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Abstract: This paper presents LocSpeck, a collaborative and distributed indoor positioning system for
dynamic nodes connected using an ad-hoc network, based on inter-node relative range measurements
and Wi-Fi fingerprinting. The proposed system operates using peer-to-peer range measurements
and does not need ultra-wideband (UWB) fixed anchor, nor it needs a predefined network topology.
The nodes could be asymmetric in terms of the available sensors onboard, the computational resources,
and the power capacity. This asymmetry adversely affects the positioning performance of the weaker
nodes. Collaboration between different nodes is achieved through a distributed estimator without
the need of a single centralized computing element. The ranging measurement component of the
system is based on the DW1000 UWB transceiver chip from Decawave, which is attached to a set
of smartphones equipped with asymmetric sensors. The distributed positioning filter fuses, locally
on each node, the relative range measurements, the reading from the internal sensors, and the
Wi-Fi received signal strength indicator (RSSI) readings to obtain an estimate of the position of
each node. The described system does not depend on fixed UWB anchors and supports online
addition and removal of nodes and dynamic node role assignment, either as an anchor or as a
rover. The performance of the system is evaluated by real-world test scenarios using a set of four
smartphones navigating an indoor environment on foot. The performance is compared to that of a
commercial UWB-based system. The results presented in this paper show that weak mobile nodes,
in terms of available positioning sensors, can benefit from collaboration with other nearby nodes.

Keywords: ultra-wideband (UWB); positioning system; indoor localization; real-time location system;
embedded systems; ad-hoc networks

1. Introduction

Indoor positioning and localization systems constitute a broad research area that spans different
sensing techniques and a multitude of position estimation techniques. The field has been experiencing
continuous growth in the last few years, from both the research perspective and equally from the
commercial perspective, with the proliferation of positioning and localization systems in indoor
environments and the rapid adoption of location-based services (LBS) and real-time location systems
(RTLS) in commercial, industrial, emergency response, and military settings [1]. In some situations,
the individual nodes may not achieve acceptable positioning accuracy because of the limitations of the
available sensors or of the insufficient observations. In operating scenarios, where there is a group of
nodes in the same physical proximity, and some of these nodes can position itself with relative accuracy,
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using relative measurements can augment the stand-alone observations of each node and improve
the positioning accuracy of the ensemble [2,3]. The use of relative range measurements introduces an
additional constraint to the position estimation filter, which can improve the positioning accuracy of
the collaborating nodes [4]. Ultra-wideband (UWB) ranging devices are more immune to multipath
errors because it can distinguish between different events with a precise temporal resolution, thanks to
its large channel bandwidth. This makes the UWB-based devices capable of achieving centimeter-level
ranging accuracy in ideal operating conditions [5].

The objective of this paper is to present LocSpeck, a collaborative and distributed positioning system
targeting smartphones and handheld applications, which uses UWB-based relative range measurements,
along with Wi-Fi fingerprinting and inertial sensors. The system is evaluated experimentally, and
the results are compared to the performance of Pozyx, a commercial UWB-based positioning system.
The rest of this section will provide a brief overview of different ranging and positioning techniques
used in UWB-based systems, and then it will discuss the different network architectures used for
range-based positioning applications.

1.1. UWB-Based Ranging

Ultra-wideband positioning and localization systems have been used in different scenarios that
require centimeter ranging accuracy with constraints on the cost and the power of the ranging devices.
The applications of UWB-based localization systems include first responders in emergency situations,
assets tracking and monitoring, medical and wellness applications, security and access control, locating
nodes in wireless sensor networks, and for military applications [6-9].

Ranging using ultra-wideband radios can be performed using different techniques: angle-of-arrival
(AOA), received signal strength (RSS), time-difference-of-arrival (TDOA), or time-of-arrival
(TOA)/time-of-flight (TOF) [7]. The angle-of-arrival-based systems are complex and require more
than one antenna on the same node, increasing the cost and the complexity of the implementation.
The time-based approaches are more suited to the UWB systems since the high-bandwidth of the signal
can provide very fine spatial resolution in addition to increasing its immunity to multipath effects [10].

The Cramér—Rao bound for the time-of-arrival ranging accuracy using the IEEE 802.15.4a, the
predecessor to the IEEE 802.15.4-2011, under single-path additive white Gaussian noise (AWGN)
channel model, can be expressed as:

Cc
OR = ,
21t X B X 4/2(SNR)

where oy, is the standard deviation of the range estimation R, c is the speed of light, f3 is the effective
bandwidth, and SNR is the signal-to-noise ratio [7,11]. Setting = 500 MHz and SNR = 10,
the standard deviation of the range estimation og = 2 cm [12].

The RSS of the UWB signal is less susceptible to small scale fading compared to narrow-band
signals [13] as a result of the large bandwidth of the UWB signals. However, the ranging accuracy
achievable using RSS methods decreases with distance [14], making the achievable accuracy less than
the accuracy obtained using the time-delay methods. The accuracy of the range measurement using
RSS techniques can be expressed as:

)
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where d is the distance between the two nodes, 7, is the path loss factor, and oy, is the standard
deviation of the zero-mean Gaussian random variable representing the log-normal channel shadowing
effect [7]. This could be sufficient for certain applications that do not require a centimeter ranging
accuracy or when the nodes are in close proximity. RSS localization relies on two techniques: range
estimation or fingerprinting. The first is range estimation knowing the path-loss-model (PLM) and the
channel state information (CSI) [13,15]. The second is signal strength fingerprinting [16], which requires
a learning phase to collect the RSS fingerprints along with a set of reference points, then during the
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localization phase, actual RSS value is compared to the previously generated fingerprint database to
estimate the location of the UWB receiver in real-time.

1.2. UWB-Based Positioning

Thanks to the high accuracy of UWB time-based range measurements, positioning with a
decimeter-level of accuracy is usually achievable by solving a multilateration problem in line-of-sight
(LOS) working conditions [17], i.e., when the UWB signal is not obstructed by any obstacle between the
anchors and the tracked device. In the typical case of a moving device to be tracked, the positioning
problem can be conveniently coped with a proper model of the device dynamic and an Extended
Kalman Filter (EKF). The accuracy of the obtained position estimates depends on the geometry of the
network nodes [18], and it can be assessed by means of the geometric dilution of precision [19]. Several
commercial and research positioning systems, e.g., the Pozyx system, are using a fixed UWB network
architecture in order to properly track moving nodes [17].

Since non-line-of-sight (NLOS) measurements are quite frequent in indoor environments, several
recent works consider the problem of identifying NLOS measurements [20] or dynamically adapting
the measurement variance in the EKF in order to reduce the effect of outliers [21]. Recent feature-based
approaches provided encouraging results on the NLOS identification and mitigation by properly
analyzing the characteristics of the received UWB signal [19,22]. Machine learning approaches proved
to be well suited for identifying NLOS measurements as well, while they currently do not seem to
provide significant improvements for NLOS effects mitigation [23,24].

The integration with the information provided by other sensors can be considered to mitigate the
UWB measurement error and regularize the estimated trajectory, e.g., pedestrian dead reckoning based
on the inertial sensor measurements [25]. Furthermore, a cooperative positioning approach can also be
considered when the position of multiple devices has to be simultaneously estimated [26]. Peer-to-peer
UWB range measurements can be integrated with inertial sensors to improve the positioning accuracy
of a centralized estimator [27].

In contrast to the static network architecture case, this paper considers a network that can
dynamically self-adapt to the number of available UWB devices. The main advantage of this approach
is that it does not require any a priori knowledge of the number of nodes in the network, hence perfectly
adapting to the potentially real scenario where at each time instant users can enter or exit the considered
area with tracking devices equipped with UWB transceivers. This work aims at investigating the
positioning performance in such case, where the use of a fixed UWB architecture is not required, hence
leading to a significant system cost reduction, and the use of a collaborative and approach is expected
to support the positioning performance of weak nodes, e.g., nodes provided with fewer sensors/less
informative measurements.

1.3. UWB Network Architecture

The IEEE 802.15.4-2011 standard supports two network architectures for UWB devices in the
context of the personal area network (PAN), as shown in Figure 1: the star network architecture, and the
peer-to-peer network architecture. A typical network configuration of a UWB-based positioning system
comprises a set of fixed anchors and one or more mobile nodes. The position of the anchors is usually
known, and the location of the mobile nodes is calculated using the range measured between these
nodes and the anchors. An example of a commercial system for positioning, based on the DW1000 [28]
UWB radio from Decawave, is the Pozyx system [29,30]. The Pozyx system supports a fixed network
architecture [31], such that it requires the prior knowledge of the number of mobile nodes, or tags, and
fixed nodes, or anchors, in the network. The position of the tags is calculated sequentially using a
time-division-multiple-access (TDMA) approach to eliminate the possibility of interference between
the different tags. In the Pozyx system, the positioning and ranging procedures are effectively initiated
from a single device in the entire network, which controls the other nodes or tags remotely according
to the list of available nodes.
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Figure 1. IEEE 802.15.4-2011 supported network topologies [32]: (a) Star network topology;
(b) Peer-to-peer network topology.

Another aspect of a UWB network architecture is the design of medium access control (MAC)
protocols, which has been studied extensively in the context of wireless sensor networks (WSNss).
The design of the MAC protocol for sensor networks is guided by the operational goals of the network,
and it is usually an attempt to balance between two conflicting goals: achieving high-throughput and
maintaining energy-efficient operation. Recent survey articles describe the taxonomy of MAC protocols
and outline the development of different MAC protocols [33-37]. The MAC protocols for WSNs can be
categorized into synchronous, asynchronous, frame-slotted, and multi-channel protocols. Although
the IEEE 802.15.4-2011 standard defines the MAC layer, not every UWB radio chip implements the full
standard. For example, the Decawave DW1000 does not implement the MAC layer defined by the
standard and leaves this task to the host system [28].

1.4. Paper Outline

The rest of this paper describes the architecture of LocSpeck, a distributed and ad-hoc UWB-based
positioning system, along with the hardware and software components of the nodes. Section 2
outlines the target network architecture, the hardware architecture of the nodes, and the details of the
range measurement message sequence. The ad-hoc medium access protocol of the LocSpeck system
is described by the end of Section 2. Section 3 starts by describing the distributed relative-range
measurement approach, and then it continues to describe the other measurements used to update
the state of the filter, such as the Wi-Fi fingerprints and the floorplan updates. Section 4.1 describes
the medium-access protocol simulation environment along with the test setup. This section also
discusses the results for the range measurement messages timing and the theoretical limits on the range
measurement rate achieved using the proposed medium access protocol. Finally, Section 4.2 describes
the collaborative positioning testing environment and the different test scenarios; then, it introduces
the positioning results for the proposed system. A brief discussion and the conclusions are presented
in Sections 5 and 6, respectively.

2. Ad-Hoc UWB-Based Positioning System

This section describes the hardware and the software aspects of the proposed ad-hoc UWB-based
positioning system. The system supports ad-hoc network architecture, run-time inclusion and removal
of nodes, and dynamic role assignment to nodes. Furthermore, the proposed system does not depend
on fixed anchors nor requires time synchronization between the collaborating nodes. The section starts
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by describing the supported network structure, then follows by describing the hardware and software
underpinnings of the system. The details of the ranging messages and the medium access protocol are
discussed later in this section.

2.1. Ad-Hoc Network Structure

An ad-hoc network is a network between independent nodes that can change its connectivity
dynamically without the need for fixed infrastructure or central control units [38]. The nodes in the
LocSpeck system are connected using an ad-hoc network architecture, with no predefined structure
nor fixed roles. Since the main objective of the network is to perform ranging measurements between
neighboring nodes, within the line-of-sight of the UWB receiver, the ad-hoc network described here
has some different characteristics from an ad-hoc network used for communication application [39].
A summary of the network characteristics supported by the proposed positioning system is presented
in the following list:

e Flatnetwork topology: the network is composed of symmetric nodes in terms of its communication
capability, which means that each node can initiate a ranging request or respond to such requests
from other nodes. In addition, there are no coordinating nodes as opposed to the peer-to-peer
network architecture described in the IEEE 802.15.4-2011 standard [32,40]. However, the sensing
and computational capabilities of the nodes can still be asymmetric.

e Single-hop network: the nodes are only interested in exchanging ranging messages with their
neighboring nodes.

e  Energy conservation: after either a failed or a successful ranging exchange attempt, the radio chip
goes to sleep for a predefined period of time before it can engage in a new ranging sequence.

e  Flexibility: nodes can enter and exit the network in real-time, with no need to reconfigure or notify
the existing nodes.

These characteristics emphasize the main objective of the network: ranging and positioning.
The nodes are identical, in terms of communication capabilities, and could be spread over a large
physical space. The differences between the ad-hoc network topology and the fixed-role network
topology for ranging and positioning applications can be seen in Figure 2.

O Tag/Mobile node
O Anchor/Fixed node O Anchor/Tag dynamic node

<> Range measurements <> Range measurements

(a) (b)

Figure 2. Ultra-wideband (UWB)-based network architecture for ranging and positioning applications:
(a) Fixed role network; (b) Dynamic role network.
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2.2. Dynamic Nodes Architecture

The dynamic nodes are the building blocks of the proposed ad-hoc UWB positioning system.
Each node is composed of the ranging device and an associated smartphone. An overview of the
architecture of the system is shown in Figure 3. The ranging devices are based on commercial
off-the-shelf components. The UWB radio module used is the DWM1000, which is based on the
Decawave DW1000 radio and equipped with an on-board chip antenna [41]. The DWM1000 is
attached to a CC2640R2 LaunchPad kit from TI [42], which hosts a CC2640R2F wireless microcontroller
unit (MCU), enabling a smartphone to communicate with the DW1000 device over a Bluetooth
low-energy (BLE) interface. The UWB module and the MCU are connected through a serial peripheral
interface (SPI), allowing the host MCU to configure the UWB radio, initiate range measurements,
and obtain data and status information from the radio. The UWB module and the BLE evaluation
board from TI are enclosed in a custom-built plastic case, which hosts the batteries and the power
switch, as shown in Figure 4a. The components of the systems are selected to ensure centimeter ranging
accuracy, provided by the Decawave radio module. The BLE interface is used to easily pair a UWB
module to a smartphone, which provides a low-cost and versatile platform with sensing, computing,
and communication capabilities. For comparison, the anchor and the tag nodes of the Pozyx system
are shown in Figure 4b,c.

| ye © Bluetooth' | i

Firebase Realtime Database

"

i3 TEXAS o
‘-’ IRSTRUMENTS (C/: Decawave

LAUNCHXL-CC2640R2 DWM1000

m e o

Backend Computation Data Collection Evaluation Boards UWB Module

Figure 3. LocSpeck platform overview [41,42].

The host smartphone connects to the ranging device through a Bluetooth Low Energy (BLE)
interface—the smartphone also runs the sensor logging application, as shown in Figure 5. The ranging
device firmware and the logging application communicates through the Generic Attribute Profile
(GATT), which is a component of the Bluetooth low-energy protocol stack responsible for the actual
data exchange between any two connected devices. The GATT stores and passes the data as a set of
fields, called characteristics, which are stored in the memory of the BLE device. The GATT profile
implemented by the LocSpeck ranging device is summarized in Table 1. The LocSpeck logging
application can identify the attached UWB chip, read and change the configuration of the UWB chip,
and log the range and the paired node ID. The LocSpeck logging application can collect data from the
smartphone sensors (e.g., accelerometer, gyroscope, magnetometer, Wi-Fi RSSI, barometers), and it can
record the GNSS position information when it is available. The LocSpeck logging software is capable
of synchronizing the local measurements using a cloud-based real-time database. This capability
can be used to enable a centralized approach for nodes positioning. However, for the rest of this
work, the positioning filters are implemented in a distributed fashion on each node. The collaboration
between different nodes is achieved through the exchange of the relative range measurements between
the collaborating nodes.
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Figure 4. The LocSpeck ranging devices: (a) Ranging devices for the proposed UWB-based positioning
system; (b) Pozyx positioning system-anchor node; (c) Pozyx positioning system—tag node [29].
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Figure 5. The LocSpeck logging Android application: (a) Data logging screen; (b) LocSpeck node
settings screen; (c) Decawave DW1000 settings screen.
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Table 1. The LocSpeck BLE GATT profile.

Characteristic Properties Size (bit) Description
DEVID R 32 DW1000 Device ID
PARTID R 32 DW1000 Lot ID
OTPREV R 8 DW1000 OTP Revision
Range R (Notify) 32 Range measured
Pair ID R (Notify) 16 The ID of the paired node
CONF R/W 16 Node settings
Node ID R 16 Node ID

2.3. Range Measurement Messages

The ability of UWB systems to provide accurate ranging is the motivation to use them for
indoor positioning and localization. The relative range measurements between two UWB transceivers
can be achieved using delay or time-based methods, angle-of-arrival methods, or received signal
strength methods [7]. As shown earlier in Equations (1) and (2), the Cramér—Rao lower bound for
range measurements using the received signal strength increases with the distance, lowering the
achievable positioning accuracy. The angle-of-arrival method requires antenna arrays to distinguish
the phase of each incident radio rays to calculate the relative angle between nodes. The superior
theoretical performance and the simpler implementation renders the time-based ranging solution an
attractive option for commercial positioning solutions such as receivers from Decawave, BeSpoon, and
Ubisense [17], though the Ubisense system supports the angle-of-arrival measurements as well.

Before proceeding to describe the range measurement algorithm implemented by the LocSpeck
node, two time-based ranging methods will be briefly discussed: the time-difference-of-arrival (TDOA)
and the time-of-flight (TOF) methods. In TDOA-based systems, the tag or the mobile node sends a
periodic message which is received by the surrounding anchors. The internal clocks of the anchors must
be synchronized, so the anchors can compare the arrival time of the tag message using the same time
reference [43], and find the position of the tag. In TOF-based systems, two-way communication between
the neighboring nodes is required to calculate the time-of-flight without the need for synchronizing
the clocks of different nodes. The time-of-flight is converted to a range measurement by multiplying it
by the speed of light. The DW1000 chip can implement both methods. However, the LocSpeck system
implements the time-of-flight method for range calculation.

Figure 6 shows the message exchange sequence for two different time-of-flight ranging techniques
utilizing the Decawave DW1000 chip. Although the DW1000 chip does not implement the top-level
ranging technique, the chip provides means to precisely control the messages exchange and to accurately
time-stamp each transaction [28]. The host system—in the case of LocSpeck, the ARM Cortex-M3
MCU embedded on the TI CC2640R2 chip—is responsible for implementing the range measurement
algorithm. Figure 6a shows the messages exchanged between two nodes for the single-sided two-way
ranging. The propagation time can be calculated using Equation (3):

1
Tpmp = _(Tmund - Treply) ’ 3)

2
where Ty 4 and Ty, are the round-trip time and reply time, respectively. Each time quantity is
measured on device A and device B using their local clocks, alleviating the need to synchronize the
nodes. This method represents a simple approach to calculating the range, with the exchange of two
messages only. However, the drawback of the single-sided ranging method is that the error in the
range measurements increases as the reply time increases. The reason for this error is attributed to the
small clock offset from its nominal value in the oscillator of each chip.
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Figure 6. Two-way ranging frame sequence [28]: (a) Single-sided two-way ranging; (b) Asymmetric
double-sided two-way ranging.

Figure 6b shows the asymmetric double-sided two-way ranging method in which the ranging
exchange requires three messages, where two round trips are combined to calculate the propagation
time, reducing the ranging errors [28]. The asymmetry in this exchange is manifested by the fact that
the reply time of both nodes is not equal. The propagation time for the asymmetric two-way ranging
can be calculated using Equation (4):

Tround1 X Tround2 — Treplyl X TreplyZ

4)

Tprop B Tround1 + Trounaz + Treplyl + Treplyz .

The propagation time calculated in Equation (4) ensures that the error due to clock offset is
minimized compared to the single-sided method. The LocSpeck node implements the double-sided
two-way method using three messages for ranging in addition to one final message to share the
calculated range between the nodes pair, as shown in Figure 7. In this example, the messages exchange
is expressed as follows:

1. Device A begins the ranging exchange by sending a blink message to any of the surrounding
nodes. The purpose of this message is to notify any available nodes that device A is prepared to
proceed with the range measurement exchange.

2. If device B is within the communication range and is listening to the correct UWB channel, it
receives the blink frame and replies by sending the range measurement initiation message, using
the address of device A.

3. Device A receives the ranging initiation message, then it sends back a poll message to the other
side and records the precise time of sending the poll frame.

4.  Device B gets the poll message and stamps the arrival time. Then, device B sends a response
message to device A and record the reply time (Tyep11)-

5. Device A gets the response frame and saves the arrival time stamp, and then calculates the first
round-trip time (Tynq41). After the second reply time (T;epry2), device A sends the final message.
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6.  Device B receives the final frame and records the round-trip time (T,o,,,42). Using Equation (4),
device B calculates the propagation time (T}), and consequently, the range.
7. Finally, device B sends the propagation time back to device A.

2 Blink Poll Final {End}

v

O O 0O O

v A A5 5

m s, '.":" :'::. "'_"A. . -."..'V ::.:.

© O O
Initiate Response Report

(a) (b)

Figure 7. Ranging message structure: (a) Decawave DWM1000 modules, based on DW1000 UWB radio
chip; (b) Ranging messages exchanged between two nodes.

By the end of the messages exchange, the measured range value is available at both devices for
further processing. The positioning algorithm uses the range information along with the other local
sensors readings to update the position state of the nodes.

2.4. Medium Access Protocol

The LocSpeck nodes are designed to operate in an unpredictable environment, in terms of the
number of the surrounding nodes and in terms of the possible structure of the network formed
using these nodes. The nodes should support rapid deployment with no or minimum effort from the
operator. To meet the target operating conditions, LocSpeck nodes implement a simple and light-weight
random-access medium access protocol based on the pure ALOHA protocol [44,45]. Figure 8 shows an
overview of the medium access protocol implemented by the LocSpeck nodes.

ANCH TAG

T ? !
m Tx: Init I Blink

Rx timeout/

Rx timeout/
Msg error

50~80 ms Msg error : . g
( ms) Rx: Poll s 20
. Tx: Poll
Rx: Blink
Msg error Rx timeout/

Rx timeout y Msg correct ) Msg error o
Rx timeout/ e

Msg error

X

— ANCH Qi

Rx timeout/

Rx: Rpl‘t Msg error
®

e

Figure 8. LocSpeck medium access protocol.
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After powering up LocSpeck nodes, they start in the sleep state. Each node sleeps for a random
duration between 50 ms and 80 ms. When the sleep duration elapses, nodes wake-up and power-up
its receiver, waiting for any incoming frames. If a node receives a complete frame, it decodes the
frame and checks if the incoming frame is a blink message. In the case of receiving a blink message,
the node operates as an anchor. If the node receives a complete frame, and it is not a blink message,
it concludes that the channel is currently occupied with the ranging sequence of another pair of nodes,
and goes back to the sleep state, so it would not interfere with the current exchange. If no frames are
received and the listening period elapses, the receiver timeout flag is asserted. In this case, the node
assumes that the channel is free, so it switches to the tag mode and starts sending a blink message to
any active node.

While at the anchor or the tag states, each node sends or receives a sequence of messages. If any
of the received messages does not match the expected message at that stage, the node will switch
back to sleep mode. Also, the nodes will go to sleep mode, if there is any problem with messages
transmitting or receiving, such as a receiver timeout, or any other problem related to the radio interface.
Once a ranging sequence is completed successfully, the node saves the range and the node ID of the
collaborator. Finally, each node sends a notification to the host smartphone before returning to the
sleep mode for another random duration.

The LocSpeck medium access protocol assumes that all the nodes use the same UWB channel
and the same preamble code for both communications and for ranging. The DW1000 supports the
use of 6 RF channels out of the 16 channels defined in the IEEE 802.15.4-2011 standard. Each node
operating in the channel is assigned a preamble code from a set of two or four possible codes. The exact
values of the preamble sequence are defined by the standard and are selected to ensure minimum
cross-correlation between different codes. Assigning different nodes to different channels and assigning
different preamble codes to the nodes operating in the same channel can increase the number of nodes
operating in close proximity [46]. Although the multiple-channel and multiple-preamble approach
can increase the effective number of nodes, its use was not considered in this work since it would
increase the complexity of the system. Using this approach will require more functionality on top
of the current protocol to scan different channels and preambles and to keep track of nodes in each
channel-preamble configuration.

3. Collaborative Positioning Algorithm

This section describes the two-dimensional positioning algorithm implemented in the LocSpeck
system. It highlights the dynamic motion model of the nodes, along with the measurements update
model. The LocSpeck nodes use different measurement update models: relative range measurement
updates, Wi-Fi fingerprinting updates, and map information update.

The standalone position algorithm is implemented using a particle filter (PF) which performs
better than the extended Kalman filter (EKF) or the unscented Kalman filter (UKF), due to the
non-linear nature of the Wi-Fi fingerprinting update [47]. The PF version used for this work uses
a pedestrian dead-reckoning (PDR) algorithm for the state update using input from the gyroscope
and the accelerometer if these sensors were available on the host smartphone. The filter uses Wi-Fi
fingerprinting to update the weights of the particles, using a Gaussian process model as the reference
map. The implementation details of the standalone positioning filter, including the pedestrian
dead-reckoning and the Gaussian process-based fingerprinting, were discussed in [48]. The standalone
filter runs on each node independently, where the processing of the relative range measurement and
the local sensors measurements are handled on each node.

The weights of the particles in the filter are updated using the relative-range, the Wi-Fi received
signal strength indicator (RSSI) measurements, and the map information, using Equation (5):

@), o w_y X p(zf[xt) 5)
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i
k—
and p (zf|x;{) is the likelihood of the observation zf at the location defined by the horizontal coordinates

where w;_, is the current weight of particle , 55;{ is the updated weight, zf is the value of the observation,

of the particle 7, x;'(.

Equation (5) is a simplified version of the particle filter weights update equation in which the
proposal density is the state transition model. After the weight update step, a weight normalization
and resampling steps are implemented to remove the undesired particles. The filter is implemented
with relatively low particle count (150 particles) to reduce the processing time required. The details of
the measurement likelihood equations for different measurement updates equations are presented in

the following subsections.

3.1. Distributed Relative-Range Measurement Update

The measurement update using a relative-range between a pair of collaborating nodes involves two
pieces of information: the relative-range and the position of the collaborating node. The measurement
can be described using Equation (6).

il |
e (xd, x6) = Ik = €], , ©)

where hf (+) is the range measurement estimate at time step k; x;(, is the position of the particle ; and x
is the coordinates of the collaborating node. The range estimate is used to evaluate the likelihood of
the range measured given the position of each particle, p(zf)x;;, x¢) , as described by Equation (7).

R R,i\2
. -1 1 (Z —h )
Rl,i c) 2 _2 V% k
p(zk |xk, xk) = (2710%{) exp 5 O-IZQ , 7)
where zf is the actual range measurement, which is modeled as a Gaussian random variable with

mean equals to the measured range and covariance of 0'1%.

Note that Equation (7) not only depends on the local node state, but it also depends on the
collaborating node state. In this case, the particle filter running locally on each node needs to account
for the collaborating node uncertainty and the cross-correlation that stems from the collaboration
between different nodes.

This is accomplished by considering the joint distribution of the state of the local and the
collaborating nodes, conditioned on the relative range measurement, p(xlzk, xi|zli k)' The problem is
further simplified by utilizing the Rao-Blackwellized particle filter (RBPF) formulation [49,50], in which
the joint distribution can be factored into a conditionally linear component and a nonlinear component:

p<x1:k1 xi|2ik) = P(xﬂxl:k, Zik)P(x1;k|Zik), (8)

where the local state, x1 is the nonlinear component, and its probability distribution is represented by
the particles. The state of the collaborating node, x;, is the conditionally linear component.

Following the RBPF formulation, the marginalized particle filter equation, p(xl;k(zf:k), can be
represented in Equation (9).

p(x1:k|211{:k) & P(Xk|xk_1 )p(xlzk—l |211{:k—1> fp(zﬂxk/ xi)P(xﬂxl:k/ le{:k—l)dxli ’ (9)

where p(xl:k|zlﬁ k) is the marginalized posterior of the local state conditioned on the relative
range measurement.

As shown in Equation (9), the local particle filter keeps track of the local state only, and the state
of the collaborating nodes need to be sent over the communication channel after each collaboration
exchange. Sending the full posterior, represented as particles, will consume the available bandwidth
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by occupying the radio channel for more time. Instead, each node stores a simplified representation of
its posterior as a Gaussian distribution, which can be fully described by the mean and variance of the
node position. The mean of the state can be described by Equation (10).

I
1=
S
=

(10)
i=1
where wz is the weights of the particles, and N is the number of particles.
The variance of the state is described by Equation (11).
cov(x, xx) [Z wkxk xk J A (11)

Similarly, the cross-covariance matrix expression is given by Equation (12).

cov! xk, xk [Z wkxk J - fck(ﬁi)T, (12)

The values represented by Equations (10) and (11) are exchanged between the different nodes,
along with the measured relative range, zf. When collaboration is initiated between different nodes,
each node has to keep track of the collaborating nodes and update the cross-covariance, Equation (12),
between the local state and the state of the collaborating nodes, cov(xk, xi) This approach is inspired
by the Schmidt-Kalman filter approach [51] but extended to fit a particle filter framework.

When the local node initiates a new range measurement with another node, the conditional
di;tribution, p(xﬂx;(), in Equation (9), can be expressed as a Gaussian distribution, N (xlc{ ; fi’i, 1_3;), were
i;” and 1_3; are evaluated using Equations (13) and (14), respectively [52].

‘ BV
X =g+ C0V<xk—1/xi_l)(co"(xk—l/xk—l)) (xﬁc - xk—l) , (13)

Pk P —cov(xk 1% 1)(cov(xk_1,xk_1))_1(cov(xk_1,xlc{_1))T, (14)

Algorithm 1 summarizes the steps to perform the distributed relative-range measurements update,
taking into consideration the uncertainty in the collaborating node and the possible cross-correlation
between the two nodes:

The previous discussion illustrates that the proposed positioning system is a distributed system,
which does not need a centralized processing element to estimate the state of the collaborating nodes.
Each local node keeps track of the collaborating nodes and keeps track of the cross-covariance between
its local state and the state of the collaborating nodes.
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Algorithm 1 Distributed Relative-Range Measurement Update

Range measurement and collaborating node state parametrized with the mean and the covariance:

Input:
P {z k’ cov(xk, xk)}
Output: Local state posterior, p(xyi1 |xk, , and cross-covariance, cov (g1, X} +1)
1 for each particle i
2 Evaluate the conditional distribution, p(x klx Equations (13) and (14)
3 Evaluate the measurement likelihood, p(z Rlx Equatlon (7)
4 Evaluate the marginal likelihood: p(z R'x f p R'xk, X )p k|x1-k’zf~k—1 )dx;
5 Evaluate p( x;i x‘lzk, zlfzk) , using RBPF formul{ation [49,50]
6 Evaluate particle weight' W o wl’( 1 xp( ]Ij|xl
7 Time update step: p(x;_ , [x;, 2 z%) and p( k+1f ;:k' 2R

8 end for
9 Normalize the particle weights: w}( = fui/ Y fu}(
i

10 Evaluate the mean and variance terms, £, 1 and cov(x,1, ¥, 1) , Equations (10) and (11).
11 Update state cross-covariance term: cov (x1, X} +1) , Equation (12)
12 return p(xk+1|xk,z£) and cov (xi11, % ;)

3.2. Wi-Fi RSSI Fingerprint Update

The Wi-Fi RSSI fingerprinting method used in this work employs a Gaussian process model to
represent the RSSI map [48]. The Gaussian process model is a non-parametric model, which is fully
defined, in terms of a set of training data, by a mean function and a covariance function, fi,;f; and am fi
respectively [53]. Using the mean and covariance functions, the likelihood of observing a certain set of

Wi-Fi RSSI values can be described using Equation (15):

1

p(zzkuifz|xl‘() det(ZﬂZw,ﬁ) p exp(——( wifi Mwifl) Zz:;zfz( wzfi_Mwifi))/ (15)

wifi
k

function values for each observed Wi-Fi access point (AP), i.e., My,;si =

where z, 7" is a vector with all the observed RSSI values at time step k, My;; is a vector of the mean

1 N ;
[‘uwifi’ ceey ‘uwifi]’ and Xy f; is the
observations covariance matrix, which is a diagonal matrix with each element in the diagonal represents

2 2
the covariance value for each observed AP, i.e., Lyir; = diag([(a}w fi) PR (02}71. fi) ]) The mean and

variance functions for each access point, My, fi and X, i, are constructed using a set of training data,
D ={(x1,21), (x2,22),...,(xn,2n)}, where, x,, is the horizontal position of the training data, i.e., x, € R?,
and z, is the RSSI value vector, measured at the point x,,. More details about the implementation of the
Wi-Fi RSSI model using the Gaussian process model can be found in [48].

3.3. Floorplan Update

The filter also uses floorplan information to ensure that the effective particles are contained within
the area of interest and to eliminate the out-of-bound particles. Equation (16) shows the weight update
equation using the floorplan information:

(16)

== w;, x;€FP
e 0, xi¢FP ~

where x; is the position of the i-th particle, with weight w;, and FP is the floorplan.

4. Experiments and Results

This section summarizes the performance results for several aspects of the LocSpeck positioning
system. It highlights the performance of the different components of the system: the timing of the
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ranging frames, the efficiency of the medium access protocol, and finally, the positioning accuracy of
the LocSpeck system using several realistic test scenarios.

4.1. Medium Access Protocol Performance

4.1.1. Range Measurement Messages Timing

The timing characteristics of the ranging sequences and the individual components of the sequence
were measured and analyzed using DW1000 on-chip high precision clock for time-stamping the different
sequences. To obtain the range and ranging frames duration, two LocSpeck devices were placed
60 cm apart, and the firmware was modified to enable logging the frame duration measurements to a
computer. The total duration of the ranging frame is affected by the DW1000 chip settings, such as
the preamble length and the data rate. The DW1000 chip settings used for the rest of this section are
summarized in Table 2. Changing the PRE, PLEN, and DR not only affects the frame time, but it can
also affect the ranging performance.

Table 2. Node settings.

Node Setting Value
Channel number 5
Pulse repetition frequency (PRF) 64 MHz
Preamble length (PLEN) 1024
Data rate (DR) 110 kbps
Range between nodes 60 cm

Figure 9 shows the histograms of the error of the range measurement values and the total duration
of the ranging frames for a sample of approximately 430 range measurements. The size of the data
payload of each message in the ranging sequence and the duration of each message is listed in Table 3.
These values were calculated according to the active DW1000 chip settings and the size of the payload
data [54]. The measured ranges using the DW1000 can be affected by noise, uncalibrated bias, and
received signal power-dependent biases [55]. The overall ranging frame duration is dominated by the
messages sending time and by the processing delays mandated by the firmware implementation and
the processor speed. Since the host microcontroller is handling multiple tasks concurrently, the total
ranging frame time will account for any other background tasks running during the ranging sequence.
The propagation time of the messages from one node to another is 2 ns, which is negligible relative to
the transmission and the processing delays.

Figure 9 shows the distribution of both the range error and the ranging frame duration. With 60 cm
separation between the two nodes, the mean of the measured range error is 1.6 cm, with a 3.5 cm
standard deviation. This error can be attributed to multiple factors: residual biases after node range
calibration and measurement setup inaccuracies. The residual bias arises from the fact that the bias is
modeled as a constant value, whereas the bias is dependent on the power level of the received signal
or equivalently on the separation between nodes. The mean and variance of the range error and frame
duration are summarized in Table 4.
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Figure 9. Range measurement frame statistics: (a) Range error probability density function (pdf), (b)
Ranging frame duration pdf.

Table 3. Ranging messages size and duration.

Messages Size (byte) Duration (ms)
Blink 12 2.57
Initiate 22 3.32
Poll 12 2.57
Response 16 2.87
Final 20 3.18
Report 16 2.87
Total 17.38

Table 4. Range value and frame duration statistics.

Range Error (cm) Frame Duration (ms)
Mean 1.6 431
Standard
Deviation 3.5 2.0

Figure 10 shows the sequence of the messages exchanged during the ranging frame along the time
axis. This frame structure is used in evaluating the LocSpeck medium access protocol, as discussed
in Section 4.1.2. The messages duration was calculated, as highlighted in Table 3, while the average
processing time between messages was calculated using the total ranging frame measurements,
captured using the DW1000 precise timing capabilities, and distributed equally among the processing
gaps between different messages transmission.

Blink Initiate Poll Response Final Report
[ - I REE—— | RS - I - F ]
0 26 77 110 16.2 18.7 239 267 319 351 402 431  t(ms)

Figure 10. Messages exchange timeline of the ranging frame.
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4.1.2. Medium Access Protocol Performance

This section examines the performance of the LocSpeck medium access protocol in terms of
the ranging efficiency as a function of the number of the collaborating nodes. It is expected in a
random-access protocol such as ALOHA, the basis of the LocSpeck medium access protocol, that the
utilization of the medium is reduced due to collisions between different nodes attempting to initiate
ranging sequence at the same time. Using the settings outlined in Table 2, the theoretical maximum
ranging rate achievable by the LocSpeck system is 20 measurements per second. The ranging rate is
calculated using the average frame duration in addition to 15% of the ranging frame used as a guard
interval between different ranging frames, as shown in Table 5.

Table 5. Theoretical maximum ranging rate.

Frame Duration 43.10 ms
Guard Interval + 15%

Total Frame Duration = 49.57 ms
Ranging Frame Rate 20.17 Hz

Figure 11 shows the role transition of nodes with time according to the LocSpeck medium access
protocol, as outlined in Figure 8. Figure 11a shows the state transition for a node acting as a tag.
At time 0, the node wakes up and starts listening for any incoming messages. If no messages were
received after 10 ms, the node concludes that the channel is free and ready for a new transmission.
The node role switches to tag and starts the ranging sequence by sending a blink message. If there is a
listening node in the tag proximity, it sends a response, and the ranging sequence will continue for
another 43 ms. After finishing the ranging sequence, the node sleeps for 50 to 80 ms. The sleep interval
is a random value that changes every time a node enters sleep mode. Since the frame duration and the
sleep interval is between 103 and 133 ms, the theoretical ranging rate between two LocSpeck nodes is
7.5 t0 9.7 measurement per seconds. The maximum ranging rate over the channel with the LocSpeck
medium access protocol is 18.9 measurement per second, assuming a new range measurement will
start once the active node goes to sleep mode, which occurs every 53 ms. Figure 11b shows the timeline
when a LocSpeck node switches to the anchor role. This switch will occur if the node detects a valid
blink message during the listen interval. Since the blink message can be received at any point during
the listen interval, the complete frame duration for the node in anchor role ranges between 76 to 116 ms,
considering the uncertainty in the first 10 ms listening interval and the uncertainty in the 30 ms sleep
random component.

’ Listen [l Tag Sleep (deterministic) Sleep (random)

>
0 10 53 103 133 Hms)
(a)
‘ Listen . Anchor Sleep (deterministic) Sleep (random)
0 10 36 86 116 sms)
t t t t =t(ms)
0 26 76 106

(b)

Figure 11. Dynamic node role transition: (a) Tag node role, (b) Anchor node role.
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Figure 12 shows the simulated ranging rates versus the number of collaborating nodes, including
the channel ranging and the node ranging rates. The maxima of the raging rates are summarized in
Table 6. The channel ranging rates as a function of the number of nodes is shown as a solid line in
Figure 12. Under the tested configuration of the system, the maximum utilization of the channel is
achieved with 18 nodes, reaching 7.9 measurements per second, which accounts for channel efficiency
of 39.5% compared to the theoretical 20 measurements per second. It is worth noting that given fixed
time, the ranging rate drops with the number of nodes until it is practically zero. The dotted line in
Figure 12 shows the average ranging rate per node, assuming range measurements are uniformly
distributed across the node population. The maximum ranging rate per node is 2.1 measurements per
second, with five active nodes achieving 10.4% of the theoretical rate.

3
()]

= I
/ & Channel
7+ | \ Node
.\"I‘ﬂ‘ 11y J
6f | _
I \
5 -Ef \

Channel Ranging Rate (meas/sec)
=
E2r
Node Ranging Rate (meas/sec)

0 | | | O i s e e 1 i
0 20 40 60 80 100 120 140 160 180 200
Number of Nodes

Figure 12. Simulated ranging rates results: the average ranging rate over the channel for all nodes and
the average ranging rate per node.

Table 6. Ranging rate maxima.

Channel Node

Number of Nodes 18 5
Ranging Rate 7.9 2.1

4.2. Positioning and Localization Performance

This section describes the positioning results of the LocSpeck system and compares the results
with those obtained by the Pozyx system. The experiment took place on the second floor of the
engineering block E (ENE) building at the University of Calgary. The surface area of the testing region
is 360 m?, the length of the testing region is 48 m, and the average width is 7.5 m. Figure 13 shows the
floorplan of the testing area, the locations of the Pozyx fixed anchors, and the locations of the reference
points fixed on the floor of the testing area.

The experiments were carried out using four dynamic nodes—one of them is the main node,
while the other three nodes are the supporting nodes. Each node consists of a smartphone and a
ranging device—both were held by a human participant. The participants were moving within the
test area randomly. The test area was open to the public; however, there was light traffic during the
experiments. The different smartphones used in the experiments were equipped with different sets of
sensors. When inertial sensors were available, they were used to provide a PDR solution using the
standalone filter. The rest of this section will evaluate the positioning performance of the main node,
which was connected to the Pozyx system to collect the ground-truth trajectory.
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Pozyx-Anchors

Figure 13. Testing environment floorplan.

The complete experiment consists of three separate trajectories. Each trajectory starts with the
four nodes at rest. Once the experiment starts, the nodes move in random trajectories inside the testing
area. The nodes occasionally stop on one of the reference position markers on the floor. The reference
trajectory of the main node is captured using the Pozyx reference system. The data logging application
runs on each of the smartphones and collects readings from the available sensors, the Wi-Fi received
signal strength indicator along with information about the corresponding access points, and the UWB
range measurement along with the address of the collaborating node.

The raw data of the three trajectories are processed using different scenarios. The first scenario
evaluates the standalone positioning performance of the main node. In this scenario, all the sensors
available to the main node are used by the positioning filter. The Wi-Fi fingerprint map used in this
scenario is the reference map, which was created previously using a dedicated run. The objective
of this scenario is to establish a performance baseline to which the performance of the collaborative
approach is compared.

The next two scenarios are collaborative positioning scenarios. In the first collaborative scenario,
the main node is not using any of the available sensors, except for the UWB ranging device. At the
same time, the supporting nodes are estimating their positions using all the sensors available to them,
along with the Wi-Fi reference map. The main node uses only the relative range measurements to
estimate its position. The objective of this scenario is to evaluate the effect of collaboration in the case
of node asymmetry. The main node, in this case, is in a disadvantageous position where it could not
estimate its location without external aid from the collaborating nodes.

In the second collaborative scenario, the main node and the supporting nodes use the complete
set of available sensors. The objective of this test is to assess the effect of collaboration when the active
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node already has a good estimate of its position using only measurements local to the device, without
any external sources.

In the final collaborative scenario, the positioning filter is providing position estimates based on
a random-walk model only. This final scenario, though seems trivial, is used to establish the lower
bound of the positioning performance.

The rest of this section is divided into three subsections. Section 4.2.1 describes the process of
generating the ground-truth trajectory of each of the test trajectories. It will also elaborate on the
process of generating the Wi-Fi RSSI fingerprint maps. Section 4.2.2 is dedicated to the standalone
performance using all the sensors available to the dynamic node, and without using any collaboration or
relative range measurements for the positioning. Finally, Section 4.2.3 discusses the performance of the
collaborative positioning approach. In this subsection, different collaboration scenarios are evaluated.

4.2.1. Reference Trajectories and Fingerprints Maps

The positioning performance of the LocSpeck system is evaluated using three different trajectories
covering the same test area. Figure 14 shows the reference solution for the test trajectories. This reference
is created using the Pozyx UWB-based system. The locations of the Pozyx anchors are highlighted in
Figure 13. The position error is evaluated at the pre-surveyed reference points.

X Position
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Figure 14. Pozyx reference trajectory.

The reference solution for each trajectory is compared to the pre-surveyed reference points on the
ground. The performance of the Pozyx solution is summarized in Table 7. For all the tested scenarios,
the position error is evaluated when the main node reaches and stops over one of the reference points.
This event is captured from the Pozyx reference trajectory in addition to the stop detection algorithm
applied to the accelerometer data from the node of interest. The Pozyx trajectory is not used directly to
evaluate the performance. It is used to indicate the location of the nearest reference point on the floor,
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which location is known precisely, and this reference point is used to evaluate the error in the position
estimate. The small positioning error of the Pozyx system is vital to be able to distinguish between the
densely placed reference points.

Table 7. Pozyx positioning error summary.

Trajectory # Mean Absolute Error (m) RMS Error (m)
1 0.37 0.45
2 0.57 0.65
3 0.60 0.72

The reference radio map is created using the Pozyx reference trajectory in a separate run.
The fingerprint map is built by observing the signal strength indicator at the reference points, then fit
a Gaussian process model for each visible access point, using the position and signal strength pairs.
During the positioning scenarios, the resulting Gaussian process models are used by the different
dynamic nodes to aid the positioning filter.

4.2.2. Standalone Positioning Results

The standalone scenario results comprise three trajectories for the main node. Due to the stochastic
nature of the particle filter, each trajectory is run through the positioning filter 20 times to produce
more robust statistics of the filter performance. The standalone positioning error statistics for the three
trajectories are summarized in Table 8. For this scenario, the main node is using all the sensors available
onboard the smartphone, i.e., gyroscope, accelerometer, and Wi-Fi information. The root-mean-square
(RMS) positioning error across the three trajectories ranges from 4.28 to 6.65 m, while the overall RMS
positioning error, in this case, is 5.92 m, as shown in Table 8. Since these results depend mainly on
Wi-Fi fingerprinting, the performance might be affected by the presence of high human mobility in
the test area [56]. Additionally, the overall performance of the standalone positioning scenario can be
improved by augmenting the solution with other techniques, such as the geomagnetic field anomalies
or visual scene recognition [57-60]. However, the main objective of the standalone filter in this work is
to form the performance baseline, to which the effect of collaboration between nodes is to be measured,
as discussed later in Section 4.2.3.

Table 8. Standalone positioning results summary.

Error Stats. (m) Traj. #1 Traj. #2 Traj. #3 Overall
Mean 3.80 4.33 4.84 4.36
Min 0.27 0.02 0.28 0.02
Max 9.14 40.84 21.85 40.84
50% Percentile 3.34 3.77 4.41 4.09
75% Percentile 5.30 5.62 5.14 5.34
90% Percentile 6.82 7.13 6.57 6.85
RMS 4.28 6.65 5.75 5.92
Std. dev. 1.97 5.04 3.10 4.01

Table 9 shows the results of the IPIN competition winners from 2015 to 2018 [61,62]. These results
are shown for comparison with the achievable performance of the standalone mode of the LocSpeck
framework. The 75% percentile of the position error is not far from the top indoor positioning system
available, although the winner of the 2018 off-site track can achieve 1.1 m accuracy.

It is worth noting that the inclusion of the results in Table 9 does not imply that the different
systems can be compared directly since the performance of any positioning system will vary according
to the operating conditions. The sole purpose of showing these results is to give a sense of the
performance of the current state-of-the-art systems. The performance of the standalone solution acts as
a baseline to which the collaborative positioning approach is evaluated.
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Table 9. Performance of indoor positioning competitions (75% percentile).

Competition Track Accuracy (m)
IPIN 2015 Smartphone (on-site) 6.6
IPIN 2015 Smartphone (off-site) 8.3
IPIN 2016 Smartphone (on-site) 5.4
IPIN 2016 Smartphone (off-site) 5.8
IPIN 2017 Smartphone (on-site) 8.8
IPIN 2017 Smartphone (off-site) 3.48
IPIN 2018 Non-Camera based Positioning (on-site) 5.5
IPIN 2018 Smartphone (off-site) 1.1

4.2.3. Collaborative Positioning Results

In this section, two collaboration scenarios are considered. The first scenario consists of four
nodes, the main node, and three supporting nodes. The main node will not use any of its onboard
sensors. However, the main node will only use the UWB device to measure the relative ranges between
itself and the other collaborating nodes. The other supporting nodes will use all the sensors available
to them, along with the range measurement device. The objective of this scenario is to evaluate the
achievable performance using relative range measurements to dynamic nodes. The second scenario
is similar to the first one with one change: the main node will be using all the available sensors,
in addition to the range measurement device. The objective of this scenario is to assess the effect of the
collaboration on the participating nodes. In addition to these two cases, the results of the positioning
using the random-walk model only is showed as well.

e  Positioning using relative range measurements

Table 10 shows the performance summary for the collaborative positioning approach, using
the relative range measurement only. As expected, the performance, in this case, is worse than the
performance of the standalone case. However, in this scenario, the mobile node is using only the range
measurements, without any of the onboard sensors. In this case, the use of the collaborative positioning
framework improves the positioning error for the main node by 50%, above the performance of the
random-walk model only.

Table 10. Collaborative positioning results summary (no sensors).

Error Stats. (m) Traj. #1 Traj. #2 Traj. #3 Overall
Mean 8.58 10.65 8.36 9.51
Min 0.02 0.00 0.06 0.00
Max 34.61 43.21 27.44 43.21
50% Percentile 6.49 6.99 6.70 6.79
75% Percentile 1091 16.48 12.89 13.38
90% Percentile 15.90 23.80 16.77 22.42
RMS 10.57 14.32 10.15 12.43
Std. dev. 6.18 9.58 5.77 7.99

Another factor that can affect the performance of the main node in the collaborative setting is the
availability of the supporting nodes. The availability of the nodes is illustrated in Figure 15, where
each horizontal line represents the activity of the corresponding node. The gaps in the lines indicate
that the node is not active. Although there are three supporting nodes, only two of them are active
most of the time, and the third is fluctuating between the active and inactive states. The effect of the
node availability is evident in the second trajectory, which has the most significant errors among the
three trajectories.
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Figure 15. Nodes activity summary.

e  Positioning using relative range measurements and all sensors

This scenario evaluates the effect of the collaboration on the main node while using the full set
of sensors available on board. When using all sensors, the main node should achieve a performance
level similar to the performance of the standalone solution. Table 11 shows a summary of the
positioning performance of the collaborative positioning, while the main node is using all its sensors.
The collaboration negatively affected the performance of the main node, when it uses all the sensors.
The mean error has increased by 27%, the RMS error by 16.6%, and the 75% percentile error by 32.2%.

e Positioning using random-walk model only

Before proceeding to evaluate the performance of the collaborative approach using relative range
measurements, it would be useful to consider the error in the absence of the collaboration between the
main node and the other nodes. Table 12 shows the positioning error statistics in this case. Without
collaboration, the mean of the position error is 18.46 m, while the RMS of the position error is 21.60 m.
The 75% percentile of the error is 26.57 m. The objective of this scenario is to establish a lower bound
on the positioning performance.
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Table 11. Collaborative positioning results summary (all sensors).

Error Stats. (m) Traj. #1 Traj. #2 Traj. #3 Overall
Mean 5.98 5.36 5.49 5.54
Min 0.03 0.01 0.01 0.01
Max 27.26 42.35 23.08 42.35
50% Percentile 4.44 4.96 4.84 4.81
75% Percentile 8.97 6.94 6.35 7.06
90% Percentile 11.16 10.00 9.02 10.36
RMS 7.30 6.92 6.54 6.90
Std. dev. 4.18 4.37 3.55 411

Table 12. Positioning Results Summary.

Error Stats. (m) Standalone (Full Sensors) Collaborative (Full Sensors) Collaborative (No Sensors) Random-Walk
Mean 4.36 5.54 9.51 18.46
Min 0.02 0.01 0.00 0.25
Max 40.84 42.35 43.21 43.79
50% Percentile 4.09 4.81 6.79 17.89
75% Percentile 5.34 7.06 13.38 26.57
90% Percentile 6.85 10.36 2242 32.63
RMS 5.92 6.90 1243 21.60
Std. dev. 4.01 411 7.99 11.2

5. Discussion

This previous section provided an overview of the positioning performance using the LocSpeck
collaborative framework. Figure 16 shows the cumulative distribution function (CDF) of the position
error of the main node in the four scenarios described earlier. Table 12 lists the overall performance for
each of the tested scenarios. It is evident that using the collaborating framework provides a significant
advantage to nodes with little or no sensors. Without fusing information from the collaborating nodes,
these weak nodes will not be able to estimate their position.

However, for the strong nodes in the process, the performance can suffer a hit. One possible
explanation of the performance degradation could be related to the fusion of an erroneous estimate
from one of the collaborating nodes. This case is exacerbated when the filter of a collaborating node
suffers from particle depletion. As a result, the filter will generate new particles through resampling.
These particles will have less diversity, and their corresponding covariance will be small. When a
filter with these characteristics collaborates with another, it will provide false confidence in its position
estimate. Consequently, it will drive the estimates of the collaborating nodes in the wrong direction.
The performance degradation due to an erroneous state estimate or an overconfident remote note
could be mitigated by implementing filter integrity measures to ensure that each filter has a realistic
covariance estimate, possibly by utilizing the actual values of the measurement likelihood function.
Such measures could include divergence monitoring [63] or by increasing the number of particles to
better resembles the posterior of the filter.
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Figure 16. The combined positioning error CDF for the four scenarios.

6. Conclusions

This paper described and evaluated the LocSpeck system, a collaborative and multimodal
framework for indoor positioning using smartphones. The collaboration between the different nodes is
achieved using a dynamic and ad-hoc network. The network architecture and a light-weight medium
access control protocol were highlighted and evaluated. The paper provided an overview of the
hardware and software components of the individual nodes.

Different simulations and experiments were performed to evaluate the performance of the
standalone positioning algorithm of the nodes, along with the performance of the collaborative
positioning approach. These experiments confirm the advantage of the proposed framework, as
discussed. The results shown in this paper demonstrate that using collaborative positioning approaches
can provide pronounceable improvement in the performance, especially for situations involving
asymmetric nodes, where the weak nodes can benefit from the superior sensing or capabilities available
in nearby nodes. However, the performance of the system can be improved by implementing state
integrity checks to ensure that the positioning filters will not suffer from depletion, which can negatively
affect the overall performance of the system.
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