define
Z :=

[
z1 z2 . . . zm

]′
, (69)

X :=
[

χ1 χ2 . . . χm

]′
. (70)

A linear approximation to Z is Xθ, where θ is a scalar parameter to be estimated. The cost function
that is proposed in [48,49] to determine θ is given by

J1(θ) := (Z− Xθ)′W(Z− Xθ), (71)
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where the weight-matrix W is given by

W = diag(d1, d2, . . . , dm), (72)

di = (χi − x̂)2, i = 1, 2, . . . , m. (73)

The LS estimate [39] that minimizes the cost function is given by

θ̂LS = (X′WX)−1X′WZ. (74)

For this problem, the LS estimate in (74) reduces to

θ̂LS =

(
m

∑
i=1

diχ
2
i

)−1 m

∑
i=1

diχizi. (75)

The cost function J1 evaluated at θ̂LS is treated as a local MoN η, given by

η = J1(θ̂LS). (76)

Remark 6. We have calculated the average MoN for the bearing-only filtering [27], GMTI [32], and video
filtering [34] problems. The MoN is presented in the table below (Table 2). From this table we find that the degree
of nonlinearity of the bearing-only filtering problem is about two orders of magnitude higher than that of
the GMTI or video filtering problem. This implies that a simple filter, such as the EKF or UKF, is sufficient for
the GMTI or video filtering problem, but an advanced filter, such as the PF, is needed for the BOF [17] problem.

Table 2. MoNs for the bearing-only, GMTI, and video filtering problems.

Curvature Type Bearing-Only GMTI Video

Parameter-effects (300–1200) × 10−4 (0.8–1.2) × 10−4 0.245 × 10−4

Intrinsic (69–149) × 10−4 0.2 × 10−4 0.066 × 10−4

Total (369–1349) × 10−4 (1.0–1.4) × 10−4 0.312 × 10−4

4. Mapping between CMoN and MSE in Polynomial NonLinearity

The nonlinearity of the problem imposes challenges in parameter estimation. We analyze
the CMoN and MSE of the non-linear estimation problem to discover relationships among them.
For the current problem, CMoN are measured by the parameter-effects curvature in (57) and the direct
parameter-effects curvature in (58). In general, CMoN depend on the first and second derivatives of
the non-linear function calculated at the parameter estimate and on the norm of the estimation error
for βδ(x̂). Therefore, the CMoN will depend the type of estimator (e.g., ML) used to obtain parameter
estimate. The extrinsic curvature (38) depends on the first and second derivatives of the non-linear
function evaluated at the true x.

4.1. MSE and Sample MSE

We estimate the x coordinate using noisy measurements at a discrete set {xk}Nx
k=1 of values. Let x̂k,m

denote the estimate of xk in the mth Monte Carlo run. Subsequently, the error x̃k,m in x̂k,m is defined by

x̃k,m := xk − x̂k,m, k = 1, 2, . . . , Nx, m = 1, 2, . . . , M, (77)

where M is the number of Monte Carlo runs. The MSE at xk is given by

MSEk = E[(x̃k,m)
2], k = 1, 2, . . . , Nx. (78)
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The sample MSE (SMSE) at xk is defined by

SMSEk :=
1
M

M

∑
m=1

(x̃k,m)
2, k = 1, 2, . . . , Nx. (79)

Let LCRLB(x) denote the log10 of the CRLB,

LCRLB(x) := log10 CRLBx. (80)

Taking the log of CRLBx in (32) we get

LCRLB(x) = log10

(
σ2

Nn2a2

)
− 2(n− 1) log10 x. (81)

4.2. MSE and Parameter-Effects Curvature

Let LK(x) denote the log of the expected value of K(x̂) in (57). Then

LK(x) := log10 {E[K(x̂)]} . (82)

In order to compute LK(x), we first approximate the expectation in (82) by assuming σx̂ � x,
which holds for the case investigated in our paper,

E{K(x̂)} = (n− 1)
na

E
(

1
x̂n

)
≈ (n− 1)

na
1

[E(x̂)]n
≈ (n− 1)

na
1
xn . (83)

The last step of the above equation follows from an assumption that the estimator is nearly
unbiased. Now, taking the logarithm, we have

LK(x) = log10

(
n− 1

na

)
− n log10 x. (84)

Now, from Equations (84) and (81), we can see that there is an affine mapping between LCRLB(x)
and LK(x). That is,

LCRLB(x) = αK
1 LK(x) + αK

0 , (85)

where

αK
1 =

2(n− 1)
n

,

αK
0 = log10

(
σ2

Nn2a2

)
− 2(n− 1)

n
log10

(
n− 1

na

)
.

(86)

We observe that αK
1 is positive and, hence, LK(x) and LCRLB(x) have the same sign of the non-zero

slopes. As a result, K(x̂) and CRLB have the same sign of the non-zero slopes.

4.3. MSE and Direct Parameter-Effects Curvature

The expression for the direct parameter-effects curvature βδ(x̂) [29,30] is given by (58).
Similar to the previous section, we define

Lβ(x) := log10 (E{βδ(x̂)}) . (87)

Now, taking the expected value of β, we have

E{β(x̂)} ≈ (n− 1)
x

E{|δ|} = (n− 1)
x

E{|x̂− x|}. (88)
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The RHS of (88) can be simplified by assuming that x̂ is unbiased and that it achieves the CRLB.
Additionally, we approximate this error to be Gaussian and the variance of x̂ is given in (29). Then,

E{|x̂− x|} =
√

CRLBx

√
2
π

. (89)

Substituting (89) into (88) and using (32) for CRLBx we have

E[β(x̂)] ≈ (n− 1)
na

σ

√
2

Nπ
x−n. (90)

Thus,

Lβ(x) ≈ log10

 (n− 1)σ
√

2
Nπ

na

− n log10 x. (91)

From (91) and (81) we can write the affine mapping

LCRLB(x) = α
β
1 Lβ(x) + α

β
0 , (92)

where

α
β
1 =

2(n− 1)
n

,

α
β
0 = log10

(
σ2

Nn2a2

)
− 2n− 2

n
log10

[
(n− 1)σ

√
2

na
√

Nπ

]
.

(93)

We also observe that α
β
1 is positive and, hence, Lβ(x) and LCRLB(x) have the same sign of

the non-zero slopes. As a result, βδ(x̂) and CRLB have the same sign of the non-zero slopes.

4.4. Extrinsic Curvature

The expression for extrinsic curvature for our problem is given in (38). Similar to previous sections,
we define

Lκ(x) := log10(κ(x)). (94)

Taking the log of (94), we have

Lκ(x) = log10(κ(x))

= log10

[
an(n− 1)xn−2

]
− 3

2
log10

[
1 + (anxn−1)2

]
≈ log10

[
an(n− 1)xn−2

]
− 3

2
log10

[
(anxn−1)2

]
= log10

[
n− 1
(an)2

]
− (2n− 1) log10 x. (95)

Note that the second last expression is a valid approximation for x > 2. From (95) and (84) it is
easy to establish the affine mapping

LK(x) = γK
1 Lκ(x) + γK

0 , (96)
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where

γK
1 =

n
2n− 1

,

γK
0 = log10

(
n− 1

na

)
− n

2n− 1
log10

[
n− 1
(an)2

] (97)

Similarly, from (95) and (91) we can establish the affine relationship

Lβ(x) = γ
β
1 Lκ(x) + γ

β
0 , (98)

where

γ
β
1 =

n
2n− 1

,

γ
β
0 = log10

[
(n− 1)σ

√
2

na
√

Nπ

]
− n

2n− 1
log10

[
n− 1
(an)2

]
.

(99)

Using similar arguments used in previous sections, we infer that the extrinsic curvature
and parameter-effects curvature have the same sign of the non-zero slopes. Similarly, the extrinsic
curvature and direct parameter-effects curvature have the same non-zero slopes.

4.5. Estimation of CMoN and SMSE by Monte-Carlo Simulations

Let K(x̂k) and βδ(x̂k) denote the sample means of the Bates and Watts and direct parameter-effects
curvatures calculated from M Monte Carlo runs. Subsequently,

K(x̂k) :=
1
M

M

∑
m=1

K(x̂k,m), k = 1, 2, . . . , Nx, (100)

βδ(x̂k) :=
1
M

M

∑
m=1

βδ(x̂k,m), k = 1, 2, . . . , Nx. (101)

Correspondingly, we define

bk := log10 SMSEk, k = 1, 2, . . . , Nx, (102)

ck := log10 K(x̂k), k = 1, 2, . . . , Nx, (103)

dk := log10 βδ(x̂k), k = 1, 2, . . . , Nx. (104)

Define
b :=

[
b1 b2 . . . bNx

]′
, (105)

c :=
[

c1 c2 . . . cNx

]′
, (106)

d :=
[

d1 d2 . . . dNx

]′
. (107)

Suppose that an affine mapping exists between b and c. Subsequently,

bk = α̂K
1 ck + α̂K

0 + ek, k = 1, 2, . . . , Nx, (108)

where ek is a random noise. Afterwards, we can write (108) in the matrix-vector form by

b = Hcα + e, (109)
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where
α :=

[
α̂K

1 α̂K
0

]′
, (110)

e :=
[

e1 e2 . . . eNx

]′
, (111)

Hc :=


c1 1
c2 1
. . . . . .
cNx 1

 . (112)

Given b and Hc, we can estimate α using the linear least squares (LLS).
We can similarly define the affine mapping between other variable pairs. Altogether, we consider

the following four:

1. between b (log10(SMSEk)) and c (log10(K(x̂k)) for each power of the polynomial function,
as in (85),

2. between c (log10(K(x̂k)) and log10(κ(xk)) (94) for each power of the polynomial function,
as in (96), and

3. between d (log10(βδ(x̂k)) and log10(κ(xk)) (94) for each power of the polynomial function,
as in (98).

5. Numerical Simulation and Results

We follow the same simulation scenario as used in our previous work [35]. We use a = 0.6
and n = 2, 3, 4, 5 and a number of uniformly spaced x coordinates with the spacing of 0.1 in the interval
[2, 7]. The measurement noise standard deviation (σ) is 0.5. The dimension of the measurement vector
is 10 or 20. The results are based on 1000 Monte Carlo runs. Figure 2 shows log10(h(x)) versus x.
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x
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x)

)

n=2
n=3
n=4
n=5

Figure 2. log10(h(x)) versus x.

To assess the accuracy of the MLE, we compute the sample bias, sample MSE, ANEES [42],
and CRLB [2,41,51]. Let xk,i = xk, x̂k,i, and σ2

k,i denote the true parameter, ML estimate, and associated
variance, respectively, at the kth point in the ith Monte Carlo run. The sample bias in the estimate at
the kth point is defined by [9]

b̂k :=
1
M

M

∑
i=1

(xk,i − x̂k,i), (113)

where M is the number of Monte Carlo runs. The sample root MSE (RMSE) [9] and ANEES [2,9,42] at
the kth point are defined, respectively, by

RMSEk :=

[
1
M

M

∑
i=1

(xk,i − x̂k,i)
2)

]1/2

, (114)
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ANEESk :=
1
M

M

∑
i=1

(xk,i − x̂k,i)
2/σ2

k,i. (115)

Figure 3 presents the sample bias for different powers of x. We observe from Figure 3 that the bias
is small when compared with the true value of x and the bias decreases with increase in the power
of x. In Figure 4, we have plotted the

√
CRLB and the average of σx over Monte Carlo runs. Figure 4

shows that, for each power of x, the
√

CRLB and the average of σx are on top of each other and it is not
possible to distinguish them in the figure.
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Figure 3. (a) Sample bias vs. x using 10 scalar measurements and (b) sample bias vs. x using 20 scalar
measurements.
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Figure 4. (a)
√

CRLB or (Avg. σx) vs. x using 10 scalar measurements and (b)
√

CRLB or (Avg. σx) vs.
x using 20 scalar measurements.

Figure 5 presents
√

CRLB and RMSE for each power of x. Solid and dashed lines in Figure 5
represent the

√
CRLB and RMSE, respectively, for each power of x. We see from Figure 5 that

corresponding values of
√

CRLB and RMSE are close to each other for each power of x. In Figures 3–5,
the bias,

√
CRLB, σx, and RMSE for 20 measurements are smaller than corresponding values for

10 measurements.
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Figure 5. (a)
√

CRLB or RMSE vs. x using 10 scalar measurements and (b)
√

CRLB or RMSE vs. x
using 20 scalar measurements.

We present the ANEES [42] in Figure 6 for different powers of x with 99% confidence bounds.
We see from Figure 6 that the ANEES lies within the 99% confidence bounds. This shows that
the variance σ2

x calculated using the MLE is consistent with the estimation error.
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Figure 6. (a) ANEES vs. x using 10 scalar measurements and (b) ANEES vs. x using 20 scalar
measurements.

Figure 7 presents the logarithm of the extrinsic curvature log10(κ(x)) versus x. The extrinsic
curvature is completely determined by the first and second derivatives of the non-linear function h
and it is evaluated while using the true x.

In Figures 8–18, we present results using 10 scalar measurements. We have also generated results
using 20 scalar measurements. In order to limit the number of figures, we have not presented figures
with 20 scalar measurements. The CRLB, variance of estimation error, all MoNs, and MSE follow
the same trend. However, the corresponding values compared with 20 measurements are reduced due
to improved estimation accuracy.
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Figure 7. Logarithm of the extrinsic curvature log10(κ(x)) versus x.
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Figure 8. (a) Logarithm of Beale’s MoN (log10(Avg. Beale’s MoN)) vs. x and (b) logarithm of Beale’s
MoN using LS (log10(Avg. Beale’s-LS MoN)) vs. x with 10 scalar measurements.
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Figure 9. (a) Logarithm of Linssen’s MoN (log10(Avg. Linssen’s MoN)) vs. x and (b) logarithm of
Linssen’s MoN using LS (log10(Avg. Linssen’s-LS MoN) vs. x with 10 scalar measurements.
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Figure 10. (a) Logarithm of Bates and Watts parameter-effects curvature (log10(Avg. K)) vs. x and (b)
logarithm of direct parameter-effect curvature (log10(Avg. β)) vs. x using 10 scalar measurements.
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Figure 11. (a) Logarithm of Li’s un-normalized MoN (log10(Avg. J)) vs. x and (b) logarithm of
Li’s normalized MoN (log10(Avg. ν)) vs. x using 10 scalar measurements.
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Figure 12. (a) Logarithm of MoN of Straka et al. (log10(Avg. η)) vs. x and (b) logarithm of MoN of
Straka et al. with UT (log10(Avg. η-UT)) vs. x using 10 scalar measurements.
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Figure 13. log10(MSE) vs. logarithm of extrinsic curvature (log10 (κ)) using 10 scalar measurements.
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Figure 14. (a) log10(MSE) vs. log10(Avg. Beale’s MoN) and (b) log10(MSE) vs. log10 (Avg. Beale’s MoN
using LS) using 10 scalar measurements.
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Figure 15. (a) log10(MSE) vs. log10(Linssen’s MoN) and (b) log10(MSE) vs. log10 (Linssen’s-LS) using
10 scalar measurements.
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Figure 16. log10(MSE) vs. logarithm of parameter-effects curvatures. (a) log10(MSE) vs. log10(Avg. K)
and (b) log10(MSE) vs. log10 (Avg. β) using 10 scalar measurements.

-6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2

log
10

(Avg. J)

-10

-9

-8

-7

-6

-5

-4

-3

-2

lo
g 10

(M
S

E
) n=2

n=3
n=4
n=5

(a)

-5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5

log
10

(Avg. )

-10

-9

-8

-7

-6

-5

-4

-3

-2
lo

g 10
(M

S
E

)

n=2
n=3
n=4
n=5

(b)

Figure 17. log10(MSE) vs. logarithm of Li’s MoN. (a) log10(MSE) vs. log10(Avg. J) and (b) log10(MSE)
vs. log10 (Avg. ν) using 10 scalar measurements.
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Figure 18. log10(MSE) vs. logarithm of MoN of Straka et al. (a) log10(MSE) vs. log10(Avg. η) and (b)
log10(MSE) vs. log10 (Avg. η-UT) using 10 scalar measurements.

In [35], we had shown analytically, and through Monte Carlo simulation, that affine mappings
exist among log10(MSE), log10 (κ), log10(Avg. K), and log10 (Avg. β). In Figures 13–18, we have plotted
the log10(MSE) versus log10 of various MoNs using 10 scalar measurements. These figures show
that the log10(MSE) varies with log10 (MoN) according to an affine mapping with a positive slope.
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This implies that the MSE increases as an MoN increases. We obtain similar results for the case of
20 scalar measurements.

The above results demonstrate that, for the polynomial nonlinearity problem analyzed, any of
the seven MoNs analyzed is suitable metrics to quantify the MSE, which represents the complexity of
a parameter estimation problem. Further research is needed to study the applicability of these MoNs
in real-world non-linear filtering problems.

6. Conclusions

We considered a polynomial curve in 2D and derived analytic expressions for the ML estimate
and associated variance of the independent variable x using a vector measurement. The ML estimate is
used to evaluate the Jacobian and Hessian of the measurement function appearing in the computation
of Bates and Watts and direct parameter-effects curvatures, Beale′s MoN, and Linssen′s MoN.
Our numerical results show that the variance of the estimated parameter and the Cramér-Rao lower
bound (CRLB) are nearly the same for different powers of x. The average normalized estimation error
squared (ANEES) lies within the 99% confidence interval, which indicates that the ML based variance
is consistent with the estimation error.

We used seven MoNs, including the extrinsic curvature using differential geometry, Beale’s MoN
(and its least squares variant), Linssen’s MoN (and its least squares variant), Bates and Watts
parameter-effects curvature, direct parameter-effects curvature, Li’s MoN, and the MoN of Straka,
Duník, and S̆imandl. If a MoN has a high value, then the nonlinearity is high. All of the MoNs show
the same type of variation with x and the power of of the polynomial. Secondly, as the logarithm of a
MoN increases, the logarithm of the MSE also increases linearly for each MoN. This implies that, as a
MoN increases, and then the MSE increases. These results are quite surprising, given the fact that these
MoNs are derived based on completely different theoretical considerations. The second feature of our
analysis is useful in establishing that a MoN in our study can be considered as a candidate metric for
quantifying the MSE that represents the complexity of a parameter estimation problem. Our future
work will study other practical parameter estimation and non-linear filtering problems.
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