
sensors

Article

A Lean and Performant Hierarchical Model for
Human Activity Recognition Using
Body-Mounted Sensors

Isaac Debache 1,*, Lorène Jeantet 1 , Damien Chevallier 1, Audrey Bergouignan 1,2 and
Cédric Sueur 1,3

1 Institut Pluridisciplinaire Hubert Curien (IPHC) UMR 7178 Centre National de la Recherche
Scientifique (CNRS), Université de Strasbourg, 67000 Strasbourg, France; lorene.jeantet@iphc.cnrs.fr (L.J.);
damien.chevallier@iphc.cnrs.fr (D.C.); audrey.bergouignan@iphc.cnrs.fr (A.B.);
cedric.sueur@iphc.cnrs.fr (C.S.)

2 Division of Endocrinology, Metabolism, and Diabetes and Anschutz Health and Wellness Center,
University of Colorado, School of Medicine, Aurora, CO 80045, USA

3 Institut Universitaire de France, Saint-Michel 103, 75005 Paris, France
* Correspondence: isaac.debache@iphc.cnrs.fr; Tel.: +33-(0)3-88-10-74-53

Received: 30 March 2020; Accepted: 25 May 2020; Published: 29 May 2020
����������
�������

Abstract: Here we propose a new machine learning algorithm for classification of human activities
by means of accelerometer and gyroscope signals. Based on a novel hierarchical system of logistic
regression classifiers and a relatively small set of features extracted from the filtered signals, the
proposed algorithm outperformed previous work on the DaLiAc (Daily Life Activity) and mHealth
datasets. The algorithm also represents a significant improvement in terms of computational costs
and requires no feature selection and hyper-parameter tuning. The algorithm still showed a robust
performance with only two (ankle and wrist) out of the four devices (chest, wrist, hip and ankle)
placed on the body (96.8% vs. 97.3% mean accuracy for the DaLiAc dataset). The present work shows
that low-complexity models can compete with heavy, inefficient models in classification of advanced
activities when designed with a careful upstream inspection of the data.

Keywords: accelerometers; sensors; human activity recognition; machine learning

1. Introduction

Physical activity monitoring with wearable sensors has various scientific, medical and industrial
applications, such as physical activity epidemiology [1], fall detection in the elderly population [2]
and for smartwatch applications [3]. Among the existing sensors, accelerometers (sometimes coupled
with gyroscopes [4]) are regularly used for activity monitoring, mainly because of their relatively
high accuracy, low price and small size [5,6]. Methods for human activity recognition (HAR) using
wearable motion sensors were thoroughly investigated and reported in the scientific literature, and a
large number of studies demonstrated their ability to predict activity with a high level of accuracy [7,8].

Despite these advances in the field, studies in physical activity epidemiology have mostly used
opaque, proprietary algorithms [9–11], hence limiting comparability between studies and innovation
in the spectrum of activities studied. This situation is probably due to the complexity of the algorithms
proposed in the literature, which have grown long and difficult to implement as the HAR tasks became
more challenging. Thus, there is a need for a simple yet performant algorithm that scientists could
easily implement when analyzing accelerometer data.

Existing transparent HAR methods usually rely on supervised machine learning models to map
between motion signals and activities. All methods rely on the assumptions that different physical

Sensors 2020, 20, 3090; doi:10.3390/s20113090 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-7317-3154
https://orcid.org/0000-0002-1266-5144
https://orcid.org/0000-0001-8206-2739
http://dx.doi.org/10.3390/s20113090
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/11/3090?type=check_update&version=2


Sensors 2020, 20, 3090 2 of 12

activities are reflected by different, characteristic signals and that it should be possible to discriminate
between activities with appropriate, meaningful features extracted from the signal [8,12]. HAR models
can be divided into two main families: classical machine learning models and neural networks [13].
In the classical approach, activities are discriminated by means of handcrafted features extracted from
segments of the signal in the time and frequency domains (e.g., mean, standard deviation or maximum
frequency) [8,12]. Such features have proved useful in discriminating activities in various models, such
as tree-based models, support vector machines (SVM), logistic regression (LR), k-nearest-neighbors
(KNN), naïve Bayes classifiers and hidden Markov models (HMM) [7,12]. In contrast, neural networks
can be fed directly with the raw signal and are automatically tuned in order to detect discriminative
features [13,14]. Neural networks have been proposed in different variants, such as convolutional
neural networks (CNN) and recurrent networks [14].

The automatic feature detection of neural network models makes them capable of detecting very
complex, highly discriminative features and patterns in the data [13]. CNN drawing upon advances
in computer vision have recently proved powerful in HAR and outperformed classical machine
learning models (e.g., [15,16]). Although very performant, deep learning models are very slow to
train, and finding the optimal architecture for the task at hand is most often a tedious process [14].
The effectiveness of automatic feature learning comes, thus, at a high computational price, which makes
it often more efficient to rely on human domain knowledge for feature extraction [13]. Furthermore,
the long process of model selection makes the final model hardly generalizable to similar but different
tasks [14,17].

Classical supervised machine learning methods, in contrast, are easier to train but their shallow
learning can make them less performant in difficult classification tasks [13]. To make up for these
deficiencies, researchers using classical models must handcraft a very large number of increasingly
complex features, sometimes amounting to several thousand [8,18]. Because too many features can
impair the performances of the models and make training computationally impractical, researchers
must engage in a process of feature selection in order to form a small subset of highly informative
features, which are subsequently fed into the classification models [19]. This process of feature selection
can be in itself complex [18], resulting in computationally expensive, inefficient and sometimes unclear
classification algorithms.

Several studies demonstrated the usefulness of a hierarchical classification system for HAR with
increasing accuracy while keeping the algorithm reasonably simple [20–22]. This system consists of
assigning precise target classes to samples in two steps. In the first step, a base classifier discriminates
between meta-classes regrouping several similar target classes. In the second step, classifiers specific
to each meta-class discriminate between the final target classes. With a strong base-level classifier,
such systems can manually prevent potential misclassification [21] and combine different classifiers for
different tasks, each “specializing” in a different problem solving task [20]. Finally, a hierarchical system
provides an interesting insight into the performance of the algorithm solving a basic classification,
which can represent an objective per se.

The goal of this article is to propose a high-performance, fast and easy-to-implement algorithm for
HAR, which could compete with state-of-the-art complex algorithms, including those based on neural
network models. The proposed algorithm relies on a novel hierarchical system and a relatively small set
of highly informative features extracted from the filtered signals, and was evaluated against the public
Daily Living Activity (DaLiAc) dataset presented below [20]. Because this algorithm was specifically
designed for the classification task of the DaLiAc dataset, we further assessed its generalizability
by testing it against another dataset, the mHealth dataset [23]. Finally, given that many popular
activity monitors (e.g., ActiGraph or ActivPal in health studies) are not equipped with gyroscopes, we
assessed the usefulness of adding gyroscopes to the accelerometers by comparing the performance of
the algorithm when gyroscope data were included and when they were not.
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2. Materials and Methods

2.1. The DaiLAc Dataset

The DaLiAc (Daily Living Activity) dataset consists of the signals of accelerometers and gyroscopes
placed on the chests, wrists, hips and ankles of 19 adults performing thirteen daily activities in
semi-controlled conditions. The activities include a wide range of simple and complex activities:
lying, sitting, standing, dish washing, vacuum-cleaning, sweeping, walking, running, ascending stairs,
descending stairs, bicycling with a resistance of 50 Watts, bicycling with a resistance of 100 Watts and
rope jumping. Details about the subjects and the experimental designs can be found elsewhere [20].

2.2. Processing

Acceleration signals are known to be composed of a dynamic component (acceleration of the
body) and a gravitational one. As a consequence, some authors suggested applying a low-pass filter to
the acceleration signal in order to isolate the gravitational component and infer the inclination of the
device in space [8,24]. Using a Butterworth filter (first order, with a threshold of 2 Hz), we separated
the accelerometer signals into dynamic and gravitational components (AC and DC components,
respectively). Unlike the widespread approach, we treated raw acceleration, AC and DC components
as three separate signals all along the feature extraction process. AC and DC components reflect two
different aspects of physical activity, orientation and motion, and as such should be treated as two
independent signals. For instance, periodicity metrics extracted for the signals can be different, but
equally interesting, when looking at orientation and motion over time. Thus, we ended up, for each
sensor, with the following time-series: three total acceleration signals (along each axis), three AC, three
DC and three gyroscope signals. All signals were downsampled to 51.2 Hz (we sampled every fourth
datapoint from the original data) and normalized.

All signals were segmented along the time axis into windows of five seconds with a 50% overlap,
as done by other authors [25], in order to make evaluation comparable with other algorithms tested on
the same data [15].

2.3. Feature Extraction

We define as x the signals (raw accelerometer and gyroscope data, AC and DC) over an N-length
window (here, we used 5-s windows and a sampling frequency of 51.2 Hz, hence N = 256). For each
windowed signal x, the following statistics were computed in the time-domain:

- Mean, standard deviation, skewness and kurtosis;
- The following percentiles: [0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100];
- Range: max(x) −min(x);

- RMS:
√

1
n sum(x2);

- Zero-crossing: the number of times the signal crossed the mean.

To the mean-subtracted signal x′ = x− x, we applied the Fourier transformation. We define an
amplitude vector x̂ as the absolute values of the Fourier transform:

x̂ =
{∣∣∣ f̂ (ξ)∣∣∣ ∣∣∣∣∣ ξ ∈ [

0 ,+
N
2

]}
(1)

The following frequency domain features were computed for all vectors x̂:

- Energy: E = sum (x̂2);

- Entropy: H = −
p· log(p)
log2(

N
2 )

, where p = x̂
sum(x̂) ;

- Centroid: c = ξ·p, where ξ =
{
ξ
∣∣∣∣ ξ ∈ [

0 ,+N
2

]}
;
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- Bandwidth: b = δ·p, where δ = ξ − c;
- Maximum frequency: argmax( f̂ (ξ)).

2.4. Classification

Classification was done using a two-level hierarchical system, as illustrated in Figure 1. For all
classification tasks in the system, the following classifiers were tested: LR (with a L2 regularization and
a penalty coefficient equal to one); KNN with k = 5; gradient boosting (GB) (500 estimators, selecting
10 features at a time); and SVM. For additional comparability, a convolutional network was also tested
(architecture in Figure 2) taking as input the four signals (AC, DC, accelerometer and gyroscope) and
their Fourier transform. Classification was done using all 15 possible combinations of device locations
on the subjects’ body (e.g., ankle, ankle + chest and ankle + chest + wrist).

We used Python’s Scikit-learn [26] and Tensorflow [27] libraries for the analysis, and unless
otherwise specified, their default parameters. The Python scripts of the project are available on the
Github repository (see Supplementary Materials).

2.5. Evaluation Method

In order to evaluate the performances of the proposed models, a leave-one-subject-out procedure
was followed: models were tested against data from one subject after being trained on all others, for
each subject of the 19 subjects in the dataset. This procedure was adopted by the first study on the
dataset and followed by several subsequent studies (Table 1). Reserving a fraction of each subject’s data
for testing instead a fraction of the subjects themselves can result in an upward bias of the estimate of
the performance metric, since models learn the patterns that are specific to the subjects and can better
classify them during testing. Moreover, averaging scores of all iterations in a leave-one-subject-out
procedure is preferable to a single hold-out test on a several subjects, as it reduces bias in the accuracy
estimator, especially in small datasets [20].

For all models, we reported the mean and standard deviation of the accuracy (rate of correctly
classified samples) for the 19 leave-one-subject-out rounds. To present a complete picture, for models
based on the four devices, we also presented the confusion matrix, and the f-score, which is the harmonic
mean of precision (true positives/(true positives + false positives)) and recall (true positives/(true
positives + false negatives)).

Table 1. Overview of previous algorithms applied to the DaLiAc dataset (with testing on unseen subjects).

Authors Year Classifiers Mean Accuracy
Score (%) Remark

Leutheuser et al. [20] 2013 SVM, AdaBoost,
KNN 89.6 Reference paper

Chen et al. [28] 2016 SVM 93.4

Nazabal et al. [29] 2016 HMM 95.8 Merged the two
bicycle activities

Zdravevski et al. [18] 2017 SVM 93.4

Hur et al. [15] 2018 CNN 96.4

Jurca et al. [30] 2018 LSTM 87.2

Huynh-The et al. [16] 2019 CNN 95.7

Proposed algorithm 2020 LR 97.3

SVM = support vector machine; KNN = k nearest neighbors; HMM = hidden Markov model; CNN = convolutional
neural network; LSTM = long short time memory; LR = logistic regression.
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2.6. Generalization on the mHealth Dataset

The algorithm presented in this article was designed to address the specific classification task
of the DaLiAc dataset. It was therefore deemed desirable to validate this algorithm on other data,
collected in different conditions and presenting a different classification task. To do so, we used the
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algorithm on the mHealth dataset [23] that contains labelled body-worn accelerometer, gyroscope and
magnetometer signals collected while subjects were performing different activities. The accelerometer,
gyroscope and magnetometer sensors were placed on the lower arm and the ankle. In addition, a
device placed on the chest recorded accelerometer data only. Data for the activities were collected in an
out-of-the lab environment with no constraints on the way activities must be executed; subjects were
asked to try their best when executing them. The activities were the following: standing still, sitting
and relaxing, lying down, walking, climbing stairs, bending the waist forward, frontal elevation of
arms, bending the knees (crouching), cycling, jogging, running and jumping forwards and backwards.
We trained and tested the data using the exact same algorithm, hyper-parameters and validation
procedure as those presented here for the DaLiAc dataset. We used a flat classification, since classes
seemed clearly distinct from each other.

3. Results

3.1. Results for the DaLiAc Dataset

For the five classification models (LR, GB, KNN, SVM and CNN), accuracy is reported for each
combination of devices and for each task in the hierarchical system (Table 2, and in Tables A and B in
Supplementary Materials). Overall classification accuracy was highest for LR (based on data from all
four devices) with 97.30% accuracy, followed by GB (all devices) with 96.94%, SVM (all devices) with
96.84%, CNN (three devices, ankle, chest and wrist) with 95.42% and KNN (three devices, ankle, chest
and wrist) with 91.82%. When looking at sub-tasks in the hierarchical classification system, GB is very
slightly better than LR in the base-level classification (99.23% vs. 99.21%). GB outperformed LR also
in distinguishing between standing and washing dishes (97.40% vs. 97.06%) and between walking,
ascending and descending stairs (99.08% vs. 98.72%). When we combined the best classifiers for all
sub-tasks, overall mean accuracy rose by 0.04%. As this improvement remains very marginal, we
refer to the system based exclusively on LR as the best algorithm. The confusion matrix for the final
classification with LR is shown in Table 3.

The training time varied significantly across the models studied. Using Google Colab (with
GPU accelerator) and the parameters mentioned above, training and predicting data following the
leave-one-out procedure (i.e., 19 times) for the DaLiAc dataset lasted 4.5 min with LR and KNN, 7.2
min for SVM, 10.7 min for GB and over half an hour for CNN (Table 2). The entire feature extraction
phase for the 19 subjects (over six hours of observations in total) took about 30 s.

Regarding the locations of the devices on the body, the best choices of one, two and three
locations out of the four studied were chest (93.39% with SVM), ankle + wrist (96.81% with LR)
and ankle + wrist + chest (97.06% with LR), respectively (Table 2). Table 4 shows a comparison of
the classification accuracies based on both accelerometers and gyroscopes with those obtained with
accelerometers only. The loss in mean accuracy was relatively small when leaving out gyroscopes
(−0.4%, −0.4%, −0.1% and −2.5% for the best four, three, two and one locations using LR, respectively).

3.2. Results for the mHealth Dataset

The ability of our algorithm to generalize was further validated on the mHealth dataset, using all
accelerometer, gyroscope and magnetometer signals. We obtained very good average scores on the
mHealth dataset with GB (98.7% ± 2.6%), LR (98.2% ± 2.7%) and SVM (97.2% ± 3.7%), but less good
ones with KNN (92.7% ± 4.3%) and CNN (87.7% ± 7.5%).
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Table 2. Best mean (maximum) and standard deviation (minimum) of accuracy score by classification task and classifier.

Task
→

Base Stand/Washing
Dishes Vacuum/Sweep Walk/Ascending

Stairs/Descending Stairs
Bike 50 Watt/ Bike

100 Watt Overall Execution
Time

↓ Classifiers Mean sd Mean sd Mean sd Mean sd Mean sd Mean sd

SVM 0.9911 0.0076 0.9716 0.0365 0.9397 0.0521 0.9872 0.0076 0.9495 0.0577 0.9684 0.0166

7.2 minBest sensor
combination ACHW AH ACHW AHW ACHW HW A A ACH C ACHW AHW

CNN 0.9896 0.0093 0.965 0.0498 0.9364 0.0607 0.9799 0.0168 0.9259 0.0577 0.9542 0.022

32.0 minBest sensor
combination ACW ACW AW A ACW ACW ACH ACHW AHW ACH ACW ACW

KNN 0.984 0.0128 0.9336 0.0742 0.8642 0.0633 0.9873 0.0085 0.8042 0.0754 0.9182 0.0233

4.5 minBest sensor
combination ACW AW ACHW ACHW ACW ACW AC AC AC ACH ACW ACW

GB 0.9923 0.0057 0.974 0.0313 0.9292 0.0487 0.9908 0.0063 0.9408 0.0546 0.9694 0.0188

10.7 minBest sensor
combination ACH AHW ACHW ACHW ACHW AHW ACH ACH ACW CHW ACHW ACHW

LR 0.9921 0.0069 0.9706 0.0354 0.9444 0.0453 0.9872 0.0099 0.9547 0.0493 0.973 0.0135

4.5 minBest sensor
combination AHW AW ACW AHW ACW AHW AC A ACHW AW ACHW AW

Legend: SD = standard deviation, A = ankle, C = chest, H = hip, W = wrist.
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Table 3. Aggregated confusion matrix for all leave-one-subject-out rounds (logistic regression). Class-specific precision, recall and f-score (β = 1) are reported for each
class of the DaLiAc dataset. Values in bold (diagonal) represent correct predictions.

Sit Lie Stand Wash Vacuum Sweep Walk Stairs-Up Stairs-Down Run Bike 50W Bike 100W Jump

sit 430 0 17 3 0 0 0 0 0 0 0 0 0

lie 1 455 0 0 0 0 0 0 0 0 0 0 0

stand 2 0 442 8 0 0 1 0 0 0 0 0 0

wash 0 0 2 924 7 4 0 0 0 0 0 0 0

vacuum 0 0 0 7 422 25 0 0 0 0 0 0 0

sweep 0 0 6 4 23 704 4 2 0 0 0 0 0

walk 0 0 3 1 4 5 2010 11 6 1 0 0 0

stairsup 0 0 0 0 0 1 6 312 1 0 0 0 0

stairsdown 0 0 0 0 0 0 5 2 266 0 0 0 0

run 0 0 0 0 0 0 0 0 0 910 1 0 0

bike 50W 0 0 0 0 0 0 0 0 0 0 877 46 0

bike 100W 0 0 0 0 0 0 0 0 0 0 37 883 2

jump 0 0 0 0 0 0 0 0 0 0 0 0 243

precision 0.993 1.00 0.940 0.976 0.926 0.953 0.992 0.954 0.974 0.999 0.959 0.950 0.992

recall 0.956 0.998 0.976 0.986 0.930 0.948 0.985 0.975 0.974 0.999 0.950 0.958 1.000

f_score 0.974 0.999 0.958 0.981 0.927 0.950 0.989 0.964 0.974 0.999 0.954 0.955 0.996
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Table 4. Comparison of classification accuracy on the DaLiAc dataset with versus without gyroscope
data for all combinations of devices.

Accelerometer/Gyroscope Accelerometer Only Mean
Difference

Mean sd Mean sd

ankle 0.920 0.03 0.921 0.02 0.0010

chest 0.926 0.03 0.901 0.03 0.0250

hip 0.894 0.04 0.867 0.05 0.0270

wrist 0.867 0.5 0.809 0.05 0.0580

ankle|chest 0.959 0.02 0.954 0.02 0.0050

ankle|hip 0.943 0.03 0.941 0.02 0.0020

ankle|wrist 0.968 0.01 0.958 0.01 0.0100

chest|hip 0.943 0.03 0.93 0.03 0.0130

chest|wrist 0.954 0.02 0.934 0.03 0.0200

hip|wrist 0.945 0.03 0.926 0.03 0.0190

ankle|chest|hip 0.960 0.02 0.956 0.02 0.0040

ankle|chest|wrist 0.970 0.02 0.966 0.02 0.0040

ankle|hip|wrist 0.968 0.01 0.964 0.01 0.0040

chest|hip|wrist 0.962 0.02 0.949 0.02 0.0130

ankle|chest|hip|wrist 0.973 0.02 0.969 0.02 0.0040

4. Discussion

Compared with previous works tested on the DaLiAc data set, the proposed algorithm, based on
careful handcrafted features extracted from the signals, represents a threefold improvement. First,
the proposed algorithm performs better than major works tested against the DaLiAc dataset (97.30%
accuracy with LR versus 96.40% for the best model so far with CNN [15]) (see Table 1). Likewise,
our algorithm with GB and LR yielded less than 2% classification error on the mHealth dataset.
By comparison, Jordano et al. [31] identified seven studies evaluated against the mHealth dataset,
and when applying the same leave-one-subject-out procedure, the accuracy for the best algorithm
was 94.66%. Zdravevski et al. [18] using a hold-out dataset for testing (subjects 7–10) reached 99.8%
accuracy. By applying the same procedure and the same windowing strategy, we reached an accuracy
of 99.7% with our algorithm (LR).

Second, compared to state-of-the-art CNN, the proposed algorithm performed best with fast-training
models, such as logistic regression (32 min for the former versus 4.5 min for the latter).

Third, these superior results were obtained with simple and robust tools in machine learning that
do not require preliminary hyper-parameter optimization and feature selection, such as LR. In fact,
hyper-parameters optimization of classifiers (most notably neural networks) and feature selection can
be a daunting, time-consuming task, and was shown to lead to over-fitting and poor generalization [32].
This was corroborated by the validation of the algorithm against the mHealth dataset. Simple classifiers
based on handcrafted features, which required no or little hyper-parameter tuning, generalized very
well on a new dataset, while CNN, which performed well on DaLiAc, for which it was tuned, yielded
poor results on mHealth.

It is difficult to fully explain how our algorithm outperformed previous algorithms using classical
machine learning classifiers by around 4%, as authors do not always specify all the decisions that they
make during data processing before reaching the results. Using the DaLiAc dataset, we undertook
a few steps to identify the innovations that made our algorithm more accurate. First, running our
algorithm with a flat classification system instead of the hierarchical system proposed here resulted in
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1.81% decrease in mean accuracy. Second, by extracting features performed on the acceleration signal
only, without including the AC and DC components as we did, the decrease in accuracy amounted
to 2.63%. The additional 1.27% difference with the two best-performing algorithms using classical
methods by Chen [28] and by Zdravevsky [18] can be attributed to a good trade-off between the number
of features and their informativeness. In fact, the former study omitted very important features (i.e.,
no frequency domain features were extracted), while the latter may have had too many of them (4871
before selection).

Large-scale past public health studies in activity monitoring, such as NHANES [1], have relied
only on accelerometer sensors to derive activities. Yet, many of the state-of-the-art algorithms have
been developed for a combination of accelerometer and gyroscope data. We have shown here that
with our algorithm, the decrease in accuracy following the removal of gyroscope signals was marginal.
This will help designers of future studies make an informed decision about the trade-off between cost
and accuracy.

Despite this promising improvement, two caveats need to be highlighted. The first caveat relates
to the nature of our data. HAR algorithms are tested against clean data of activities performed in a
characteristic manner as part of a relatively structured protocol. Realistic data, however, can contain
fewer characteristic activities (e.g., slouching) which represent a greater challenge to classify. To that
extent, very recent attempts to create benchmark activity datasets simulating real conditions [33] are an
important development in the field and new algorithms should preferably be assessed using these data.
In addition, people in real conditions tend to switch rapidly between activities. Consequently, windows
of five seconds are probably too long to capture a single activity. A possible solution would be to view
sets of activities that are often performed together (e.g., standing and walking around) as activities per
se. Another solution is to consider smaller windows, for instance, of one second. Smaller windows are
known to be less good when aiming to capture cyclical activities [25] and can result in a decrease in
total accuracy and longer training. In fact, running our algorithm on one-second windows resulted in
a drop of 2.9% and lasted almost five times as long as with the five-second windows commonly used
(data not shown). Limiting this loss in accuracy by applying dynamic windowing methods [25,34] is
an interesting direction for future development.

A second caveat pertains to the ranking of the models tested in this study. A better choice of the
hyper-parameters of the powerful SVM, GB or CNN models could have resulted in another ranking.
Our points are to emphasize that a simple approach based on domain knowledge can result in a fast,
robust and performant model; and that issues of generalizability and tedious processes of model
selection must be acknowledged in the evaluation of a new algorithm.

5. Conclusions

In this paper, we propose a novel algorithm for HAR from motion signals (accelerometers and
gyroscopes), which significantly improves upon previous work in terms of computational expenses,
inferential robustness and classification accuracy. Using a hierarchical classification system with LR,
and a relatively small set of features extracted not only from the acceleration signal, but also from
low-pass filtered and high-pass filtered signals, proved highly useful in solving our classification task.
From a practical perspective, we showed that two devices placed on the wrist and the ankles resulted
in an accuracy that is practically as good as with two additional accelerometers on the chest and the
hip, and that using the method proposed here, the additional information brought by the gyroscope
was marginal.

Future research should focus on data that better simulate real life conditions, with their swift
transitions between activities and less characteristic behaviors. New, simple models should be
developed to better adapt to these conditions, while relying, as much as possible, on domain knowledge.



Sensors 2020, 20, 3090 11 of 12

Supplementary Materials: The following are available on the project’s GitHub repository: https://github.com/
Meiselocker/har. Tables A and B: Mean accuracy and standard by model and sensor location, Python scripts.
Evaluation datasets.
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