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Abstract: A theoretical treatment is presented to predict the kinetic behaviour of

azithromycin at the surface of hanging mercury drop electrode using cyclic voltammetry.  A

model is developed to incorporate the occurrence of adsorption of the oxidized and reduced

species of azithromycin at the surface of mercury drop electrode.  An analytical solution

was obtained using MATHEMATICA (V-3, Wolfram Research, Inc.) to predict the cyclic

voltammetric profiles by calculating the currents resulting after applying variable potentials

ranging –1.9 to –1.3 V versus Ag/AgCl. Simulation runs at different initial concentrations of

azithromycin and different scan rates showed good agreement with experimental findings.

However, this model should be modified to describe a multilayer adsorption with

irreversible electrochemical reaction.
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Introduction

Macrolide antibiotics are currently gaining prominence in view of their activity in the treatment of

various bacterial infections in humans and animals. Generations of macrolide antibiotics such as

clarithromycin, roxithromycin and azithromycin are currently used due to their acid stability and wide

distribution in tissues.1-5 Interest in the electrochemical behaviour of active drug constituents has also
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been steadily increasing.6-8 Investigation of electrode processes involving oxidation or reduction

reactions may shed more light on in-vivo redox processes.9, 10 Several researchers have studied the

kinetics of electrode processes pertaining to macrolide antibiotics under idealized experimental

conditions.11-14 However, work is still needed to describe the actual redox behaviour of the surface of

electrodes. This work is aimed to study the adsorption behaviour of azithromycin on the surface of

hanging mercury drop electrode (HMDE) and correlate the in-vitro experimental findings with the

theoretical prediction of the suggested process.

Experimental

Chemical and Reagents

A reference standard azithromycin (944 µg/mg, expiration date 2004) was kindly donated by AL

Fares Pharmaceuticals, Damascus-Syria. Sodium acetate trihydrate (99.5%, Scharlau, Spain) and acetic

acid (99.9% Aristar, BDH-England) were used without further purification. Mercury (99.99%, Fluka-

Switzerland) was used after filtration. Methanol was HPLC grade (Romil-England). Deaeration was

accomplished by using high purity nitrogen (Air product 99.999%). Deionized water was prepared at

the Pharmaceutical Research Unit/ Royal Scientific Society by initiating a reversed osmosis procedure

prior to distillation and deionization using an elgacan filter, (C-114 <0.7 µS).  Acetate buffer solutions

were freshly prepared as a supporting electrolyte (0.1 M, pH 4.64). Stock standard solutions were

freshly prepared to contain 1×10-2 M of azithromycin dissolved in methanol. The stock solution was

used to prepare dilute working standard covering the range 2.5×10-5 M to 1.35×10-3 M.

Instruments and Apparatus

A 746 Metrohm Electrochemical Trace Analyzer and a 747 VA stand (Metrohm-Herisau-

Switzerland). The stand consists of a multi mode electrode (MMD), comprising a Dropping Mercury

Electrode (DME), a Static Mercury Drop Electrode (SMDE) and a Hanging Mercury Drop Electrode

(HMDE). An Ag/AgCl reference electrode and platinum wire auxiliary electrode completed the three-

electrode potentiostat.  A universal titration-measuring vessel, which allows working with a total of 5.0

to 10.0 ml volume, was employed. A digital pH-meter (Hi 9321-Hanna) and an analytical balance (AE

2400, Mettler) were also used.

Procedure

Aliquots of stock solutions of azithromycin were individually spiked into the titration vessel

containing an acetate buffer solution to make up a total of 10.0 ml volume. Concentrations ranging

from 2.5×10-5 to 1.35×10-3M were employed. Deaeration was initiated by bubbling high purity

oxygen-free nitrogen for 10.0 min through the measuring vessel. Cyclic voltammetry experiments

using HMDE were recorded for each of the investigated solutions.
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Theory

Generally, the observed reaction mechanism together with the corresponding electrochemical

behaviour of macrolide antibiotics, at the surface of the hanging mercury drop electrode (HMDE), may

involve a reversible one-electron process. The reactant and the product may adsorb at the mercury

surface and exists in equilibrium with its corresponding dissolved species as illustrated in the equations

1-a, 1-b, and 1-c.

adsso OO ⇔ln     (1-a)

RneO ⇔+ −     (1-b)

adsso RR ⇔ln     (1-c)

where: Osoln and Rsoln are the oxidized and reduced species dissolved in the bulk, and Oads and Rads are

the oxidized and reduced species adsorbed at the electrode surface, respectively.

The diffusion behaviour of the reactant within the mercury drop is described as
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where: Co(r,t) is the concentration of reactant at distance r from the center of the mercury drop at time

t, and Do is the diffusion coefficient of the reactant within the mercury drop.  Similarly, the product, R,

diffuses out of the mercury drop; its diffusion may thus be described by
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where: CR(r, t) is the concentration of the reduced species at distance r from the center of the spherical

mercury drop and at time t. DR is the diffusion coefficient of the reduced species within the mercury

drop.

To solve equations (2) and (3), the following initial and boundary condition applies:
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where *
OC  is the bulk concentration of the reactant initially present, ro is the radius of the mercury

drop, n is the number of electrons involved in the reaction, F is the Faraday constant, Eo is the formal

reduction potential of the reactant, and E is the potential of the electrode which can be related to the

scan rate, ν, as in equations (10) and (11).

( )   0i RE E t t tν= − ≤ ≤      (10)

2    ( )i R RE E t t t tν ν= − + ≥      (11)

where: iE  is the initial potential of the electrode, and Rt is the time when the scan is reversed to the

opposite direction in the cyclic voltammetry.  For very low surface concentrations of absorbable ions

or molecules, Henry's adsorption isotherm is applied which shows a linear relation between qo or qR

and the bulk adsorbate concentration C. At low concentration levels, the available adsorption sites at

the surface will be partially covered. However, at high concentrations, a complete monolayer may be

formed. As the bulk concentration of the adsorbates increase, a multilayer may also form. The amount
of reactant, oq , and product, Rq , adsorbed at the surface of the HMDE are related to the solution

concentration of the reactant and product, Co and CR, respectively. Therefore, any of the isotherm

models such as Langmuir’s, Fruendlich’s, or the Brunauer-Emmett-Teller (BET) model may apply.

Although each of the proposed models can describe the adsorption isotherm, none can perfectly fit

the experimentally observed data.  If Langmuir’s adsorption isotherm is assumed, then equations 12

and 13 hold;
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where s
Oq and s

Rq  (mole/ cm2) are the saturation concentrations of the reactant and the product initially

present, which cover the monolayer of the electrode surface. The terms ok and rk  are constants that

depend on the electrode potential.

The initial equilibrium conditions can be summarized by equations 14 and 15 as

( )*    0,  0O Oq q t r= = ≥      (14)

( )0    0,  0Rq t r= = ≥      (15)

Equations (2) and (3) have been solved using Laplace Transformation and a MATHEMATICA

software (v3.0, Wolfram Research, Inc.) to obtain the concentration of the oxidized and reduced

species as a function of time and distance from the centre of the mercury drop in accordance with the

following:
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The constant c1 and c3 have been evaluated by applying boundary conditions specified in (8) and

(9), both were zeros and can thus be eliminated. Equations (16) and (17), however, were substituted

into equations (6) and (7) to obtain the following two-non linear equations with c2 and c4 as

independent variables
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At a given time t and scan rate ν , equations (10) (11) (18) and (19) have been solved

simultaneously to obtain the constants c2 and c4. Consequently equations (16) and (17) have been

evaluated.  The total currents (iR and iP), therefore, can be evaluated using equation (20)
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By substituting the expressions for CO, CR, qO and qR, the peak currents for the oxidized, iR, and the

reduced species, iP, at various E1/2 values are obtained as
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Results and Discussion

The cyclic voltammograms shown in Figures 1 and 2 illustrate the profiles recorded for low and

high concentration ranges obtained at solution pH 4.64. Figure 1 shows cyclic voltammograms that

were recorded for 8 successive additions of azithromycin (25 µL each, 1.0×10-2 M) to cover the

concentration range 2.5×10-5 to 2.2×10-4 M. These were recorded at a scan rate of 20 V/s. Figure 2,

however, illustrates the cyclic voltammograms covering the high concentration range 1.99×10-4 to

1.35×10-3 M.  From the voltammograms, two well-defined cathodic peaks appeared at –1.64 and 0.012

V versus Ag/AgCl. Other anodic peaks were also recorded at –1.79 and –0.18 V versus Ag/AgCl,

respectively. As the concentration of azithromycin increases from 2.5×10-5 to 7.39×10-4, the cathodic

peak at –1.64 V increased. At higher concentration, however, this peak decreased with increasing

concentration. This was accompanied by a cathodic shift as illustrated in Figure 2. This observation

may be explained by an adsorption process, which takes place at the surface of the mercury drop

electrode.  At lower concentrations, many active sites are available at the surface of the mercury

electrode; as a result peak current was directly proportional to concentration. At higher concentrations,

however, the surface of mercury drop became saturated and the total charge flowing during the

reduction was thus constant because of the adsorbed azithromycin molecules. The total charge due to

diffusion, therefore, continued to increase with concentration, and thus the fraction of the peak current

decrease with increasing concentrations.15-17

Using the proposed model, profiles of current versus potential (-1.3 to –2.0 V) were generated for

fixed azithromycin concentrations of 2.4×10-5, 9.6×10-5, and 1.74×10-4. Figure 3 and Table 1 show the
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simulated cyclic voltammograms together with their corresponding adsorption parameters. It appears

that as the concentration increased from 2.4×10-5 to 9.6×10-5, the cathodic peak current increased

linearly from 7µA to 16µA. At higher concentration (~1.74×10-4 M), the cathodic peak current sharply

increased to 38µA. This could be attributed to a formation of an azithromycin multilayer on the surface

of the mercury drop. This necessitates a model replacement of Langmuir’s to BET adsorption

isotherms. This was authenticated from the values of qo and qR, since a dramatic change from 1.0×10-8

and 1.0×10-9 mole/cm2 to 1.0×10-5 and 1.0×10-3 mole/cm2 were obtained after changing the

concentration from 2.4×10-5 to 1.74×10-4 M.

Figure 1. Cyclic voltammograms for the effect of azithromycin concentrations (2.5×10-5–

2.2×10-4 M) at the HMDE and a scan rate of 20 V/s.

Figure 2. Cyclic voltammograms for the effect of azithromycin concentrations (1.99×10-4–

1.35×10-3 M) at the HMDE and a scan rate of 20 V/s.
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Table 1. Values of Langmuir’s model obtained from the simulated model at different initial

concentration.

CONCENTRATION

(M)
KO KR

qo

(mol/cm2)

qR

(mol/cm2)

2.4×10-5 1.0 10 1.0×10-8 1.0×10-8

9.6×10-5 10 10 1.0×10-5 5.0×10-3

1.74×10-4 10 10 1.0×10-5 5.0×10-3

Figure 3. Simulated cyclic voltammograms for the effect of azithromycin concentration

obtained at 20V/s.

Figure 4. Cyclic voltammograms for azithromycin (1.9×10-4 M) obtained at different scan rates.
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Figure 4 illustrates the cyclic voltammograms for azithromycin after varying the san rate from 20 to

60 V/s.  A difference of 108 mV was observed between the anodic and cathodic potential
( pcpa EEE −=∆ ) when the scan rate was 20 V/s. This difference was larger for scan rates higher than

20 V/s. The electrochemical reaction may thus be regarded as an irreversible at a scan rate higher than

20 V/s. The observed CV profiles were compared with those simulated from the proposed model at

scan rates of 30, 50 and 80 V/s (Figure 5). The proposed model, in contrast, demonstrated a quasi-

reversible behaviour. Indeed, this is not unexpected since the developed model applies only to

described reversible behaviour.  Values pertaining to the adsorption isotherm from the simulated

model are illustrated in Table 2. These values remained constant after changing the scan rate. This is

due to the fact that increasing the scan rate have decreased the time required for the desired amount of

azithromycin to get saturated at the surface of the mercury drop, but did not increase that amount per

unit surface area of the electrode.

Table 2. Values of Langmuir’s model obtained from the simulated model at different scan rates.

SCAN RATE

(V/ s)
KO KR

qo

(mol/cm2)

qR

(mol/cm2)

30 10 10 1.0×10-5 1.0×10-5

50 10 10 1.0×10-5 1.0×10-5

80 10 10 1.0×10-5 1.0×10-5

Figure 5. Simulated cyclic voltammograms for azithromycin (1.9×10-4 M) at different scan rates.

Notation

A Surface area of the mercury drop electrode.
*
OC  Bulk solution concentration of the reactant initially present.

Co(r,t) Concentration of reactant at distance r from the center of the mercury drop at time t.
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CR(r, t) Concentration of the reduced species at distance r from the center of the spherical

mercury drop and at time t.

Do Diffusion coefficient of the reactant within the mercury drop.

DR Diffusion coefficient of the reduced species within the mercury drop.

E Potential of the electrode that can be related to the scan rate.

iE  Initial potential of the electrode.

Eo Formal reduction potential of the reactant.

paE Anodic peak potential.

pcE Cathodic peak potential.

F Faraday constant.

iP Peak currents for the reduced species.

iR Peak currents for the oxidized species.

n Number of electrons involved in the reaction.

oq Amount of reactant that adsorbed at the surface of the hanging mercury drop electrode.
s
Oq  Saturation concentrations of the reactant that is initially present at the surface of the

mercury drop.

Rq Amount of the product that adsorbed at the surface of the hanging mercury drop

electrode.
s
Rq Saturation concentrations of the product that is initially present at the surface of the

mercury drop.

ro Radius of the mercury drop.

Rt Time when the scan is reversed to the opposite direction in the cyclic voltammetry.

ν Scan rate.
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