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Abstract: Tracking of free proline (FP)—an indicative substance of heavy metal stress in rice leaf—is
conducive to improve plant phenotype detection, which has important guiding significance for precise
management of rice production. Hyperspectral imaging was used for high-throughput screening FP
in rice leaves under cadmium (Cd) stress with five concentrations and four periods. The average
spectral of rice leaves were used to show differences in optical properties. Partial least squares (PLS),
least-squares support vector machine (LS-SVM) and extreme learning machine (ELM) models based
on full spectra and effective wavelengths were established to detect FP content. Genetic algorithm
(GA), competitive adaptive weighted sampling (CARS) and PLS weighting regression coefficient
(Bw) were compared to screen the most effective wavelengths. Distribution map of the FP content in
rice leaves were obtained to display the changes in the FP of leaves visually. The results illustrated
that spectral differences increased with Cd stress time and FP content increased with Cd stress
concentration. The best result for FP detection is the ELM model based on 27 wavelengths selected by
CARS and Rp is 0.9426. Undoubtedly, hyperspectral imaging combined with chemometrics was a
rapid, cost effective and non-destructive technique to excavate changes of FP in rice leaves under
Cd stress.
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1. Introduction

Free proline (FP) is a dipolar nitrogen-containing compound widely present in plant cells. It has
high water solubility and is an organic osmotic protective agent. It can protect the cell membrane
system, maintain the structure of intracellular enzymes, reduce the degradation of intracellular proteins
and remove aerobic free radicals [1–3]. As significant environmental pollutants, the toxicity of heavy
metals are stresses to plant growth, especially crop quality and safety [4]. Heavy metal stress interferes
with water absorption and ion channels in rice plants, so water deficits and large accumulations of
free proline often occur in plants [5]. Choudhary et al. [4] found that the higher the concentration
of heavy metal stress, the more FP in the plant. There is a correlation between free proline and free
radical content, which can be used as an aerobic free radical scavenger; it also pointed out that proline
is an amino acid. It has a certain chelating ability and may combine with metal ions to form a plant
survival defense mechanism, but this conjecture has not been verified. Zouari et al. [6] pointed out
that the addition of foreign aid proline would slow down the oxidative damage to plants caused by
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cadmium (Cd) stress, and the antioxidant enzyme activity, photosynthetic activity and plant growth in
the leaves were alleviated, so it was inferred that the free proline content can be targeted to the heavy
metal stress response.

Rice is a staple food for a large part of the human population in the world, especially in Asia. Cd
pollution is the most influential in the reported heavy metal pollution incidents in rice [6]. With the
development of modern sensors, researchers can capture thousands of phenotypes of a plant directly
or indirectly [7]. Using these phenotypes, researchers can evaluate the plant growth performances and
make decisions, including analyzing the plants under stresses [8]. Undoubtedly, FP is an important
phenotype of rice leaves under heavy metal stress and monitoring the change of FP content in rice
leaves under heavy metal stress is significant for providing guides for rice growth management.

The traditional method for detecting the content of physiological indicators is demanding,
requiring a low-temperature environment and strict operation procedures, because FP in fresh
leaves is easily decomposed. Under acidic conditions, ninhydrin reacts with proline to form a red
compound. Traditional detection mainly uses this principle to detect the content of free proline by a
spectrophotometer or microplate reader. Although results of the traditional method are accurate, the
detection process takes time and effort. Real-time monitoring and high-throughput detection are not
easy, and it is impossible to observe differences in the distribution of adverse physiological indicators
on the surface of rice leaves.

Hyperspectral imaging is a rapid, nondestructive and high-throughput phenotyping technique,
which has been widely used to study plant phenotypes [9–11]. The most noticed advantage is ‘map
and spectrum integration’. Spectral reflected the internal physiological, biochemical and structural
characteristics of rice leaf tissue while acquiring the image of the leaf appearance contained color,
texture, etc. Phenotypes as optical properties and some spatial features can be directly derived from
the hyperspectral images, and much more phenotype features can be further obtained indirectly by
analyzing the images and spectra [12]. Kong et al. [13] used the hyperspectral imaging system in
the 400–1000 nm to quickly detect the content of malondialdehyde, selected 23 optimal characteristic
wavelengths, to establish a fast prediction model with correlation of the prediction set 0.929 and
established the distribution map of malondialdehyde on rape leaves. Zhang et al. [14] used hyperspectral
imaging systems combined with chemometrics methods to quickly estimate the soluble sugar content
of four different growth extremes of rapeseed leaves, and tried to predict the visual distribution of
soluble sugars in rapeseed leaves. The above research shows that the hyperspectral technology is
feasible to a high-throughput phenotype of the physiological information of crop leaves. However,
there is no rapid quantitative and visual detection of free proline content in rice leaves under heavy
metal stress.

The plant phenotyping based on hyperspectral imaging is a benefit for selecting the appropriate
and a fast way to improve rice quality (such as yield) and to control heavy metal pollution. This
study aimed to develop a rapid and accurate approach for high-throughput phenotyping of FP in rice
leaves under Cd stress through hyperspectral imaging and chemometrics. Four Cd stress time points
and five Cd concentration stress rice leaves were cultivated and tested. The rapid prediction models
were established with full spectra and the screened effective wavelengths, respectively. The optimal
quantitative detection model of FP was chosen to achieve visual distribution map of FP content.

2. Materials and Methods

2.1. Rice Leaf Samples

Rice leaf samples were cultivated by hydroponic culture. Rice seeds (Xiushui 134) were provided by
Zhejiang Academy of Agricultural Sciences (Hangzhou, Zhejiang, China) and belong to single-season
conventional late rice. A hydroponic experiment was carried out on Zijingang Campus (Zhejiang
University, Hangzhou, China) in the summer of 2019. In order to reduce the incidence rate of rice plant
growth, rice seeds were sterilized for 5 min and then disinfected with 1% sodium hypochlorite for
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10 min. After washing for 5–6 times by sterile water, the rice seeds were placed in water for 2 days
and were germinated in a 37 ◦C incubator. Nutrient solution replaced water after the germination.
Rice seedlings with similar size plants (leaf length of approximately 6 cm) were selected to grow in
total nutrient solution for one week and then treated with heavy metal cadmium stress at a certain
concentration gradient. The incubator was adjusted to maintain keep a 14 h photoperiod with the
temperature of 25 ± 1 ◦C and a 10 h night environment with temperatures of 20 ± 1 ◦C. Relative
humidity was kept at 75%. CdCl2 was used to prepare rice cadmium stress solution at Cd2+ content
with 0 µM (control group, CK), 5 µM, 25 µM, 50 µM and 100 µM. After 5d treatment, 80 rice plants in
each group were selected randomly to provide the second leaves for hyperspectral imaging scanning.
After hyperspectral information was obtained, the rice leaves were quickly cut, uniformly mixed,
weighed and stored in a refrigerator at −80 ◦C to facilitate subsequent measurement of chemical
reference values. For rice plants after 10 d, 15 d and 20 d of Cd stress treatment, the same procedure
was performed. The rice plants are shown in Figure 1.
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Figure 1. Rice plant growth under cadmium stress.

2.2. Hyperspectral Image Acquisition and Correction

Hyperspectral image data were acquired with the hyperspectral image spectrometer system,
which could obtain visible and short wave near infrared spectroscopy from 400 to 1000 nm with
spectral resolution 2.8 nm. The hyperspectral image spectrometer system consists of an imaging
spectrometer (ImSpector V10E; Spectral Imaging Ltd., Oulu, Finland), a high performance CCD camera
(Hamamatsu, Hamamatsu City, Japan) with a lens (OLES22; Specim, Spectral Imaging Ltd., Oulu,
Finland), light source obtaining two 150 W tungsten halogen lamps (Fiber-Lite DC950 Illuminator;
Dolan Jenner Industries Inc., Boxborough, MA, USA), an electronically controlled displacement
platform (Isuzu Optics Corp., ChuPei, Hsinchu 30288, Taiwan), calibration whiteboard whose material
is polytetrafluoroethylene, an black box providing interference-free environment, an hyperspectral
image acquisition software (ITT, Visual Information Solutions, Boulder, CO, USA) and an ancillary
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computer [15]. The leaf samples were placed on a conveyor belt of the electronically controlled
displacement platforms with a moving speed of 1.5 mm/s. The distance from the leaf sample to the
CCD lens was 27.0 cm. The exposure time of the CCD camera was 0.14 s. These instrument parameters
were adjusted to obtain clear and undistorted hyperspectral image. The whiteboard is primarily used
for providing near 100% reflectivity. The lens was blocked to get an image with 0% reflectivity. This
reflectance information was used to correct the light intensity.

Under the same Cd stress time in each group, hyperspectral images of 4 leaves were randomly
collected, and the average spectra value of 4 leaves was taken as a leaf sample. A total of 100 samples
were collected at 5 Cd stress concentrations and 4 stress times. The image size was 672 × 512 pixels.
Due to the obvious noise in the front and back of the spectrum, 350 variables in the 500–950 nm region
were selected as effective bands for rice leaf spectral analysis under heavy metal stress. Therefore, each
hyperspectral image data is a three-dimensional 350 × 672 × 512 data block.

2.3. Gold Standard Methods for Measuring Leaf Contents of FP

Free proline content was detected according to the method of Bates et al. [16]. Of fresh rice leaves
0.5 g were placed in a 2 mL centrifuge tube containing 4 beads. The tube was immersed in liquid
nitrogen and placed on a grinder for 1.5 min at 65 Hz. Of 3% sulfosalicylic acid solution 1500 µL was
added to the centrifuge tube, and the leaves and sulfosalicylic acid were uniformly mixed by grinding
on a grinder at 40 Hz for 30 s and put into a centrifuge at 10,000 rpm for 10min. The supernatant
was extracted as the test liquid. The test liquid was subjected to a boiling water bath for 10 min, and
after cooling, 750 µL of the supernatant was taken. Then 1000 µL of 10% acetic acid and 1500 µL of a
2.5% acid ninhydrin color developing solution were added into the supernatant. The mixture was
boiled in a water bath for 40 min, cooled and 2500 µL of toluene was added and thoroughly shaken
and mixed. The reaction solution was placed at a wavelength of 520 nm to measure the absorbance.
The obtained absorbance values were combined with the relevant calculation formulas to calculate the
corresponding samples of FP.

2.4. Data Analysis

Exploring the relationship between the spectral data and the FP content is the key for hyperspectral
image analysis. Partial least squares (PLS), least-squares support vector machine (LS-SVM) and extreme
learning machine (ELM) were used to explore the relationship between spectra data and FP content.
Genetic algorithm (GA), partial least squares weighting regression coefficient (Bw) and competitive
adaptive weighted sampling (CARS) were compared to select the variables highly related to FP content
in rice leaves. The goal is to determine the FP content using the acquired spectra and the established
calibration models. Models with better performances are preferable for real-world application in rice
growth safety monitoring.

2.4.1. Variable Screening Methods

GA is an intelligent computing model that simulates natural selection in Darwin’s theory of
biological evolution. It has a strong global search capability, and can mine global optimal solutions
from complex spectral peak information [17].

Bw is a set of regression coefficients that represent the weight of each spectral variable’s contribution
to the result of full interactive verification [18]. The larger the absolute value of Bw, the more the
corresponding wavelength is to facilitate the rapid quantitative detection of the target information
content in the spectrum. Therefore, the spectral characteristic variables can be screened according to
the PLS weighted regression coefficient. Usually draw the spectrum of the wavelength position of the
spectrum and the Bw coefficient, and use the peak or valley as the characteristic wavelength.

CARS is also a feature variable selection method based on the PLS model weighted regression
coefficients. Different from the method of screening feature variables by Bw, the CARS algorithm
process is [19,20]: using Monte Carlo sampling and performing full interactive root mean square
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verification to establish a PLS model; retaining the larger value of the PLS weighted regression
coefficient variables, remove the variables corresponding to the smaller value and finally use the
remaining variables as the new set; repeating the above steps for the new set, after multiple calculations,
select the wavelength corresponding to the set with the smallest root mean square error of cross
validation (RMSECV) as the characteristic variable selected by CARS.

2.4.2. Quantitative Analysis Methods

PLS is the most widely used machine learning method to explore the linear regression between the
spectral data and the measured physiological and biochemical traits [21,22]. The important parameter
in the PLS algorithm is the latent variable (LV) [23]. Choosing the appropriate LV is conducive to
obtaining better model results. LVs are new variables formed by linear conversion of the original
spectrum. The correlations between the new variables are orthogonal and uncorrelated, reducing
various correlation interference between the original spectral variables, and some of the hidden
variables can explain most of the original variable information. In the PLS model, the minimum
RMSECV corresponds to the best LV [24].

LS-SVM is a machine learning method dealing with linear and non-linear data efficiently [25].
LS-SVM uses a hyperplane to fit the spectral data. The calculation process uses sparse approximation,
robust regression and Bayesian inference [26]. Compared with the support vector machine [27], the
solution difficulty is sampled, and the solution speed is improved, making it possible for LS-SVM to be
suitable for online learning of large-scale and high-dimensional data.

ELM is a single hidden layer feedforward neural network, which is faster than the traditional
neural network [28]. The ELM operation only needs to determine the threshold of the input layer
and the hidden layer only one time, and does not need to be constantly readjusted [29]. In this study,
the number of hidden layer nodes was set to the number of samples n in the training set. The model
performs ELM calculation in order from 1 to n, and the minimum root mean square error of the
prediction set is taken as the optimal ELM model and the number of hidden layer nodes.

2.5. Software and Model Evaluation

Hyperspectral images were firstly resized to reduce the data dimension by ENVI 4.6 (ITT, Visual
Information Solutions, Boulder, CO, USA). The spectral data extraction and preprocessing, multivariate
data analysis PLSR and image visualization were conducted on Matlab R 2014b (The Math Works,
Natick, MA, USA). PLSR was performed on Unscrambler® 10.1 (CAMO AS, Oslo, Norway).

The performances of the calibration models were evaluated by the coefficient of determination of
calibration (Rc), the coefficient of determination of prediction (Rp), root mean square error of calibration
and prediction (RMSECV and RMSEP) [30]. A better calibration model should have larger R, and
lower root mean square error.

3. Results

3.1. FP Content of Rice Leaves

Table 1 shows the results of the mean values, standard deviation, maximum and minimum for FP
content of the rice leaf samples in the five Cd concentration gradient treatment groups on different days.

Table 1. Results of chemical values of free proline (FP) in rice leaves under cadmium (Cd) stress.

Indicators Groups 5 d 10 d 15 d 20 d

FP

Number 25 25 25 25
Min 0.0740 0.1170 0.1304 0.1401
Max 0.1359 0.1479 0.1795 0.2186

Mean 0.1027 0.1335 0.1622 0.1880
S.D. 0.0172 0.0096 0.0138 0.0192
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The change trend of FP content with the difference of Cd stress time and concentration is shown
in Figure 2. Different letters in the same day represents different significant differences of the p < 0.05
level in Figure 2, and the same letter in same day means there is no significant difference between
the two Cd stress groups. In the early stage of heavy metal Cd stress (5d), compared with CK, the
content of FP in mild stress (5 µM) increased, and the content of FP in other higher concentration stress
groups decreased. With the increase of stress days (10 d), the content of FP in light stress (5 µM) was
still the largest, and the content of FP in other groups also gradually increased, but the increase trend
was slower, and it was not much different from CK. This may be because there was a certain balance
between the FP and the corresponding oxide content in the plant. In the mid-stress period (15 d), the
FP content was highest in severe stress (100 µM), and the FP content in the 25 µM and 50 µM stress
groups continued to increase. This indicated that the leaves produced more FP to resist the stress of
heavy metals, and there was a significant difference of the p < 0.05 level among the five groups with
the different letters a, b, c, d and e. In the later period of stress (20 d), the FP content of the CK group
was the lowest, and the FP content of other groups gradually increased with the increase of heavy
metal stress concentration. This phenomenon was consistent with the relevant research pointed out
that under stress environment (such as drought, high temperature, heavy metals, etc.), the content of
proline would increase [31,32]. In terms of significant differences, as a whole, with the gradual increase
of stress time, the differences between different heavy metal stress groups gradually changed from
insignificant differences to significant differences.
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3.2. Spectra Analysis

The average spectrum with standard deviation of rice leaves under the stresses of different
cadmium are presented in Figure 3. Typical spectral curves of green leaves between 500 and 955 nm
could be observed. As the time of Cd stress increased, differences among spectral curves of samples
under the Cd stress of different concentrations became larger. The differences became obvious when
the stress time came to 15 days and 20 days. The ANOVA was also calculated between the independent
wavelength variables and the stress degrees. Wavelengths with p < 0.05 are considered as important
wavelengths relating to the stress degrees. With the increase of stressing time, differences of more
wavelength variables among different treatments became significant. When the stressing time came to
20 d, significant differences could be found in all wavelengths. Seen from Figure 3, the wavelengths
lying in the range of 690–720 nm showed significant differences an all four images, illustrating an
earlier or more consistent indication of stress [33]. These wavelengths have been reported as indicators
of plant stresses. The wavelengths that had a significant difference on 5 d without significant on 10 d
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existed. This may be because as the stress time increases from 5 d to 10 d, the differences of some
substances characterized by this band are masked by the information of other substances.
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3.3. Quantitative Analysis Based on Full Spectra

At present, there are few studies on the rapid detection of FP content in rice leaves, which may be
related to the characteristics of low FP content and poor stability. The full spectra contain a wealth of
plant leaf information, which can fully reflect the optical characteristics of the leaves. The relationship
between FP content and the full spectra from the hyperspectral image data was explored by building
PLS, LS-SVM and ELM models. To establish the regression models, the samples were split into the
calibration set and the prediction set at the ratio of 3:1 (75 samples for calibration and 25 samples for
prediction). The samples were ranked from low to high according to their physiological parameters,
and the third sample of every four samples was selected into the prediction set, and the remaining
three samples of every four samples were selected into the calibration set. For both PLS, LS-SVM and
ELM, leave-one-out cross validation were conducted to optimize the model performances.

Table 2 shows the prediction results of FP concentrations by PLS, LS-SVM and ELM models.
When building a mathematical model, better prediction performance is the first choice. ELM has the
best prediction performance, with Rp reaching 0.9101 and RMSEP of 0.0161 mg/g, the optimal number
of hidden layer nodes was 38.
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Table 2. Results of rapid detection models for FP content in rice leaves under Cd stress based on the
full spectra.

Models Parameter 1 Rc RMSECV (mg/g) Rp RMSEP (mg/g)

PLS 9 0.8915 0.0015 0.8830 0.0191
LS-SVM 246,566.22; 30,674.42 0.9292 0.0123 0.8541 0.0215

ELM 38 0.9435 0.0109 0.9190 0.0161
1 The parameters of PLS model are the optimal LV, the parameters of LS-SVM model are gam and sig2, and the
parameters of ELM model are the optimal number of hidden layer nodes.

3.4. Quantitative Analysis Based on Selected Variables

The spectrum obtained by the hyperspectral image acquisition system has the characteristics of a
wide frequency band, and the groups in the physiological indexes of rice leaf stress are selective for the
absorption of light energy. How to select some effective variables related to the physiological index
of rice leaf stress from the total variable information and eliminate irrelevant redundant variables
is of great significance for simplifying the calculation process and establishing a model with high
prediction accuracy and robustness in the later stage. Therefore, this study used GA, CARS and Bw to
screen the characteristics of hyperspectral information that were highly related to the physiological
index of rice leaf stress, and built the rapid quantitative detection models based on the selected
characteristic wavelength.

The results of the quantitative detection model established after variable screening of rice leaf FP
under Cd enhancement are shown in Table 3. GA, CARS and Bw selected 29, 27 and 14 variables for
the establishment of PLS, LS-SVM and ELM models, respectively. The best model based on variables
selected by GA, CARS and Bw is all ELM models with Rp 0.8929, 0.9426 and 0.8995, respectively.
The ELM model based on 27 variables selected by CARS is a big improvement over the full-spectrum
prediction accuracy and better prediction performance than the 29 variables screened by GA and
14 variables screened by Bw. This shows that the 27 variables selected by CARS are the optimal
characteristic wavelengths, further removing the invalid information and noise in the full spectra,
retaining the effective information to the greatest extent, and showing a stronger ability to predict the
FP content of rice leaves than the 350 variables in the full spectra. Compared with the full spectra best
model (Rp is 0.9190), the model prediction effect is enhanced, which shows the CARS screening method
remove most of the invalid information and noise in the full spectra, and retain valid information.

Table 3. Models for detection of FP under Cd stress based on the characteristic wavelength.

Ways Number Models Parameter 1 Rc RMSECV (mg/g) Rp RMSEP (mg/g)

GA 29
PLS 11 0.8686 0.0164 0.8725 0.0199

LS-SVM 1,168,705.8;
6596.5 0.9131 0.0135 0.8498 0.0214

ELM 28 0.9388 0.0114 0.9219 0.0166

CARS 27
PLS 9 0.8850 0.0154 0.8905 0.1840

LS-SVM 661,182.0;
1889.8 0.9356 0.0117 0.8590 0.0214

ELM 24 0.9401 0.0112 0.9426 0.0135

Bw 14
PLS 7 0.8959 0.0147 0.8765 0.0196

LS-SVM 2,430,985.3;
4068.6 0.9370 0.0116 0.8574 0.0213

ELM 19 0.9352 0.0117 0.8995 0.0178
1 The parameters of the PLS model are the optimal LV, the parameters of the LS-SVM model are gam and sig2, and
the parameters of the ELM model are the optimal number of hidden layer nodes.

From the perspective of detection accuracy, the rapid detection model of the optimal FP content
of rice leaves under Cd stress was the ELM model (Rp was 0.9426) established based on 27 variables
selected by CARS. The 27 variables screened by CARS were 528.07, 541.67, 568.96, 625.18, 637.75,
650.34, 662.97, 665.5, 674.35, 688.29, 746.95, 762.35, 763.63, 784.23, 785.52, 795.84, 797.13, 812.65, 832.11,
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833.41, 869.9, 871.21, 897.41, 898.72, 910.55, 928.99 and 943.52 nm. From the perspective of simplified
detection, the optimal fast detection model was an ELM model (Rp was 0.8995) established on 14
variables selected by Bw. The 14 variables selected by Bw were 502.21, 539.19, 601.37, 626.44, 650.34,
670.55, 689.56, 709.91, 729.04, 764.92, 836.01, 900.04, 915.81 and 943.52 nm. Overall, these three variable
screening methods greatly simplified the input variables of the model. The 29 variables screened by
GA were 593.88, 595.13, 598.87, 596.38, 600.12, 626.44, 621.42, 597.62, 625.18, 623.93, 627.69, 622.67,
592.63, 620.42, 601.37, 628.95, 591.38, 602.63, 905.29, 504.66, 505.89, 618.91, 630.2, 690.83, 711.18, 521.14,
545.38, 872.52 and 906.6 nm.

3.5. Visual Analysis of FP

The hyperspectral image acquired the spectral information of each pixel. This feature is conducive
to the prediction of the physiological index content of each pixel, thereby forming a visual distribution
map of the physiological index content on the surface of the rice leaf. First, the same preprocessing
and variable screening on the spectrum of each pixel of the hyperspectral image were performed same
with the spectrum of the rapid detection model in this paper. Then the spectrum of each pixel was
introduced into the FP rapid detection model obtained in 3.4 to obtain each pixel point predicted FP
content. To simplify the computing process, the ELM model of 27 variables screened by CARS for
FP prediction under Cd stress was used. Finally, the map of FP content predicted by the spectrum of
each pixel was processed with pseudo-color and 5 d, 10 d, 15 d and 20 d stress cycle and five Cd stress
concentrations of the FP content of the rice leaf visualization map was obtained in Figure 4.

It can be clearly seen from the visualization in Figure 4 that FP content varied with the concentration
of heavy metal Cd and the number of stress days. The FP content of rice leaves under 5 µM Cd stress
was the highest at 5 d, which was related to the result in Figure 2 and another study [34] that showed
that trace heavy metals could stimulate plant growth. With the prolongation of the time of Cd stress,
the FP content of rice leaf tips under Cd stress increased with the increase of Cd stress concentration.
At 20 d, there was also a large amount of FP in the petioles of the most severe Cd stress group (100 µM).
On the whole, the visual distribution map based on hyperspectral imaging technology could intuitively
provide spatiotemporal information on the difference between FP, an important stress physiological
index between rice leaf and leaf, which helps to monitor the growth status of plants.
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4. Discussion

4.1. Influence of Cd Stresses on Rice Leaves

FP content analysis in Table 1, Figures 2 and 4 indicated that with the extension of time, the
variations of rice leaves under stresses of different concentrations of Cd became larger. Figures 2 and 4
shows that FP content increased with increasing Cd stress time. This phenomenon illustrates that
as the heavy metal Cd aggravating the growth of rice, some antioxidant active ingredients such as
FP would be generated in the leaf tissues to resist the damage of heavy metal Cd. Exposure to Cd
results in the generation of reactive oxygen species such as O2

−, .OH and 1O2 in plant tissues [35].
FP is an important substance used in osmotic regulation in plant cells to protect the cell membrane
system, maintain the structure of intracellular enzymes, and reduce the degradation of intracellular
proteins [36]. Under normal circumstances, FP content in plants is relatively low, which is similar
with in Table 1, Figures 2 and 4 (CK). Under stressful conditions (such as drought, high temperature,
heavy metals, etc.), FP will increase significantly. Through Figure 4, the changes and differences of
antioxidants in leaves under Cd stress can be quickly and visually determined. Average reflectance
spectra with standard deviation of rice leaves in Figure 3 visually show the effect of Cd stress time on
the optical properties of the leaves. On the 20th day, the spectra of rice leaves with different stress
concentrations showed significant differences in the whole band.

4.2. Advantages of Hyperspectral Imaging

Non-imaging reflectance spectra have been utilized for plant phenotyping in previous
studies [37–39]. Recent studies focused more on applying imaging reflectance spectra for plant
phenotyping [40–42]. Non-imaging reflectance spectra are generally obtained from the point scan,
repeated measurements from different regions were conducted to obtain reflectance spectra, which
could represent the sample. Compared with non-imaging reflectance spectra, hyperspectral imaging
can acquire spectral features within the entire sample not one point of the sample, thus hyperspectral
images contained more information than non-imaging. In this study, prediction maps are a merit from
the imaging feature of hyperspectral imaging. The established models were applied to each pixel
within the hyperspectral image. Prediction maps with predicted features presented by color gradients
can be used to explore the distribution of specific features.

Figure 4 vividly shows the distribution of FP content in leaves. Regarding the normal growth of
rice leaves, the CK groups in four time periods showed the normal growth of rice without heavy metal
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stress, and the distribution diagram showed a slight increase trend with the increase of growth time.
The content of FP in rice leaves was basically kept below 0.15 mg/g before 15 d, and the content of FP
in some leaves exceeded 2 mg/g in 20 d. As for the impact of Cd stress time, as the time increased,
the FP content of each group showed increasing trends. The heavy metal stress was the most serious,
and the FP concentration reached the maximum in 20 d. For the effect of Cd stress concentration, the
FP content in the 5 µM group was largest in 5 d [43]. The FP content of the 10 µM, 15 µM and 20 µM
groups began to increase in 10 d, indicating that rice leaves began to produce more FP to resist heavy
metal damage. Both 15 d and 20 d showed the greater concentration of Cd, the higher FP content in
rice leaves. For the difference in leaf surface distribution, FP content in the leaf tip was higher than that
of the petiole, indicating that the FP resistance mechanism of the leaf tip was more sensitive to the
damage of heavy metals. Overall, hyperspectral imaging helps to extend ‘knowing the regional value’
to ‘knowing the pixel-wise distribution’. Hyperspectral imaging offers the possibility for rapid and
accurate exploration and visualization of phenotypes at the pixel-wise level, leaf level and plant level.

4.3. Prediction Models

The prediction of FP content by reflectance spectra were merely studied. Traditionally,
ultraviolet-visible spectrophotometers or the automatic microplate reader [44,45] were used to
measure FP content in plants. These methods were destructive, complex to operate and had low
efficiency. Besides, they needed quite complicated sample preparation and various reagents. The rapid,
cost-effective and nondestructive hyperspectral imaging had significant potential to overcome these
shortcomings. With no or minimum sample preparation, acquisition and analysis of hyperspectral
images can be designed as automation, saving labor and extending large scale application. The key
factor was the prediction models.

In this study, three models, PLS, LS-SVM and ELM were used to build prediction models. PLS
were efficient in dealing with linear issues while LS-SVM can treat both linear and non-linear issue well.
For real-world application, models with better performances were preferred. With better performances,
the prediction would be more accurate and reliable. Both the extracted reflectance spectra and the
measured reference physiological parameter FP could affect the results. In all models, ELM detection
performance is better than PLS and LS-SVM models. It shows that the ELM model not only has
fast training speed and good generalization ability, but also has certain advantages in detecting the
relationship between FP content in rice leaves and Cd stress and hyperspectral information.

To improve model robustness and performances, wavelengths selection has been widely applied
in spectral data analysis of near-infrared spectroscopy and hyperspectral imaging. We used GA, CARS
and Bw methods to explore the relative importance of wavelengths contributing to the prediction of FP.
The optimal feature variables are the 27 variables selected by CARS with best Rp. Both CARS and Bw
screened 650.34 and 943.52 nm; CARS and GA selected 625.18 nm and Bw and GA chosen 601.37 and
626.44 nm. These same wavelengths have a stronger correlation with the FP content in rice leaves, and
need to be further analyzed and applied. Free proline is a cyclic imino acid composed of a pyrrolidine
and a hydroxy acid. The selected wavelength 601.37, 625.18, 626.44, 650.34 or 943.52 nm may be related
to the composition of FP, for example, it may be related to the doubling or fundamental frequency of
-OH in hydroxy acid.

In spectral data analysis of near-infrared spectroscopy and hyperspectral imaging, there were
various ways to improve the model performances. Outlier samples removal was an effective
approach [46]. Both the extracted reflectance spectra and the measured reference physiological
parameters could affect the results. In this study, we analyzed the data by ‘trusting’ that there were no
outlier samples. In the future studies, this approach can be tried to improve the model performances.
At present, studies of using reflectance spectra for physiological parameter FP prediction were limited
to few research. Methods to improve the model accuracy and robustness needed to be further studied.
Taking the mostly studied physiological parameter chlorophyll as an example, various methods such
as full spectra, specific wavelengths and spectral indices have been developed to estimate chlorophyll
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concentrations for better meeting the application of farmland scenes [47]. As a consequence, the ultimate
goal was to use hyperspectral imaging combining with the established models as standard methods to
estimate FP concentration as well as other physiological parameter in real-world application.

5. Conclusions

In conclusion, hyperspectral imaging was successfully utilized for high throughput phenotyping
of FP in rice leaves under Cd stress. Changes in spectra with stress time and concentration showed
the optical properties of rice leaves. Good performances of prediction models using two modeling
approaches (models using full spectra and models using selected wavelengths) with Rp 0.9190 and
0.9426 for FP content demonstrated the advantage of hyperspectral imaging with machine learning
algorithm for simultaneous estimation of multi-physiological parameters in a rapid, cost effective
and non-destructive manner. The optimal quantitative detection model is ELM model based on 27
variables selected by CARS with Rp 0.9426 was used to obtain a visual distribution map of FP content
in rice leaves. The distribution map of FP provides an efficient way to simultaneously visualize the
multi-physiological parameters within rice leaves. The study ultimately provided technical means for
real-time and high-throughput screening of FP content in rice leaf under heavy metal stress to precise
manage of rice growth security accurately.
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