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Abstract: As multisensor measurement technology is rapidly applied in industrial production,
one key issue is the data fusion procedure by combining several datasets from multiple sensors to
obtain the overall geometric measurement. In this paper, a multisensor data fusion method based
on a Gaussian process model is proposed for complex surface measurements. A robust surface
registration method based on the adaptive distance function is firstly used to unify the coordinate
systems of different measurement datasets. By introducing an adjustment model, the residuals
between several independent datasets from different sensors are then approximated to construct
a Gaussian process model-based data fusion system. The proposed method is verified through
both simulation verification and actual experiments, indicating that the proposed method can fuse
multisensor measurement datasets with better fusion accuracy and faster computational efficiency
compared to the existing method.

Keywords: data fusion; data registration; adaptive distance function; complex surface measurement;
Gaussian process model

1. Introduction

With the development of advanced manufacturing technology, many complex surfaces such as
freeform surfaces and structured surfaces can be machined with high precision [1,2]. These surfaces
require a complete 3D characterization, with a large measurement range, high resolution and precision,
and high measurement efficiency, which poses a challenge to current measurement technology [3,4].

Currently, measuring instruments have been developed to meet specific measuring requirements.
Although these instruments have their advantages, no single instrument can simultaneously meet the
high requirements in terms of precision, efficiency, resolution, and measuring range [5–7]. For example,
coordinate measuring machines (CMMs) usually have high accuracy, but their measurement efficiency is
low. Non-contact measuring devices, e.g., structured light scanners, could generate dense measurement
data efficiently, which can capture the overall shape of the product well. Yet their measurement accuracy
is much lower than the CMMs. Therefore, the combination of multiple measurement sensors could be
a better solution to solve complex measurement tasks, which maximizes the advantages of individual
measurement sensors [8–10]. By integrating multiple sensors, these instruments can provide multiple
measurement results according to the user’s choice and adapt to the complexity of product geometry
measurement. For example, the contact-type CMMs can be optionally equipped with corresponding
non-contact measuring sensors. Data fusion is a key problem following multisensor measurement,
which can be used in quality inspection, surface reconstruction, and other fields. The aim of data
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fusion is to integrate multiple datasets from different sources into a unified and improved output.
The quality of this output data depends heavily on the data fusion method. Multisensor datasets are
usually in different coordinate systems with different measurement ranges, accuracy, and resolution,
which brings great challenges to multisensor data fusion [11,12].

In most situations, the multisensor data fusion process is divided into three parts: pre-processing,
data registration, and data fusion [4]. Data registration and fusion is the key to realize the whole process.
In the data registration, multisensor datasets in different reference coordinate systems are unified into
a common coordinate system by finding a rigid body transformation matrix. The Iterative Closest
Point (ICP) algorithm proposed by Besl and McKay [13] is the most widely used surface registration
algorithm. Its key contribution is to put forward an iterative registration method. The method firstly
finds the closest point, and then establishes an optimization model to minimize the error function,
thus obtaining updated transformation parameters. When the iteration number reaches a given value,
or the error reaches a threshold, the iteration process stops. However, the point-point distance function
adopted by ICP has linear convergence according to the literature [14], so ICP and related algorithms
have a slow convergence rate. The squared distance minimization (SDM) and tangent-squared
distance minimization (TDM) are introduced, which both are the point-tangent distance functions and
converge faster than ICP [14–16]. However, they need a good initial value of rigid body transformation,
otherwise, it is easy for the registration to fail. So, the adaptive distance function (ADF), which is a
point-surface distance function, is proposed [17,18]. The ADF maintains a fast convergence rate and
has a low requirement for the initial value and good convergence stability [17].

The fusion step mainly deals with the multisensor datasets in a common reference coordinate
system after registration, and research on this issue is still inadequate. Jamshidi et al. [19] proposed a
high-resolution and low-resolution data fusion method, which realized data fusion by eliminating
outliers and gridding all data points after the data registration. However, such methods only substitute
the data from different sources locally and cannot improve the accuracy of the overall data. Therefore,
the data fusion methods based on modern statistical theory have received much attention [20–23].
The core idea of such methods is to use statistical methods to model the measurement datasets obtained
from different sensors, and then provide the final prediction of each position. Senin et al. [24] compared
three multisensor point set augmentation methods, including linear interpolation, locally weighted
scatterplot smoothing (LOWESS), and a Gaussian process (GP). Ren et al. [25] presented a weighted
least squares based fusion method for precision measurement of free surfaces, which used B-spline
surface to fit a linear surface model of different sensor datasets. This method depends on the accuracy
of the surface model fitting, and is not suitable for several complex surfaces. Xia et al. [26] introduced a
fusion algorithm for high and low accuracy point cloud, which is based on the Bayesian Hierarchical
(BH) model. This method could establish a multi-layer Bayesian parameter estimation model for
corresponding points of different datasets, and obtain the optimal estimation value after fusion by
solving the BH model. Colosimo et al. [27–29] proposed a multisensor data fusion method based
on the GP model. Reconstruction models of high-accuracy datasets and low-accuracy datasets were
established by using the GP model to obtain the optimized fusion dataset. However, these methods
rarely consider the effect of different registration methods on fusion quality.

In this paper, a multisensor data fusion algorithm based on GP is presented for precision
measurement of freeform surfaces. It can be applied to the data fusion process of 3D point clouds
obtained from the same complex surface by multiple sensors. The proposed algorithm utilizes a robust
registration algorithm, which is based on the ADF, to unify different coordinate systems, and then uses
the GP model to combine multiple datasets from different sensors. The main content of the rest in
this paper is divided into three sections. The optimization model and its solution of the ADF based
robust registration method is proposed in the second section, and then a GP-based data fusion system
is established to generate a surface fusion dataset. The third section gives the verification results of the
proposed method under simulation and the actual measurements. The conclusions are presented in
the fourth section.
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2. The Multisensor Data Fusion Method

2.1. Summary of the Multisensor Fusion Method

Datasets measured by multisensor systems generally have different resolutions and uncertainties,
and they are in different coordinate systems. The main goal of this study is to improve local trueness
of the dataset (reduce local bias) by integrating the dataset obtained by the structural light scanner
or similar high-speed measurement technology (high point density, low accuracy, low cost) with the
dataset obtained by the “more real” point obtained by a CMM or similar technology (slow sampling
speed, high accuracy, high price). Therefore, it is assumed that there are two datasets available in this
data fusion method:

• one type of dataset with high accuracy, low density, which is generated by CMM or high-precision
microscope. This high-accuracy dataset is called the HA set for short.

• another type of dataset with low accuracy, high density, generated by the structured light scanner,
line scanner, or similar technology. This low-accuracy dataset is referred to as the LA set.

In order to solve the key problems in data fusion, this paper puts forward a method that divides
the whole fusion process into preprocessing, data registration, and data fusion. The flow diagram
of the proposed data fusion method is illustrated in Figure 1. The first step is to preprocess the HA
and LA data, including data unification, outliers removal, and other operations. The second step is to
introduce a robust registration method based on the ADF to unify the coordinate systems of HA and
LA datasets. The third step is to establish a GP based multi-layer fusion model to realize the fusion
process, in which HA data points are taken as reference points so as to correct the local deviation of the
LA dataset.
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2.2. ADF-Based Robust Data Registration

In this study, the ADF is used to describe the basis error metric, and the M-estimation is used to
improve the registration robustness and eliminate noise effects.

As is shown in Figure 2, we refer to the point set P =
{
pi : i = 1, · · · , n

}
as the LA dataset and the

point set Q =
{
qj : j = 1, · · · , m

}
as the HA dataset. The robust registration of point clouds in R3 is to

find a rigid body transformation g = (R, t) ∈R3 (including the rotation matrix R ∈ R3 and translation
matrix t ∈ R3) that fits the mobile point set P to the reference point set Q. Point pi+ is generated from
point pi through rigid body transformation g. Point qj is the nearest to point pi, and the tangent plane
at point qj is called the plane Tj. The point qj+ at point set Q is obtained in the line pi+oj where the
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point oj is the center of the curvature circle at qj. The normal vector to the surface point set Q at point
qj is denoted by the notation nj.
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It is notable that ‖pi+qj+‖ is an approximate expression of the shortest distance between point pi
and surface Q. However, the distance ‖pi+qj+‖ depends on the curvature change in the region around
point qj, and the direct calculation of ‖pi+qj+‖ is complicated and susceptible to noise. To calculate
the transformation g, a new expression for the shortest distance is studied. Point a is obtained
by projecting point pi+ onto plane Tj. The arc bqj+ is generated by the center pi+ and the radius

‖pi+qj+‖, then ‖pi+qj+‖ = ‖pi+b‖ =
√
‖pi+a‖2 + ‖ab‖2. The tangent distance ‖ab‖ is calculated by

‖ab‖2 = µ‖aqj‖
2(µ ∈ [0, 1]), where µ denotes the modified coefficient. Then, the ADF is defined as

dADF(g, Q) = ‖pi+b‖ =
√
‖pi+a‖2 + µ‖aqj‖

2

=

√
‖nT

j

(
pi+ − qj

)
‖

2
+ µ‖tT

j

(
pi+ − qj

)
‖

2
,µ ∈ [0, 1]

(1)

where nj represents the normal vector, tj represents a vector parallel to the tangent plane Tj.
As the modified coefficient µ goes to 0, the expression dADF(g, Q) becomes dTDF(g, Q), which

turns into the point-tangent distance function ‖pi+a‖ that is applied to the TDM algorithm. As the
modified coefficient µ approaches 1, the expression of ADF becomes dPDF(g, Q), which corresponds to
the point-point distance function ‖pi+qj‖ used in the ICP algorithm. Thus, dTDF(g, Q) and dPDF(g, Q)

both are the special forms of the adaptive function distance (ADF). The ADF selects the appropriate
modified coefficient to calculate the tangent distance, so as to reflect the curvature characteristics.
In general, the ADF can describe the shortest point-surface distance more accurately than TDM and
ICP [17,18].

In order to calculate the rigid body transformation g, an objective function for ADF-based robust
registration is established:

f(g) =
n∑

i=1

ρ
(
dADF

(
g
(
pi

)
, qi

))
(2)

where ρ denotes an M-estimate function, dADF represents the ADF, and the corresponding pairs
(
pi, qi

)
are selected from the registration point sets. The M-estimate function ρ has the property of reducing
the impact of the data points with large deviation. The derivative of the M-estimate function ρ is

written as ψ(e) = ρ′(e), and a weight functionω is represented asω(e) = ψ(e)
e .
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The bisquare estimator is a typical example of the M-estimators. The bisquare estimator has the
strongest suppression ability to the high impact of noisy data. The weight function for the Bisquare
estimator is as follow:

ω(e) =


[
1−

(
e
k

)2
]2

for|e| ≤ k

0 for|e| > k
(3)

In order to solve the objective function for ADF-based robust registration, the objective function
with the Bisquare estimator can be transformed into iterative reweighted least squares (IRLS)
minimization, and then a new objective function IRLS-ADF is expressed as:

f(g) =
n∑

i=1

ωid2
ADF

(
g
(
pi

)
, qi

)
(4)

with the weight function ω for the Bisquare estimator being a function of the corresponding pairs(
pi, qi

)
.

To minimize the objective function for robust registration, a nonlinear optimization model is
established:

minf(g) =
n∑

i=1

ωid2
ADF

(
g
(
pi

)
, qi

)
s.t. qi = q|min‖pi − q‖

q∈Q
(5)

The transformation can be computed by solving the linear equations, similar to [15].
Define ν = [Vx, Vy, Vz]T as the translation vector, and ω = [δx, δy, δz]T as the rotation vector,

then ∆x = pi+ − pi = ν+ω× pi. Define ξ = [ν,ω]T, then

pi+b = di1 + nT
j (ν+ω× pi) = di1 + Aiξ

bqj = di2 + tT
j (ν+ω× pi) = di2 + Biξ

(6)

where Ai is a 1 × 6 matrix and ξ = [ν,ω]T is a 6 × 1 matrix.
Therefore, the objective function in (5) can be written as

ε(ξ) : =
n∑
i

{
ωi

[
di1 + nT

j (ν+ω× pi)
]2
+ωiµ

[
di2 + tT

j (ν+ω× pi)
]2
}

= D + 2CTξ+ ξTAξ+ µξTBξ
(7)

where A =
n∑
i
ωiAi

TAi and B =
n∑
i
ωiBi

TBi are both 6 × 6 symmetric matrices, C =
n∑
i
ωidiAi

T is a

column vector, and D is a scalar.
The parameter ξ = [ν,ω]T is obtained from the solution to the linear equations

(A + µB)ξ+ C = 0 (8)

Then, we can get the optimal transformation g = (R, t) from

R = eω̂, t = ν (9)

where ω̂ is the anti-symmetric matrix of the rotation vectorω.
The flow chart of the IRLS-ADF method is given in Figure 3.
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In order to comprehensively consider the convergence speed and stability of the IRLS-ADF
method, the modified coefficient µ needs to be carefully selected [17,18]. When the iterative process
begins, the optimization problem, which becomes a large residual problem, needs to select a large
modified coefficient (µ0 ∈ [0.5, 0.8]) to keep a certain ratio of tangent distance in the objective function,
thus guaranteeing the initial convergence stability. After a certain number of iterations, the optimization
problem needs to select a relatively small modified coefficient µ to speed up the convergence rate,
because it becomes a small residual problem.

It is proved that the IRLS-ADF method converges to the global minimum for the Bisquare
estimator, when the appropriate transformation parameters are selected at the beginning [30]. In fact,
the IRLS-ADF method is a kind of Levenberg–Marquardt method for solving the large residual problem,
which has good convergence stability and quadratic convergence rate [17,30].

2.3. GP-Based Data Fusion Method

After registration, a registered LA dataset and HA dataset are integrated into an improved output
by a multi-layer Bayesian data fusion method based on GP model. The fusion method mainly consists
of two steps: (1) obtaining an alternative model of the LA dataset; (2) introducing the adjustment
model to combine LA and HA datasets together.

Assume that the two datasets can be expressed by discrete functions of the type: z(xi, yi), that is the
z-coordinate of the i-th point is represented as a function of its position on the x,y plane. Then, the LA
dataset is denoted as: zLA(xi, yi), where (xi, yi) ∈ VLA ⊂R2, i = 1, 2, . . . , nLA and similarly, the HA
dataset is denoted as: zHA(xi, yi), where (xi, yi) ∈ VHA ⊂R2, i = 1, 2, . . . , nHA. Generally, the points in
LA and HA dataset will not have the exact same position on the plane, i.e., VLA ∩VHA = ∅.
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The LA data zLA(xi, yi) can be defined as

zLA(xi, yi) = fLA(xi, yi) + εLA (10)

where, εLA represents the error, and it is assumed to follow a normal distribution of 0 mean and σ2
εLA

variance, i.e., εLA ∼ N(0,σ2
εLA). In an ideal situation, fLA(xi, yi) represents the ideal value of the

measured surface and εLA represents the measurement error of the LA dataset. In this paper, a GP
model is considered to represent fLA(xi, yi). The GP model is a set of random variables, in which any
finite number of random variables and their linear combinations obey the joint Gaussian distribution.
Therefore, according to the GP model, it can be expressed as follows:

fLA(xi, yi) ∼ GP(mzLA(vi), kzLA(vi, vj)) (11)

where vi represents (xi, yi) and similarly, vj represents (xj, yj), mzLA(vi) = E[zLA(vi)] is the mean

function, kzLA(vi, vj) = cov
(
zLA(vi), zLA(vj)

)
is the covariance function. In this paper, the mean

function can be expressed with a linear model:

mzLA(xi, yi) = α0 + α1xi + α2yi (12)

In addition, the square exponential function is chosen to represent the covariance function of the
GP model:

kzLA(vi, vj) = σ2
zLA exp(−

‖vi − vj‖
2

2l2LA

) (13)

where ‖vi − vj‖ represents the Euclidean distance between vector vi and vector vj, σ2
zLA represents the

constant variance of the GP model, and lLA is the length parameter of the function.
In the model expressed by Equations (10)–(13), parameters

{
α0,α1,α2,σ2

zLA, lLA,σ2
εLA

}
are

unknown and need to be estimated by actual measurement data. Therefore, as long as the measurement
data zLA(xi, yi) with (xi, yi) ∈ VLA ⊂R2, i = 1, 2, . . . , nLA is given, the new prediction value ẑLA(x, y)
can be computed at any new position (x, y) according to the mean and covariance functions after the
completion of the parameter estimation.

However, the alternative model based on the LA data cannot correct the possible local bias in the
LA dataset. Due to the high accuracy and unbiasedness of the HA dataset within the measurement
range, we introduce the high-quality data of the HA dataset to “correct” the alternative model generated
by the LA dataset. In order to describe the difference between the values ẑLA(xi, yi) obtained by the
alternative model generated from LA dataset and the values of HA dataset zHA(xi, yi), the “adjustment
model” is introduced as in literature [26,27]:

zHA(xi, yi) = β(xi, yi)ẑLA(xi, yi) + δ(xi, yi) + ε (14)

where β(xi, yi) and δ(xi, yi) represent the scaling factor and the shifting factor, respectively, and ε
represents the error term. The adjustment model means that, for positions containing HA points,
the value zHA(xi, yi) can be obtained by scaling and shifting the predicted value ẑLA(xi, yi) estimated
by the GP model from the LA dataset, plus an error item associated with the HA dataset. Since the
adjustment model is statistically established, it should contain the error term ε to indicate residuals
between the HA dataset zHA(xi, yi) and β(xi, yi)ẑLA(xi, yi) + δ(xi, yi). Assume that the residual term
ε obeys a normal distribution ε ∼ N(0,σ2

ε).
The scaling factor β can be expressed by the linear model:

β(xi, yi) = β0 + β1xi + β2yi (15)
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The shifting factor δ can be represented by a new GP model composed of the constant mean value
δ0 and covariance function kδ:

δ(xi, yi) ∼ GP(δ0, kδ) (16)

where the square exponential function is used to represent the covariance function kδ =

σ2
δ

exp(−
‖vi−vj‖

2

2l2
δ

), as the same in Equation (13).

The parameters
{
β0,β1,β2, δ0,σ2

δ
, lδ,σ2

ε

}
in Equations (14)–(16) are all unknown and can be

estimated from the actual measurement data zHA(xi, yi) with (xi, yi) ∈ VHA ⊂R2, i = 1, 2, . . . , nHA.
After fully estimating all the unknown parameters mentioned above, correction parameters

based on the HA dataset (unbiased) can be obtained according to the adjustment model. Therefore,
the original GP model (biased) prediction data can be modified to

zfusion(xi, yi) = β(xi, yi)ẑLA(xi, yi) + δ(xi, yi) (17)

3. Experimental Verification

3.1. Simulation Verification

In order to analyze the performance of the proposed data fusion algorithm, a freeform surface is
defined by Equation (18):

z = sin(0.8x) + cos(0.5y) (18)

where x, y ∈ [−5, 5] mm. On such a surface, a set of points is sampled uniformly across the whole
surface at an interval of 0.4 mm, which is defined as Dataset 1. Another set of points is sampled
at 0.15 mm interval over a part x, y ∈ [−3, 3] of the surface, which is denoted as Dataset 2. Dataset
1 represents the HA dataset, Dataset 2 is equivalent to the LA dataset, and two sets of Gaussian
noise with standard deviation 5 µm and 15 µm are added to Dataset 1 and Dataset 2, respectively,
to represent measurement errors of the HA and LA datasets. Dataset 2 is moved to a specific
location so that the two sets of points are located in different coordinate systems. The given
transformation parameters are tx = 1 mm, ty = 1 mm, tz = −0.5 mm (translation parameters) and
rx = −0.1 rad, ry = 0.3 rad, rz = 0.2 rad (rotation parameters). Therefore, these two sets of point cloud
data have different resolutions, different uncertainties, and different coordinate systems. These two
datasets are common in the multisensor measurement of the freeform surface. The generated Dataset 1
and 2 systems are shown in a common coordinate in Figure 4a.
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Figure 4. Multisensor data for simulation and data registration results. (a) Two simulation datasets,
where blue data represents Dataset 1 and red data represents Dataset 2; (b) Data registration results
based on IRLS-ADF method.

Firstly, the proposed robust registration algorithm based on ADF is used to register Dataset 1 and
Dataset 2, and unify them into a common coordinate system. Figure 4b shows the data registration
results based on IRLS-ADF. In order to evaluate the accuracy and efficiency of the proposed algorithm,
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the transformation parameter error and calculation time of the IRLS-ADF and ICP methods are
presented in Table 1. Figure 5 shows a comparison of the registration errors between the IRLS-ADF
and ICP methods during the iteration process. Both methods are implemented using MATLAB R2016a,
with a maximum of 30 iterations, and run on a computer with the Intel® CoreTM i7(8 GB RAM)
processor. The transformation parameter errors of the IRLS-ADF method is smaller than the ICP
method, which indicates that the IRLS-ADF method has higher accuracy. The iteration number of the
IRLS-ADF is significantly smaller than that of the ICP method, and the calculation time of IRLS-ADF is
also shorter because it is based on the Levenberg–Marquardt method, and achieves faster convergence
rates. This result is consistent with the literature [17]. Generally, the IRLS-ADF method has higher
precision and faster convergence rates for HA and LA dataset registration, indicating its robustness
against the influence of the measurement error.

Table 1. The error of transformation parameters and computation time of the IRLS-ADF and ICP method.

Method
Error of Transformation Parameters

Computation Time (s)
tx (µm) ty (µm) tz (µm) rx (mrad) ry (mrad) rz (mrad)

IRLS-ADF 1.8 3.7 2.5 0.5 0.2 0.7 1.1
ICP 3.7 5.3 5.2 1.4 5.0 2.1 3.2
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Figure 5. Comparison of registration errors between the IRLS-ADF and ICP methods during the
iteration process.

Then, a data fusion model based on the GP model is constructed in the overlapping area according
to Section 2.3. Figure 6 shows the fusion data and its estimation uncertainty. Figure 7 shows the form
error of the fusion data by comparing it with the designed surface. In order to evaluate the accuracy of
the fusion data, the root-mean-square (RMS) error and peak-to-valley (PV) error of the reconstructed
model data compared with the designed surface are calculated. Table 2 shows the RMS and PV error
comparison between Dataset 1, Dataset 2, and the proposed IRLS-ADF+GP fusion method. It can be
seen that the RMS values of Datasets 1 and 2 are 4.3 µm and 14.9 µm, respectively, which is consistent
with the measurement noise added in these datasets. Based on the proposed data fusion method,
the RMS value of the fusion data is reduced to 1.9 µm, which is significantly lower than the RMS
values of Dataset 1 and 2. Similarly, the PV value of the fused data is reduced to 13.8 µm. It shows
that the proposed GP-based fusion method is capable of improving the accuracy of the measured
datasets. The proposed method is also compared with the widely used data fusion method, which
adopts the ICP registration method to align two datasets and integrates them with the weighted mean
(WM) method [3]. It is also seen from the results of Table 2 that the proposed method has better fusion
accuracy and faster computational efficiency than the ICP-WM method.
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Table 2. RMS, PV error, and computation time of different data fusion methods.

Dataset 1 Dataset 2 Fusion by
IRLS-ADF+GP

Fusion by
ICP+WM

RMS (µm) 4.3 14.9 1.9 3.4
PV (µm) 19.9 57.4 13.8 17

Computation time (s) - - 5.5 8.2

In addition to data fusion performance, measurement efficiency is also a key concern in the
multisensor measurement. LA datasets can be obtained through a structured light scanner with high
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measurement efficiency. However, HA datasets are usually acquired by CMMs, and the measurement
efficiency is low. Only if the number of HA data is small, the measurement time is acceptable.
Therefore, multiple datasets (still called Dataset 1), which contain a different number of data points
in the overlapping area, are used to evaluate the performance of the proposed algorithm fully. A set
of Gaussian noise with standard deviation 5 µm is still added to Dataset 1, and Dataset 2, which is
used for fusion with Dataset 1, remains unchanged. Figure 8 shows the final RMS and PV values
of fusion results generated by the proposed IRLS-ADF+GP fusion method with the change of HA
point number in Dataset 1. As can be seen from Figure 8a, the RMS values of the fusion data do
not change much with the decrease of the HA point number in Dataset 1, and remain at a low level
(<2 µm). Similarly, as the number of data points in Dataset 1 decreases, the PV values of the fusion data
remains low (<18 µm), as shown in Figure 8b. It indicates that the proposed data fusion algorithm can
achieve high-quality data fusion performance with a small number of HA data. In actual multisensor
measurements, the efficiency of the multisensor measurement can be significantly improved with few
HA data points. Therefore, with the LA dataset and a small amount of HA data points, the data fusion
algorithm proposed in this paper can complete the data fusion process with a good combination of
measurement efficiency and fusion performance. It should be emphasized that too few HA data points
are not recommended for multisensor fusion process (for example, <50 in this experiment), because
this means that too few “real points” are used to modify the LA dataset, which may lead to a decrease
in the registration accuracy and result in poor data fusion performance.Sensors 2020, 20, x FOR PEER REVIEW 12 of 17 
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3.2. Verification in Actual Measurement

The first example of actual measurement is a spherical microstructure surface. The 2D diagram
of a single spherical surface is shown in Figure 9a, where the radius of the single spherical surface
is r = 52 µm, the depth is h = 4 µm, the diameter of the aperture is d = 40 µm. The spherical
microstructure array is distributed on a square grid, and the spacing between the adjacent lines in
both the X and Y direction is λ = 100 µm. The above microstructure surface has been machined by
an ultra-precision machine tool, and the surface topography is captured by a 3D laser microscope
Olympus OLS5000, as shown in Figure 9b. The complete geometric information is measured in two
steps with 50× objective (zoom is 1.0×) and 100× objective (zoom is 3.0×), respectively. The field of
view of the two objectives is 0.25 × 0.25 mm2 and 0.04 × 0.04 mm2 respectively. The measurement
data are shown in Figure 9c. Due to two different objectives, the two measured datasets have different
resolutions and are in different coordinate systems. Then, the proposed method in this paper is used
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for the registration and fusion process of the above two datasets to generate a final representation of
the microstructure surface.
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Figure 9. Measurement of a spherical microstructure surface. (a) 2D diagram of a single spherical surface;
(b) The measurement process of the machined surface on a 3D laser microscope; (c) Measurement data
obtained by 50× and 100× objectives, respectively.

Firstly, the dataset obtained by 100× objective is transformed into the coordinate frame of the
dataset measured by 50× objective based on the proposed registration algorithm. Figure 10a shows
the registration of measured datasets based on the IRLS-ADF registration method, and Figure 10b
presents the datasets after registration. Then, the two datasets at the overlapping area are fused by
the proposed fusion method. Finally, the 50× dataset, 100× dataset, and fusion dataset are compared
with the original CAD model respectively to verify the quality of the above datasets. The evaluated
error diagram of the fusion data is given in Figure 10c. The RMS errors of the three datasets are
0.125 µm, 0.119 µm, and 0.103 µm, respectively. From the above error results, we can see that the
dataset processed by the registration and fusion method has higher accuracy than the two original
measurement datasets.
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The second example of actual measurement is a machined freeform surface with a geometric
dimension of 52 mm × 50 mm × 13 mm. The machined surface is measured by two different
measurement instruments, namely a high-precision Hexagon Coordinate Measuring Machine (CMM)
and a structural light (SL) scanner. Figure 11 shows the measurement process of the machined surface by
means of CMM and SL scanner. The length measurement error of the CMM is U= 1.4 + 3.0 × L/1000 µm,
and the maximum probing error is MPEP = 1.2 µm. The accuracy of the SL scanner is 0.03 mm, and the
field of view is 300 × 240 mm2.
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Figure 11. The measurement process of the machined freeform surface. (a) The machined freeform
surface on the CMM; (b) The surface under a structured light (SL) scanner.

Figure 12 shows the measurement datasets obtained from the CMM and the structured light
scanner. The CMM dataset is a HA dataset, which consists of nCMM = 165 points (Figure 12a) with
4 mm spacing in both X and Y direction. The LA dataset consists of nSL = 8131 SL data points
(Figure 12b). The two datasets have different resolutions and uncertainties and are located in different
coordinate systems. To verify the fusion performance of the proposed method, we also collect a dataset
called a reference dataset, which is composed of nREF = 7131 CMM data points with 0.6 mm spacing
over the measured surface.
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The proposed algorithm is applied to the fusion of the above two datasets. IRLS-ADF registration
algorithm is used to transform two datasets into a common coordinate system. Then a fusion dataset
is generated by the GP-based fusion method. Figure 13a shows the fusion dataset. The evaluated
error diagram of the fusion data by comparison with the design surface is, as shown in Figure 13b.
In order to analyze the performance of the proposed method, the accuracy of the fusion dataset is
characterized by RMS and PV error, and the measurement efficiency of the fusion dataset is reflected by
the measurement time. Table 3 shows the comparison results of different measurement data, including
the CMM dataset, SL dataset, fusion dataset, and reference dataset.
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Table 3. RMS, PV error, and time comparison of different measurement datasets.

Dataset CMM SL Fusion Reference

RMS (µm) 13.2 17.6 14.1 13.9
PV (µm) 60.4 77.4 66.5 65.4
Time (h) ~0.4 <0.1 ~0.4 >2

In terms of accuracy, the RMS value of the fusion dataset generated by the proposed fusion
method is 14.1 µm, and the PV value is 66.5 µm. Compared with the SL dataset, the accuracy of the
fusion dataset is greatly improved. At the same time, the RMS and PV values of the fusion dataset
are slightly worse than that of the reference dataset, indicating that the data quality of the fusion
dataset is close to that of the reference dataset. In terms of measurement efficiency, the measurement
time of the multisensor fusion method based on CMM and SL data is about 0.4 h, which is far less
than the measurement time of the reference dataset. It can be seen from the above results that the
accuracy of the fusion dataset is significantly improved by means of registering and fusing datasets
from CMM and SL, while the measurement efficiency is maintained. In general, a large number of
measurement points in the CMM lead to long sampling time, while few CMM measurement points
result in insufficient surface sampling, and the error of the machined surface may be underestimated.
And the structured light scanner has a fast sampling speed but relatively low accuracy. Therefore,
multisensor combination measurement is of great importance to improve the efficiency and precision
of complex surface measurement. The above experimental results indicate that the proposed data
fusion method can fuse multisensor datasets of complex geometry, with good fusion accuracy and
high measurement efficiency.

4. Conclusions

This paper proposes a data fusion method for multisensor combination measurement of complex
surfaces. In order to solve the key issues of multisensor fusion, a surface robust registration method
is presented to unify the coordinate systems of multisensor datasets, which utilizes the ADF as the
basic error metric, and uses M-estimation method to limit the influence of noise points. Then, a GP
model-based data fusion method is presented to generate a high-quality fusion dataset. Moreover,
the proposed method is verified by simulation and actual experiments. Experimental results show that
the proposed method has the capability to fuse multisensor datasets of complex geometry with good
fusion performance and fast computational efficiency. In addition, the proposed data fusion algorithm
only needs a small amount of HA data points and an LA dataset to complete the data fusion process,
achieving a good combination of measurement efficiency and fusion performance.

How to speed up the data fusion method through parallel hardware (FPGA or GPU) is a task
that needs to be solved in the future. In addition, the data fusion process may involve more than two
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datasets in practical application. The proposed data fusion method can only be used for the fusion
between two different datasets, and further research is needed. Furthermore, the prior knowledge of
the uncertainty associated with each sensor could be utilized in the future research.
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