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Abstract: Knitted fabric sensors have been widely used as strain sensors in the sports health field and
its large strain performance and structure are suitable for human body movements. When a knitted
structure is worn, different human body movements are reflected through the large strain deformation
of fabric structure and consequently change the electrical signal. Here, the mechanical and electrical
properties of highly elastic knitted sweatpants were tested under large strain. This sensor has
good sensitivity and stability during movement. Compared with traditional motion monitoring,
this technique divides the walking cycle into two stages, namely, stance and swing phases, which can
be further subdivided into six stages. The corresponding resistance characteristic values can accurately
distinguish the gait cycle. Analysis on hysteresis and repeatability revealed that the sensor exhibits
a constant electrical performance. Four kinds of motion postures were predicted and judged by
comparing the resistance characteristic range value, peak value calculation function and time axis.
The measured sensor outputs were transferred to a computer via 4.0 Bluetooth. Matlab language was
used to detect the status through a rule-based algorithm and the sensor outputs.
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1. Introduction

Flexible conductive materials can potentially be applied in human motion sensors,
health monitoring for medical monitoring systems such as respiratory rate, heart rate and body
posture to human–machine interface and wearable integrated devices that have attracted widespread
attention [1–10]. Most common flexible sensors are made of conductive metal nanoparticles,
metal films, carbon nanotubes and graphene [11,12]. Every material has its own conductivity;
however, their working strain range is small and thus limits their practical application [8,13,14]. In the
design of a strain sensor corresponding to human movement, the following key factors must be
considered—large strain range, fast recovery deformation and high sensitivity [15–17]. Some special
sensors (such as electromyographic signal) can be used to sense the activity of muscle and have
great potential for human movement detection [5,18,19]. However, most of these systems require
additional hardware that increases the costs, reduces user comfort and are not easily integrated into
other wearable devices [20]. Other researchers considered motion sensors, such as smart bracelets and
watches that use multi-axis acceleration sensors and gyroscope sensors to calculate steps and distance
recognition; however, these sensors cannot accurately identify human movements [10,21]. In addition,
algorithm problems induce errors in calculating steps, thus making the results greatly different from
the actual situation [22,23]. Strain sensors are one of the key components of the interface between
human motion and electrical signals. Some highly sensitive strain sensors made of nanomaterial and
graphene materials can detect small movements, such as vocal cord vibration detection, pulse detection
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and respiratory monitoring [15,19,24]. Conductive fabrics are a promising material due to their
high flexibility, comfort to human skin and ease of weaving and integrability with other wearable
sensors [25,26]. Conductive properties are introduced into text-based strain sensor by integrating
flexible devices into the fabric, embedding conductive yarns into the fabric structure or coating the
fabric surface with conductive materials; the textile strain sensor can be formed using yarn or fabric and
through the electrochemical method [26–28]. The circuit path is formed through internal interaction
and is induced by the large or small deformation of fabric caused by human movements. Given the
high elasticity of coil structure, textile is one of the most common materials for a sensor structure and
knitted conductive fabric is suitable for human movement and stretch recovery and thus can be used
as flexible strain sensor [29,30].

The knitted flexible sensor exhibits the characteristics of high-elastic sports tights, which are directly
in contact with the human skin and restores the stretched skin during movement, human comfort
and sensor signal accuracy [31,32]. This material can also meet the characteristics of large strain
and repeatability during human movement and accurately represent walking through electrical
signals [33–35].

This paper reports a sensor made of highly elastic knitted sweatpants with high sensitivity and
stability during large-strain movement such as walking. Differences in the of characteristic values
of resistance in each stage were analyzed by subdividing stance and swing phase into six stages,
the hysteresis and repeatability of large-strain knit flexible sensor were verified and the range of
characteristic value data was established for each subdivided motion mode. Finally, peak function and
time axis were compared to determine whether the knitted flexible sensor can identify large-strain
human motion.

2. Materials and Methods

The knitted sweatpants were knitted by plated stitch to prepare highly elastic sports pants
with sensing performance. Figure 1a shows a sample of the highly elastic knitted sweatpants with
10 conductive strain sensors in the leg region and a conductive sensing area around the knee joint
that can meet most of the knee joint movements. The white area is 40D polyamide and polyamide
wrapped spandex and the sensing area is 40D silver-plated polyamide and polyamide wrapped
spandex. The silver-plated yarns in the sensing area were knitted by float stitch and each sensing area
has the following dimensions—5 cm long and 1.5 cm wide. In addition, the fabric’s off-loom density is
PA × PB: 25 wales/cm × 17 courses/cm. The materials were obtained from Hengtong X-Silver Speciality
Textile Inc. On the SM8-TOP2 MP2 (0.907 mm, E28, 15 inch, Santoni Spa, Italy). The area around the
knee has the most remarkably deformation of the fabric; hence, the size of the sensor for this part
(5 cm long and 1.5 cm wide) is appropriate. Previous research on weft knitting conductive fabrics
reported that the largest area of knee joint movement variation can be covered [36,37]. The 10 sensors
were designed to determine what part of the sensor around the knee accurately represents a walking
person’s gait. Non-conductive polyester and conductive yarns were mixed and knitted to stabilize
the structure between the sensor section and the base of the sweatpants. The sensor number is 1–10,
hereafter referred to as S1–S10.
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and descending steps. 

Figure 1. (a) High elastic knit strain sensing stretch pants with ten sensing areas. (b) Deformation of
knitting loops (c) The subjects completed four different activities such as running, walking, climbing and
descending steps.

The resistance of leg movement was monitored in real time with a Rigol multimeter (DM3058
digital multimeter) to evaluate the resistance variation characteristics. A digital multimeter was used
to separately test the resistance signals in ten areas. In our previous test, we used our own resistance
acquisition software with Bluetooth 4.0 protocol to transmit and communicate. This software can
transmit 20 resistance values per second and convert the electric signal into digital signal by A/D
conversion circuit, external pair. The specific resistance was 100 Ω and the resistance value of the sensor
was calculated using the properties of the series circuit [38]. In general, elastic knitted fabrics have tight
contact points between their loops. In pre-stretch fabrics, the loops are squeezed tightly together due
to the compact effect of highly elastic knitted pants. After stretching, the distance between the loops
increases as shown in Figure 1b. The adjacent circuits formed by the conductive silver-plated yarn
in the sensing area come in contact with each other and generate electrical conductivity. The highly
elastic surface provides the ability to match the shape of the user’s legs, thereby improving comfort
and fitness. Therefore, the reduction of surface contact points and the deformation of the loop due to
stretching when matched with the user may increase the initial resistance compared with that under
the restored state. Given the high elasticity and recovery effect of highly elastic knitted structures,
the hysteresis of the resistance behavior under large strain tensile condition must be studied.

Two contact electrodes were connected to the specified stretch and recovery area to measure the
resistance on the knitted fabric surface and resistance variations were studied. The floating line was
hooked on the opposite side of the fabric to the front and welded together with the two electrodes
by using the welding material as the metallic tin. The relationship between resistance and time of
knee joint in running, walking, climbing and descending steps was tested. Ten subjects (five males
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and five females, age range of 20–30 years) performed four different activities according to a fixed
sequence and experimental protocol shown in Figure 1c. A large data set must be collected to meet the
identification needs suitable for many users. Thus, the subjects were asked to perform each activity for
approximately 2 min.

For lag performance, the fabric was observed by the sensor resistance within the process of
stretching-reply to prevent the conductive fabric from stretching at the same rate (100 mm/min) and
to change the maximum stretching of the fabric. The same fabric was stretched by 15%–50% and the
resistance change was captured during fabric stretching recovery in real time. For cyclic performance,
the leg repeated motion was captured in real time over 500 times. One area was selected for 10 min
of repetitive walking and 60 cycles of walking per minute were recorded. Resistance change was
also observed.

3. Results and Discussion

3.1. Suitable Areas for Sensing

Figure 2a shows that the resistance changes in each cycle are quite similar but still have their
own characteristics, in which each red dot represents the end of an action. Thus, the highly elastic
conductive knitted sweatpants can accurately reflect the change of resistance and exhibits high
sensitivity. The sensitivity of strain sensors is usually expressed by the evaluation index factor GF.
According to the review by Xie and Zhang, the GF value of most strain sensors ranges from 0.42 to 5;
hence, the sensitivity of knitted sensors herein is 2.73 [9,39]. The relative resistance of 100 Ω was used
as a voltage divider and connected in parallel with the sensor. The resistance value of the sensor was
measured with a digital multimeter to accurately reflect the resistance change.

According to the varying resistance waveforms of the 10 regions, those of S1, S4, S7 and S8 are
relatively similar. The number of peak and valleys vary similarly in this range of amplitude. In the
whole database, the change of each peak valley corresponds to the walking movement of knee joint.
Under the four motion states, the variation of resistance is similar when running and walking or when
going up and down the steps. This finding is not conducive for identifying the motion pattern as
a sensor. In S2 and S6, the resistance is lower than that in the other three sports states and the change
of resistance is small. The change of electrical resistance is relatively clear when walking and is similar
when moving up and down the steps. Hence, this area can be used to judge the running movement.

In S3, S5, S9 and S10 the changes of resistance waveform in each region are different and the
resistance is higher during running than during the other three movements. When walking, the change
of resistance is clear. A big difference is observed between the upper and lower steps in S3 and S10,
whereas the change of resistance is similar in S5 and S9. Although fabric sensors have shown excellent
performance in human motion recognition and other fields, most sensors are single or integrated as
additive parts in the test [5,40]. In this work, conductive yarns were directly positioned and knitted
into elastic leggings to test different area sensors and determine the best sensor area.

S3, which is located in the middle of the knee joint and has relatively high strain tensile property
can accurately reflect the human gait cycle. The range of movements and resistance changes are
relatively high when running. The four kinds of movements in the walking cycle are consistent with
the resistance changes. The characteristics of resistance waveform conform to the law of movement
change, which is suitable for use as a large strain sensor. S10 is not suitable as a sensor because it is
located in the inner part of the leg. Its stretching recovery is not stable and the resistance characteristics
of walking and descending steps have similar points. In summary, S3 is located in the mid-knee region
with large knee strain variation and thus has the clearest change of resistance waveform in each motion
cycle. The calibration curve of the sensor in S3 region was measured and a linear relationship was
observed between the resistance and strain as shown in Figure 2b.

GF =
∆R/R0

∆L/L0
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3.2. Resistance Waveform Corresponds to the Gait Cycle

According to the kinematic characteristics of the human body, human walking movement can
be divided into stance period and swing period and can be further subdivided into six stages [41].
The stand phase is the time from one side of the foot to the same side of the toe and the swing phase is
the time from the tip of the toe to the heel on the same side. The line segment changes corresponding
to each action are subdivided into (a) early stance, (b) mid stance and (c) late stance; (d) pre-swing,
(e) mid-swing and (f) terminal swing phase.

As shown in Figure 3a, the resistance change of each cycle clearly exhibits stance and
swinging periods.

The resistance was analyzed according to the walking cycle of S3 selected above as shown in
Figure 3b. Red areas a–c correspond to the early, mid and late stance, respectively, in each subdivided
movement mode under walking cycle. The blue areas d–f correspond to the pre-swing, mid-swing and
terminal swing phase, respectively. In the early stance, area a is heeled to full sole, the knee joint is
slightly bent and thus the resistance increases slightly. In the mid stance, area b is full soles landing to
heel off the ground, the knee joints slowly straighten and thus the resistance decreases slightly. In the
late stance, area c is from heel to toe of the ground, the knee joint significantly bends forward, the body
starts to move forward and the resistance increases significantly.

In the pre-swing, the area d is the accelerated forward swinging of the legs and the forward
swinging of the knees. Joint angles are straightened rapidly, the body moves forward and the resistance
decreases rapidly. In the mid-swing, zone e is the resistance hysteresis reaction that occurs when the
maximum tensile value of the fabric is reached during the forward swing of the leg. Hence, the resistance
increases at this time. In the terminal swing phase, the area f gradually straightens all the legs and knees
and the resistance decreases rapidly until the minimum value is reached. At this time, the position of
the heel touching the bottom is ready to enter the early stage of support again.
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Figure 3. (a) A complete walking cycle of six stages; (b) Variation of walking cycle resistance in S3.

The conductive fabric resistance shows hysteresis after the cyclic stretching of large strain, due to
the large strain effect. This finding verifies that the knitting sensor area enters the mid-swing. With the
same stretching rate, the same sensing area was stretched by 15%–50%. Figure 4a shows that at a low
strain variable of 15%, the resistance of the sensing area shows good monotonicity, increases during
stretching and decreases during recovery. However, after the tensile amount reaches 15% and 20%,
a second increase is observed in the resistance curve. Thus, when the fabric is stretched, the resistance
increases slightly and then decreases to form the first peak. The same phenomenon occurs in the
stretch-recovery to form the second peak.

This phenomenon is called the hysteresis of fabric stretch-recovery. The fabric has a low tensile
recovery rate and the strain recovery is relatively slow after a large stretch. At this time, the hysteresis
of fabric tensile recovery shown on the tension/strain curve becomes highly evident when the tensile
amount exceeds 30%. The hysteresis is caused by the fabric structure, the friction of yarn and the
friction between fibers.

The durability of knitted stretch pants sensor system is another key characteristic of the sensor
system and is reflected in the cycling performance. In our daily stability test, the test was conducted
either for over 30 min or to a distance of 3 km. The electrical signal produced by a human while
walking and the change of electrical resistance signal during 500 cycles were recorded. The continuous
cycle shows similar and stable law in the test process, indicating that the sensor has good stability in
the long-term cycle of deformation. Figure 4b shows that most studies only distinguished the changes
of resistance waveform during human movement; hence, identification is not possible [16,42]. In this
study, each walking posture was subdivided into six periods and the movements within the six periods
corresponded to the resistance waveform point by point.
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3.3. Resistance Characteristic Value and Recognition of Human Gait Cycle

According to the above various sports modes, the knee joint angles in each sport cycle have
their own characteristics and certain commonalities even during running, walking, climbing steps,
descending steps or sitting up and down. Through observation, we can see that the variation
range of resistance in running cycle is significantly larger than that in the other three sports modes.
During running, the range of motion is relatively large, the resistance changes rapidly and the maximum
resistance is larger than that of the other three actions. Therefore, the maximum resistance is used to
identify the running state. In running, the leg exhibits significant backward and upward movements,
thus establishing a maximum value point A of the resistance at this time. The maximum range is
25–30 Ω as is shown in Figure 5a.

According to the above analysis of the six stages of the walking cycle, the maximum of knee joint
resistance point B is observed between the stance and swing period, as is shown in Figure 5b.

The resistance change of the knee joint during ascending steps is opposite to that under the other
three motion states. This phenomenon occurs because the leg is in a raised state during the swing
phase of the upper step and the knee joint angle is large at this time. In the movement climbing
steps, the angle begins to decrease gradually during the supporting period, leading to the resistance
rapidly reaching a maximum value in the upper step cycle. Upon entering the stand phase, the angle
gradually decreases until the resistance minimum point C is achieved in the late stance, as is shown
in Figure 5c. The change of knee resistance in the lower step is completely different from that in the
upper step. At the early stance, the knee angle is at the minimum value but it gradually increases.
After a short period of time from the late stance to the pre-swing, the knee angle reaches the maximum
value. Therefore, the sensor resistance reaches the maximum value D, as is shown in Figure 5d.
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The peak and trough points were used to accurately judge the six stages. First, in walking,
climbing and descending steps, the maximum and minimum values of a period were applied to
distinguish the stance and swing phases. Second, the maximum, minimum and sub-maximum values
of the stance and swing phases were subdivided into the anterior, middle and posterior periods.

The characteristic value of the electrical resistance signal of the knee joint angle was extracted by
using the mean electrical resistance ratio, which refers to the average resistance during the stance and
swing phase of walking, climbing and descending steps. The average value of knee resistance in each
subdivision mode of motion was calculated successively in the early, mid and late stances and the
pre-swing, mid-swing and terminal swing phases. Finally, the ratio of the average knee resistance of
each movement subdivision mode to the average knee resistance during the stance or swinging phase
was used as the characteristic value T of knee angle in this movement mode.

R1 =

∑ni
i=1 Ri

ni
, R =

∑Ni
i=1 Ri

Ni
, T =

R1

R
,

where Ri is the specific knee resistance value at a certain moment within the sampling interval. Ni

is the total number of sampling points in the corresponding period (stance and swing phase). R is
the resistance during the stance or swing period. ni represents the total number of sampling points
under specific subdivision modes (early stance, mid stance and late stance; pre-swing, mid-swing and
terminal swing phase). R1 is the resistance values of each six subdivisions. Table 1 is the resistance
eigenvalue range for the six stages of each subdivision mode calculated from 500 gait cycles and the
range was obtained from T values using the above formula. The characteristic value information of
resistance in different motion modes has different characteristics and good discrimination.
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Table 1. Eigenvalue range of each subdivision mode.

Walking Climbing Steps Descending Steps

Early stance 0.86 ± 0.3 1.08 ± 0.25 0.83 ± 0.3
Mid stance 0.91 ± 0.2 0.99 ± 0.2 1.01 ± 0.25
Late stance 2.01 ± 0.3 0.89 ± 0.45 1.10 ± 0.4
Pre-swing 1.24 ± 0.25 0.61 ± 0.4 1.25 ± 0.25
Mid-swing 1.35 ± 0.25 0.78 ± 0.2 0.90 ± 0.2

Terminal swing
phase 0.83 ± 0.2 1.15 ± 0.3 1.31 ± 0.2

Table 2 shows three dynamic features extracted from the sensing S3 in a certain period.
First, the motion stance and swing phase were determined by resistance waveform and the six
subdivision stages were divided to calculate the characteristic value of resistance in six stages (Table 2).
Moreover, the corresponding motion posture can be judged by comparing the obtained eigenvalue
range with the eigen database. The results showed that the some data do not conform to the eigenvalue
range. In addition, the prediction matching degree of resistance eigenvalue is 62.5%, which can be
used to judge the four dynamic characteristics of the lower limbs of the human body.

Table 2. Characteristic values of resistance in six stages at a certain moment in the sensing S3.

Walking Climbing Steps Descending Steps

Early stance 0.95 1.43 0.63
Mid stance 0.88 0.74 1.42
Late stance 2.3 0.71 1
Pre-swing 0.85 0.78 1.7
Mid-swing 0.76 0.68 0.86

Terminal swing phase 0.97 0.77 1.66

Through the above method of resistance characteristic value, we can predict the state of human
movement in a certain period of time. However, the prediction accuracy of 62.5% needs to be improved.
Therefore, we used the following two methods to conduct the second and multiple mutual verification
of judgments for the accurate identification of human movement.

First, we used the peak computing function findpeaks of Matlab to seek peaks and valleys within
unit time and conduct data detection. The movement characteristics and our resistance waveform
show that, in unit time, the highest resistance change period and the maximum and minimum values of
the resistance are observed when the human body is running. These values are all relatively larger than
those of the other three movement periods. With the use of this algorithm, we accurately distinguished
running from the other three sports (Figure 6).
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In the other three movement stages, during the movement of the climbing and descending steps,
resistance rises or falls singly in the stance and swing phases. In addition, when the step moves up,
the resistance rises in the swing phase and decreases in the stance phase. On the contrary, when the
step moves down, the resistance falls in the swing phase and rises in the stance phase. Different from
the other two movements, going up and down the steps in the stance phase requires a longer time
compared with in the swing phase.

Comparison using the method of time axis comparison states that the movement is a climbing or
descending step, when only one maximum value of resistance is observed within the same period and
the change of resistance value is monotonous (Figure 7). If the time (t1) taken from the initial resistance
(R0) to the maximum resistance (Rmax) is greater than the time (t2) taken from the end resistance (R1),
then the movement is descending steps. By contrast, if the time t1 is less than t2, then the movement is
the climbing steps. Extracting the characteristic value by fitting the linear function or matrix and using
calculus is relatively complicated and difficult. [9,11,15] In this work, the characteristic range value of
the resistance, the calculation function of the peak value and the time comparison of the peak and
valley point were used for evaluation.
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3.4. System Operation

We do data processing by using Matlab language. The main processing steps are as follows.
First, the collected data were validated and abnormal results were removed. A total of 100 data

points at a time were examined to determine the starting point position of each cycle. By adding
smoothing and derivative algorithm to the system, t1 and t2 were determined twice, which makes
the accuracy of the whole system reach 78%. Within the same time period, the number of peaks and
valleys and the amount of resistance amplitude, corresponding to the output running or walking state
were analyzed. The start-end position and the peak point were then divided and the time relationships
t1 and t2 were compared with output from the climbing step or descending step states as shown
in Figure 8.
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Figure 8. Snapshots of motion recognition display interface and output state corresponding to four
motion states. (a) System status while running; (b) System status while walking; (c) System status
while climbing steps; (d) System status while descending steps.

4. Conclusions

We studied the application of silver-plated conductive fiber to directly fabricate a flexible sensor
on sports pants and achieve the long and comfortable sensing of leg movements in different gait states.
The sensors placed at different positions have different sensing performances for motion. This finding
is mainly related to the stretching and elongation of sensors at different positions caused by the motion
of joints and the response of resistance to the recovery of deformation. The sensor located in the middle
of the knee joint can reflect the difference of resistance change in different gaits. Under the four gaits
of running, walking, climbing and descending steps, the change of sensor resistance signal highly
correspond with the stance and swing period of human leg movement. According to the peak-valley
detection method, walking, climbing and descending steps can be further subdivided into six stages.

The range of angle characteristic value of the knee joint was extracted by the mean resistance
ratio. Four kinds of movements were preliminary judged by using the characteristic range value of
resistance. In addition, four kinds of gait were recognized by extracting the peak value of resistance,
valley value and time ratio of peak point in the gait period.

A gait motion recognition system is demonstrated, which can output the motion state according
to the resistance waveform. The deficiency of this paper is the lack of mutual verification between two
or more sensor areas and the test of motion diversity. For future work, we will use the data algorithm
model to establish the database of motion input and output, simulate human body movement and
establish an accurate identification.
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