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Abstract: Recently, finger-based biometrics, including fingerprint (FP), finger-vein (FV) and
finger-knuckle-print (FKP) with high convenience and user friendliness, have attracted much
attention for personal identification. The features expression which is insensitive to illumination and
pose variation are beneficial for finger trimodal recognition performance improvement. Therefore,
exploring suitable method of reliable feature description is of great significance for developing
finger-based biometric recognition system. In this paper, we first propose a correction approach for
dealing with the pose inconsistency among the finger trimodal images, and then introduce a novel local
coding-based feature expression method to further implement feature fusion of FP, FV, and FKP traits.
First, for the coding scheme a bank of oriented Gabor filters is used for direction feature enhancement
in finger images. Then, a generalized symmetric local graph structure (GSLGS) is developed to fully
express the position and orientation relationships among neighborhood pixels. Experimental results
on our own-built finger trimodal database show that the proposed coding-based approach achieves
excellent performance in improving the matching accuracy and recognition efficiency.
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1. Introduction

With the arrival of the informational age and the rapid development of computer technology,
people have higher requirements for the accuracy of biometric identification technology [1]. Compared
with other common biometric traits, finger-based traits (e.g., fingerprint [2], finger-vein [3] and
finger-knuckle-print [4],) have some advantages in uniqueness, anti-counterfeit, user acceptance, and
high security [5–8]. However, affected by the external environment and the inherent differences of
individuals, only relying on finger unimodal biometrics for identity authentication still has many
security risks, which can no longer achieve the high-performance requirements of a user. Hence, fusing
three traits from a finger together should be beneficial to address the person recognition problem [9,10].

However, the quality of three modal finger images is usually degraded seriously due to illumination
variation in skin surfaces, which is unhelpful for reliable feature representation [11–13]. In addition,
the finger trimodal images vary with the finger in pose rotation during imaging, which reduces the
discriminability of images and further decreases the recognition accuracy rate. Therefore, exploring a
robust feature representation method is very favorable for finger-based recognition improvement.

Recently, some researchers have developed some coding-based feature expression methods, which
were often considered to be able to solve the above two problems [14–21]. Ojala et al. first proposed the
classical local binary pattern (LBP) algorithm for facial recognition, which has great rotation invariant
and was insensitive to illumination variation [16]. In 2011, Rosdi et al. proposed a local line binary
pattern (LLBP) algorithm to effectively make use of the position relationships among surrounding
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pixels in horizontal and vertical orientations [17]. Meng et al. [19] proposed a local direction coding
(LDC) algorithm, which utilized the gradient relationships to express a venous feature for finger-vein
recognition. In 2013, Peng et al. [20] combined the Gabor wavelet and LBP (GLBP) for feature extraction,
which could effectively improve the ability of local and global features representation.

Noteworthy, some methods related to local graph have been presented in succession, and their
variants have been successfully applied to many biometric fields [22–29]. Abusham et al. first
proposed a local graph structure (LGS) algorithm to extract face features, which was insensitive to
illumination [22]. However, the structure was non-symmetric, which led to a feature representation
with no-equilibrium in the left and right neighborhoods. In order to balance feature representation of
neighbor pixels on both sides, Mohd et al. [23] improved the original LGS operator to the SLGS operator
by building a symmetrical structure. In 2015, Dong et al. [24] presented a MOW-SLGS operator for
the representation of vein networks, and used the ELM to accomplish finger-vein image classification.
On the basis of this information, in 2018, Yang et al. [25] put forward the Weber SLGS, which integrated
differential direction features by Weber Law and the local graph structure algorithm. However, these
algorithms still have some limitations in the application of representing finger multimodal features.
On the one hand, the methods above only describe the relationships between the target pixel and its
adjacent ones in a fixed neighborhood, while neglecting the hidden relationships among surrounding
pixels. On the other hand, the assignment of different weights for symmetric pixels on left and right
sides usually results in an imbalance of the feature expression in images.

To effectively overcome these limitations, we propose a Gabor generalized symmetric local graph
structure (Gabor-GSLGS) for finger multimodal fusion recognition, as shown in Figure 1. In the
image capture part, first, a finger imaging device is designed, and a pose correction algorithm is
proposed to reduce pose variations. A robust finger region of interest (ROI) localization approach is
then employed. Secondly, a bank of 6-orientation and single-scale Gabor filters are utilized for finger
ROI image enhancement. Thirdly, based on the proposed GSLGS operator, a local coding algorithm is
developed for finger features representation. The coded trimodal feature images of a finger are then
divided evenly into non-overlapping blocks. Thus, for a finger, we can obtain a feature vector by
concatenating the histograms of all blocks. Finally, by computing the similarities between the obtained
vectors, the matching results can be reported statistically. Experimental results on our established
database demonstrated that the proposed feature description approach exhibits better effects than
other traditional approaches in finger multimodal fusion recognition.

Figure 1. Finger multimodal recognition process based on the Gabor generalized symmetric local
graph structure (Gabor-GSLGS).
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The reminder of this paper is organized as follows: The finger trimodal imaging device and the
proposed posture correction are introduced in Section 2. The enhancement methods used for finger
ROI images are described in Section 3. Section 4 details the structure of the proposed local coding
algorithm. A feature matching scheme is employed to implement finger multimodal fusion recognition
and described in Section 5. Section 6 outlines the extensive experiments conducted and presents the
analysis of experimental results in details. Finally, Section 7 presents the summarization.

2. Finger Image Capture and Preprocessing

2.1. Image Acquisition

As shown in Figure 2a, we have developed a homemade image acquisition device to obtain finger
trimodal images. The finger imaging device is designed to capture fingerprint (FP), finger-vein (FV),
and finger-knuckle-print (FKP) images automatically. It is composed of a binocular camera with two
optical filters, a fingerprint acquisition instrument and an array of LEDs at a wavelength of 850 nm.
In the imaging device, the FP images are directly obtained through a fingerprint instrument, which has
a quick collection speed. Based on the imaging characteristics of a finger, the FV images are collected
by using the near infrared (NIR) light to illuminate the palm side of a finger in penetration manner [27].
For FKP modality, we use the principle of reflecting the visible lights source for image acquisition.

For the sake of improving convenient acquisition of images, a collection groove with fixed sizes
is designed in the imaging device, which is used to limit the position of a finger for imaging. It can
effectively avoid, to a large extent, an image mismatch problem caused by the rotation and translation
of a finger. As shown in Figure 2b, the dimensions of our finger imaging device are 10.9 × 9.8 × 17.8 cm
(length ×width × height: cm).

Figure 2. A finger trimodal image acquisition system. (a) the imaging schematic diagram;
(b) a homemade image capture device; (c) a system interface of image acquisition.
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As shown in Figure 2c, the acquisition program runs on the platform of Windows, and the software
interface is built using C++ language. The top of the interface is designed to display the finger trimodal
images captured in real time. Considering the friendliness of human-computer interaction, a window
on the right side of the system is designed to remind users of the problems in the system operation.

From Figure 2c, it can be clearly seen that the original captured finger trimodal images have,
to a small extent, still some posture variation. To solve this problem during the acquisition process,
we present the posture correction method for finger trimodal images.

2.2. Posture Correction

Although a collection groove is designed in the acquisition device to fix the position of a finger,
the finger still has a plane rotation at a small range. As the finger plane rotates, the edge line of the
finger changes steadily. Hence, the rotation angle of a finger posture can be calculated and corrected
based on the edge line of the finger. Due to the different illuminations, the edge line of the finger-vein
is easier to detect and process than the finger-knuckle-print. Therefore, the finger in the finger-vein
imaging space is selected to calculate the rotation angle, and then the three modalities are rotated and
corrected together. The calculation process of a finger posture angle is shown in Figure 3.

Figure 3. Computing finger posture angle. (a) the edge line of the finger; (b) the coordinate extraction
of the finger edge line; (c) finger rotation direction extraction.

At first, the captured finger image is filtered to remove noise, and the edge line of the finger
is detected. Then, the point coordinates of two edge lines are extracted to calculate the midpoint
coordinates. As shown in Figure 3b, {Ln} (n = 1,2, . . . , N) represents the coordinate set in the left edge
line of the finger, and {Rn} represents the coordinate set in the right edge line of the finger, X and Y
represent the row and column coordinates of the midpoint {Mn}. The calculation is as follows:{

XMn = (XLn + XRn)/2
YMn = YLn = YRn

(1)

The linear fitting of the midpoint {Mn} by least squares method yields the direction line: l = kx + b,
where: 

k =

N∑
n=1

(xMn−x)(yMn−y)

N∑
n=1

(xMn−x)2

b = y− kx

(2)

Finally, according to k, the posture angle θ of the finger is calculated as follows:

θ = arctan(
1
k
) (3)

Noteworthy, the center of rotation should select the center of the finger direction line l, which can
reduce the amplitude of the posture swing of the finger and improve the stability of the correction.
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Hence, taking the midpoint MN/2 as the center of rotation and θ as the angle of rotation, the finger in
the finger-vein imaging space is rotated and corrected. Some original images and corrected images for
the same finger are shown in Figure 4.

From Figure 4, we can see that the proposed posture correction algorithm is effective to solve
the problem of random plane rotation of the finger. This shows that the selection of the hardware
and the posture correction algorithms have achieved better effects in improving the consistency of the
finger posture.

Figure 4. Some corrected image samples after rotation.

However, from the corrected finger images, we can see that they still contain some unnecessary
backgrounds and uninformative parts. Hence, the captured finger images need to be processed to
implement the regions of interest (ROIs) localization.

2.3. ROI Extraction

Since the imaging principle and acquisition approach of FP, FV, and FKP traits are different,
diverse ROI extraction methods are supposed to be adopted accordingly [2]. In this paper, we apply
the core point detection method to extract the FP ROI image [30], the convex direction coding method
to extract the FKP ROI image [31], and the interphalangeal joint prior method to extract the FV ROI
image [3]. Therefore, the FP, FV, and FKP images are cropped into 152 × 152 pixels, 200 × 91 pixels and
200 × 90 pixels, respectively. Some finger trimodal ROI images are shown in Figure 5.

Figure 5. The finger trimodal region of interest (ROI) images of four fingers. (a) fingerprint (FP) ROIs
samples; (b) samples of finger-vein (FV) ROIs; (c) finger-knuckle-print (FKP) ROIs samples.
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3. Finger Image Enhancement

In recent decades, Gabor filters have been widely applied in many fields since they not only
extract the texture information in multiple directions of an image, but also reduce the influence of
illumination to some extent [32]. In terms of the abundant texture information of FP, FV, and FKP traits,
with respect to direction, oriented Gabor filters are used here to perform image enhancement.

A Gabor filter consists of a real part and an imaginary part. Generally, the real part is also called
an even-symmetrical Gabor filter, which is suitable for ridge detection in an image [2]. Since these
three modality images of a finger all have their own particular ridge textures, the real part of Gabor
filter can be used to extract the flexible feature information effectively [33]. It can be expressed as

G(x, y,θk, fk) =
γ

2πσ2 exp

−1
2

x2
θk

+ γ2y2
θk

σ2


 cos

(
2π fkxθk

)
(4)

where xθk = xcosθk + ysinθk, yθk = ycosθk − xsinθk, σ and k = (1, 2, . . . , k), respectively, represent the
scale index and the orientation index, θk denotes the orientation of the k-th Gabor filter, and fk is the
central frequency of the sinusoidal plane wave. Assuming R(x,y) is an original ROI image, each k-th
Gabor filtered image Ik(x,y) can be obtained by

Ik(x, y) = R(x, y) ∗G(x, y,θk, fk) (5)

where the symbol “∗” represents two-dimensional convolution.
First, the original ROI image is convoluted with k-channel Gabor filters. Then, the k Gabor filtered

images are merged into an image I(x,y) by using the competitive coding method proposed in [15].
Some Gabor filtered images are shown in Figure 6. It can be clearly seen that the texture information of
finger images can be effectively enhanced after multichannel Gabor filtering. Based on this, we apply
the coding-based theory to obtain more stable and reliable finger features.

Figure 6. The enhanced images of the finger three modalities.

4. Feature Extraction Based on Local Coding Algorithm

To make full use of local position and gradient features between adjacent pixels in Gabor
filtered images, a local coding algorithm based on generalized symmetric LGS is proposed for feature
representation. The specific steps are as follows:

Step 1 The finger trimodal images are respectively enhanced by k-channel even symmetric Gabor
filters in Section 3, and the Gabor filtered images are obtained.
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Step 2 As shown in Figure 7, for each center pixel in the Gabor enhanced images, we respectively
select three pixels in the left and right of n × n neighborhoods (a square area in Figure 7) to constitute
the GSLGS operator in the horizontal orientation. In terms of weight distribution, the weights of
symmetric pixels in the right and left sides maintain equal weights. More details are shown in Figure 7.

Figure 7. The design of the GSLGS operator (0◦ direction, n = 3).

Since Gabor features of finger trimodal have diverse directions, the information of the surrounding
pixels in multiple orientations should be extracted for efficient feature representation. Centered on the
target pixel, rotating the GSLGS operator counterclockwise byθk (corresponding to Step 1), the structure
of GSLGS in an arbitrary orientation can be obtained. For instance, when k = 4, the structures of GSLGS
are shown in Figure 8.

Figure 8. The GSLGS operator (k = 4).

Step 3 The coding process of the GSLGS operation is shown in Figure 9. In the neighborhood of
left and right sides, these gray values of the pixels are respectively compared in succession starting
from each target pixel. If the value becomes larger, the relationship between the two pixels to be
compared is coded to 1. In contrast, the relationship is coded to 0. The coding calculation process is
expressed as

F(θk) =
6∑

r=1

pr(gr − fr)26−r +
6∑

l=1

q(gl − fl)26−l, (k = 1, 2, · · · , K) (6)

pr(gr − fr) =
{

1, gr − fr ≥ 0,
0, gr − fr < 0

(7)

ql(gl − fl) =
{

1, gl − fl ≥ 0,
0, gl − fl < 0

(8)

where gr and fr (gl and fl), respectively, denote values of two adjacent pixels in the right (left)
neighborhood, and F(θk) represent the feature coded value in the θk orientation.

From Figure 9, we can see that the coded values of the target pixel at 0◦ and 45◦, respectively, can
be obtained according to Equations (6)–(8). Similarly, the same calculation process is done at 90◦ and
135◦. Thus, we calculate the coded values of the central pixel in these four directions as follow:

F(θ1) = (010100)2 + (110110)2 = (0 × 32 + 1 × 16 + 0 × 8 + 1 × 4 + 0 × 2 + 0 × 1) + (1 × 32 + 1 × 16 + 0 ×
8 + 1 × 4 + 1 × 2 + 0 × 1) = 74.
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F(θ2) = (100100)2 + (000100)2 = (1 × 32 + 0 × 16 + 0 × 8 + 1 × 4 + 0 × 2 + 0 × 1) + (0 × 32 + 0 × 16 + 0 ×
8 + 1 × 4 + 0 × 2 + 0 × 1) = 40.
F(θ3) = (100110)2 + (010110)2 = (1 × 32 + 0 × 16 + 0 × 8 + 1 × 4 + 1 × 2 + 0 × 1) + (0 × 32 + 1 × 16 + 0 ×
8 + 1 × 4 + 1 × 2 + 0 × 1) = 60.
F(θ4) = (010011)2 + (010101)2 = (0 × 32 + 1 × 16 + 0 × 8 + 0 × 4 + 1 × 2 + 1 × 1) + (0 × 32 + 1 × 16 + 0 ×
8 + 1 × 4 + 0 × 2 + 1 × 1) = 39.

Figure 9. The coding process of GSLGS operator at 0◦ and 45◦.

Step 4 Inspired by the optimal response of Gabor filters in multiple orientations, we choose the
maximum value among these coded values as the final coded value, which can be defined as

F(x, y) = arg max
θk∈(0

◦ ,180◦ )
{F{θk}} (9)

As mentioned above, the final coded value of each target pixel in the Gabor enhanced image can be
obtained according to the GSLGS operator. For instance, the coded value in Figure 7 is: F(x,y) = argmax
{F(θ1), F(θ2), F(θ3), F(θ4)} = F(θ1) = 74.

Considering the great capability of a Gabor filter in enhancing texture feature from any
orientation, the GSLGS operator is extended into arbitrary orientations, which has superior orientation
selectivity. Therefore, it can effectively solve image mismatch problem due to finger pose variation.
More importantly, the proposed local coding algorithm can entirely consider the relationships between
each target pixel and its surrounding neighborhoods. In addition, the distribution of weights is
conformable in the symmetric pixels on both sides. Hence, the finger feature representation of local
neighborhoods can maintain balance in the GSLGS operator.

5. Feature Fusion and Matching

In this section, a gray histogram-based feature matching method is used for finger trimodal fusion
recognition, as shown in Figure 10. First, the coded finger trimodal images are uniformly separated
into M non-overlapping division blocks. Then, the M local histograms corresponding to each sub-block
are established, respectively. Assuming that Hfv

i(I = 1, 2, . . . , M) represents the histogram of the ith
division block in a coded finger-vein image, the global histogram Hfv is defined as

H f v =
(
H1, H2, · · · , HM

)
(10)
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Figure 10. The fusion of finger trimodal features. 

After the above calculation, we can obtain the feature histogram of each finger sample. Here, we 
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Figure 10. The fusion of finger trimodal features.

Similarly, Hfp and Hfkp represent the global histogram of a coded fingerprint image and
finger-knuckle-print image. Then, the final feature histogram H of a finger trimodal image can
be expressed by

H =
(
H f p, H f v, H f kp

)
(11)

After the above calculation, we can obtain the feature histogram of each finger sample. Here,
we can use various classification algorithms, such as SVM, ELM and k-NN [34]. In this section,
for convenience, the intersection coefficient between two feature vectors is calculated to determine the
similarity of two individuals [29]. Assuming H1(i) and H2(i) denote the histograms of two samples to
be matched, the similarity can be computed by

sim(H1(i), H2(i)) =

L∑
i=1

min[H1(i), H2(i)]

L∑
i=1

H1(i)
(12)

where L denotes the dimension of a feature vector to be matched. In the matching process, if the
intersection coefficient sim(·) is >T (similarity decision threshold), it means that the two samples are
similar and are able to be matched. But if the intersection coefficient sim(·) is ≤T, it means that the
two samples are not matched. Thus, two samples will tend to be more similar as the intersection
coefficient increases. The similarity decision threshold T corresponds to the threshold value when the
false rejection rate (FRR) is the same as the false accept rate (FAR).

6. Experimental Results

In order to verify the proposed coding-based method, a finger trimodal database from a homemade
image acquisition system is used in our experiments. The database contains a total of 17,550 images
from 585 individual fingers (index finger, middle finger, and ring finger) of both hands, and each finger
contains 30 images (10 images per modality). Here, we randomly select 3000 images samples from
100 different individuals, each of which, respectively, contains 10 images on the FP, FV, and FKP traits,
as the experimental database.

Here, the proposed Gabor-GSLGS algorithm is implemented using MATLAB R2014a on a standard
desktop PC which is equipped with Inter Core i5-7400 CPU 3 GHz and 8 GB RAM.
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The detailed experiments are as follows: In Section 6.1, we mainly describe the analysis of the
influence of different parameter selection on the recognition rate. Section 6.2 presents the detailed
comparison of the performance of unimodal and multimodal recognition. The experimental results of
different feature extraction methods are compared in Section 6.3.

6.1. Parameter Selection

6.1.1. Selection of k

On the basis of the above introduction in Sections 3 and 4, we can see that the number of orientations
in the local coding algorithm corresponds to the number of channels in the Gabor filter. Hence, different
k values produce different effects on the performance of the finger multimodal recognition. In order to
find the optimal parameters of k, we evaluate it using two recognition indicators, equal error rate (EER)
and the time cost of feature extraction. EER listed in Table 1 is the error rate where FRR and FAR are
equal. Here, FAR indicates the identification result of incorrect acceptation for an individual, while
FRR demonstrates the result of incorrect rejection. The ROC (receiver operating characteristic) curves
for intersection coefficient measures are plotted in Figure 11, where FAR and FRR are shown in the
same plot at different thresholds.

Table 1. Comparisons on equal error rate (EER) (%) and time cost (single individual).

k 4 6 8

EER (%) 0.042 0.029 0.038
Time cost (s) 0.012 0.017 0.031

Figure 11. Receiver operating characteristic (ROC) of different k.

From Figure 11, we can see that the EER is lowest when k is 6. However, as the value of k increases,
the time cost of finger feature extraction also increases. Considering recognition efficiency and accuracy,
the parameter k corresponding to 6 is selected in following experiments.

6.1.2. Selection of Neighborhood and Image Division

Apart from parameters k, the size of the neighborhood n × n that constitutes the structure of the
GSLGS operator and the number of image division blocks M are also critical factors for finger trimodal
recognition. Considering that n and M have a great influence on the recognition performance of the
proposed algorithm, therefore, it is important to select suitable parameters. Here, we select different
neighborhoods and image block sizes to perform the experiments. Some EERs of different parameters
are listed in Table 2, with some ROCs shown in Figures 12 and 13.
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Table 2. Comparisons on EER(%) for different parameters.

Blocks
Neighborhood

6 × 6 7 × 7 8 × 8 9 × 9

3 × 3 0.22 0.16 0.086 0.37
5 × 5 0.08 0.029 0.022 0.024
7 × 7 0.14 0.075 0.056 0.082

Figure 12. ROC of different neighborhoods in M = 6, 7, 8, 9.

Figure 13. ROC of different division blocks M in a 5 × 5 neighborhood.
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From Figure 12, it can be clearly seen that the ROC curves vary by changing n (n = 3, 5 or 7,
respectively). This shows that different neighborhoods have different effects on the performance of
finger trimodal recognition. By observing these obtained curves in the condition of the same image
division block, such as M = 6, we find that the EER is lowest when the size of the neighborhood is
selected as 5 × 5 (n = 5). Similarly, when M = 7, 8 or 9, respectively, the pixels selected in a 5 × 5
neighborhood for constructing the GSLGS operator also have optimal accuracy. The reason is that a
3 × 3 neighborhood is more sensitive to noise, while the 7 × 7 neighborhood is relatively weak in the
capability of feature expression. However, the 5 × 5 neighborhood is preferred for feature expression
among surrounding pixels and is insensitive to noise. Hence, n = 5 is the optimal parameter for
constructing the proposed GSLGS operator.

The experimental results of different division blocks by using GSLGS with a 5 × 5 neighborhood
are shown in Figure 13. From Figure 13, we can find that the proposed local coding algorithm
obtains the best accuracy when the number of division blocks is 8 × 8 (M = 8). This shows that an
appropriate image division scheme is beneficial for improving recognition accuracy rate. Hence, the
image division blocks M = 8 is an optimal choice for the proposed Gabor-GSLGS approach in finger
trimodal recognition.

6.2. Comparison of Unimodal and Multimodal

The proposed local coding algorithm of finger trimodal can also be applied for finger single modal
recognition. Here, the experiments of finger unimodal and multimodal recognition are performed
when n = 5 and M = 8. The experimental results of different modal combinations are listed in Table 3.

Table 3. Comparisons on EER (%) and time cost (single individual).

Modal FP FV FKP FV + FKP FV + FP FKP + FP FP + FV + FKP

EER (%) 4.26 0.19 0.40 0.20 0.16 0.46 0.022
Time cost (s) 0.015 0.010 0.015 0.021 0.019 0.018 0.029

From Figure 14, we can see that the EER rate of different modal combinations are different. It is
noted that the bimodal combination (FV + FKP and FV + FP) can achieve a better accuracy than single
modal, especially for the FP trait and FKP trait.

Figure 14. Comparison results of different modal combinations. (a) ROC of unimodal recognition;
(b) ROC of multimodal recognition.
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From Table 3, we can find that three modal combination have the best recognition accuracy, while
the time cost increases with the increase of the modality number. It is noteworthy that in single modal
recognition, FV trait performs better than FP trait and FKP trait. This shows that the FV trait is the
most dominant trait in the three modalities.

In total, these results show that multimodal fusion recognition performs better than single modal.
The reason is that the multimodal combination can make full use of the discrimination of different
modalities and different modalities can complement each other in multimodal fusion recognition.
However, the computational efficiency of multimodal recognition can still be improved.

6.3. Comparison of Different Methods

In order to further evaluate the proposed local coding method, here we compare it with some
common feature extraction methods (LBP [16], GLBP [20], LLBP [17], SLGS [23], and MOW-LGS [24]).
The ROCs are plotted in Figure 15, and the simulation results are listed in Table 4.
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Table 4. Comparisons on EER (%) and time cost (single individual).

Methods LBP GLBP LLBP SLGS MOW-LGS Our Method

EER (%) 1.60 0.58 0.74 0.46 0.42 0.022
Time cost (s) 0.129 0.186 0.261 0.110 0.192 0.029

From Figure 15, we observe that the EER of the proposed approach is lowest among these feature
extraction methods. Hence, feature expression based on the proposed coding approach can effectively
address the problem of illumination and finger posture variation in finger trimodal fusion recognition.

From Table 4, we can clearly see that the proposed local coding algorithm not only produces the best
recognition accuracy, and also that the computation cost of feature extraction is also lowest as compared
with other methods. This shows that our method is more robust to finger feature representation.

7. Conclusions

In this paper, a posture correction approach was first designed for reducing the finger pose variation.
To solve the problem that the feature expression method was sensitive to illumination variation and
posture rotation, a novel local coding algorithm was proposed for finger trimodal fusion recognition.
On the one hand, the Gabor filter, to some extent, can effectively reduce the influence of illumination
and noise in an image. On the other hand, the posture correction method and the local coding method
were used to address the problem of finger posture variation. The proposed Gabor-GSLGS algorithm
made full use of the texture features in multiple orientations between surrounding pixels. Furthermore,
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the proposed method assigned the same weights in symmetrical pixels, which improved the equilibrium
of the feature representation of the finger images. The experimental results showed that our method
could improve the accuracy and computational efficiency of finger trimodal fusion recognition.

As part of our future work, we will apply the proposed local coding algorithm to other public
biometric databases. Moreover, we will focus on reducing the dimensions of the feature vector and
improving the efficiency of finger multimodal fusion recognition. At the same time, we will aim to
exploit a more robust and effective fusion method which can integrate multiple modal features for
personal identification.
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