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Abstract: This paper proposes a multi-objective decision-making model for underwater
countermeasures based on a multi-objective decision theory and solves it using the multi-objective
discrete particle swarm optimization (MODPSO) algorithm. Existing decision-making models are
based on fully allocated assignment without considering the weapon consumption and communication
delay, which does not conform to the actual naval combat process. The minimum opponent residual
threat probability and minimum own-weapon consumption are selected as two functions of the
multi-objective decision-making model in this paper. Considering the impact of the communication
delay, the multi-objective discrete particle swarm optimization (MODPSO) algorithm is proposed
to obtain the optimal solution of the distribution scheme with different weapon consumptions.
The algorithm adopts the natural number coding method, and the particle corresponds to the
confrontation strategy. The simulation result shows that underwater communication delay impacts
the decision-making selection. It verifies the effectiveness of the proposed model and the proposed
multi-objective discrete particle swarm optimization algorithm.

Keywords: autonomous underwater vehicle; cooperative confrontation; target allocation;
multi-objective discrete particle swarm optimization (MODPSO)

1. Introduction

Autonomous underwater vehicles (AUVs) have been used increasingly in the civilian and military
field with their mobility and concealed advantages. In the civil sphere, AUVs are used for data
collection, laying pipelines, environmental exploring, and so on. In the military area, they are applied
for investigation, detection, target attacking and so on. As a significant combat force, AUVs has been
widely used in naval battles. The manifestation of naval war has changed from a single weapon
confrontation to a formation confrontation as in the military model. Moreover, the AUVs formation
confronts more than one threat targets. Therefore, it is especially important to scientifically and
reasonably research the target allocation decision-making of underwater cooperative confrontation.

Target allocation is an essential factor in an underwater confrontation. It is a fundamental problem
arising in defense-related applications of operations research. As a classic constrained optimization
problem developed in the field of military operations research, the purpose is to find the best solution
for distributing weapons to the targets of opponents and to maximize the overall expected effect.
Target allocation is an inherently nonlinear combinatorial optimization and standard nondeterministic
complete polynomial issue [1–5]. As a hot research area, it has received extensive attention from
researchers in various countries. Hungarian algorithm [6,7], genetic algorithm [8,9], ant colony
algorithm [10,11], particle swarm algorithm [12,13] and so on, have been applied to target allocation
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and have achieved many results. Adaptive chaos parallels the clonal selection algorithm [14] and
combined the benefits of chaos theory with parallel population classification, in order to realize the
population initialization and population update. It solved the weapon target allocation (WTA) of the
warship formation antiaircraft application. [15] explored the different game methods of acoustic sensor
node cooperation in underwater cooperation and he compared the interaction and performance between
nodes under different measurements. [16] used safety margins to develop optimal allocation problems
and introduce optimization practices, the proposed optimization method integrated evolutionary
games and particle swarm optimization to improve optimality and reduce computational load. The
variable neighborhood search (VNS) algorithm [17] and the large-scale neighborhood (VLSN) search
algorithm [18] obtained almost optimal results to solve moderately large size instances of the air combat
WTA optimally. However, as the number of targets increased, the computational complexity made the
solution process very long and it was only able to solve small-scale problems online. Although these
proposed algorithms for solving target allocation had achieved fruitful results, they all ignored the
discrete features of decision making. Therefore, it is necessary to propose an algorithm that is available
in cooperative confrontation decision-making. The particle swarm optimization (PSO) algorithm [19,20]
provides a new idea for solving this kind of issue. It was proposed by an American psychologist,
Kennedy, and an electrical engineer, Eberhart, in 1995. The PSO simulated the phenomenon of birds
looking for food in nature and had the characteristics of concise concept, timely implementation, and
fast convergence [21]. As the algorithm has the advantages of easy application and fast optimization, it
is naturally applied to solving the multi-objective optimization problems.

There are two basic types of target allocations which are static WTA (SWTA) and dynamic WTA
(DWTA). In SWTA, all weapons are used to strike targets at the same stage, and it is necessary to
find the optimal weapon allocation for temporary defensive tasks. DWTA is a multistage problem,
which needs to consider the entire defense process and find the optimal global allocation. Given the
underwater cooperative countermeasure of AUVs, [22] studied the dynamic cooperative attack and
defense strategy of multiple AUVs. The established WTA single-objective model only considered the
optimization of damage performance. In [23], the target allocation model of multi-AUVs based on the
dynamic game was established by considering the survival probability and underwater environmental
impact, however, the survival probability was still the primary indicator. In [24], the two factors
of maximizing operational efficiency and minimizing operating costs were considered as resource
constraints, and the multi-objective optimization problem was transformed into a single-objective
optimization problem by maximizing the cost-benefit ratio as an objective function. Most existing
models are based on the highest damage probability (or the opponent’s lowest survival probability)
where the only consideration is to increase the damage probability and thoroughly allocate the weapon
at the target. These models do not meet the reality of modern combat weapon distribution. In [25],
recognizing this problem and proposing improvements, a new constraint variable was added to the
original objective function to construct a complex objective function, but it was still a single target
optimization. In [26–28] the weapon target allocation model only considered the optimization of
damage effectiveness or the value of the protected asset, regardless of operational consumption, and
only modelled the WTA problem as a single-objective optimization problem. In actual combat, the
appropriate WTA model must not only meet specific tactical requirements but also consider issues
such as weapon consumption during an antagonistic process. Therefore, the target decision problem
in the actual confrontation process is a combinatorial optimization problem with multivariate and
multiple constraints. Considering two or more objective functions is more practical. For example,
common objective functions include minimizing weapon consumption, maximizing damage to threat
targets, minimizing combat time consumption, and so on. The dual-target WTA problem was studied
by [29] where the objective was to minimize the target cumulative survival probability and minimize
the accumulative cost of the weapon target allocation. On the basis of the information from studies
by [29,30] which considered the influence of the decision-time window on the number of weapon
systems reused, a three-objective WTA model was established.
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In practice, the WTA problem has many strong constraints that are strictly related to the actual
situation, such as weapon quantity, feasibility, and fire constraints. Reference [31] under the premise
of resource, feasibility and fire constraints, while maximizing the damage to the threaten targets and
minimizing the consumption of ammunition, [31] proposed the NSGA-II using an adaptive strategy
and a multi-objective optimization algorithm based on adaptive decomposition as a solution. For
a similar model [31,32] used MOEA/D with an adaptive weight adjustment to solve it. Although
there have been many related studies on the issue of weapon-target allocation, under the strong
underwater constraints, none of them are suitable for underwater cooperative confrontation. In a real
underwater confrontation, the complexity of underwater operations, the marine environment, the
accuracy of sensor detection, and the state of communication will all affect the outcome, thus affecting
the decision-making results. Although the single objective function can add conditional constraints,
the form is more complex and unintuitive, and it can only provide one decision-making option that is
less adaptable to changes in the battlefield situation. With further study of the complexity of naval
warfare, the influence of underwater constraints on strategic choices should be considered, and a
multi-objective decision-making optimization model should be constructed to solve the underwater
synergistic confrontation decision-making optimization.

This paper considers the influence of underwater communication delay and constructs a
multi-objective optimization decision-making model with minimum residual threat probability
and minimum weapon consumption as the objective function to solve the underwater cooperative
confrontation decision-making problem. The discrete particle swarm optimization (PSO) algorithm
is used to represent the particle position as a candidate strategy for weapon target allocation
through natural number coding. The allocation strategies are combined with the coding and update
of the algorithm. The communication delay has an impact on optimal underwater cooperative
allocation strategies.

The rest of this paper is structured as follows: Section 2 introduces the underwater sonar
signal processing method and mathematical description of underwater cooperative confrontation
decision-making. Section 3 describes the multi-objective discrete particle swarm optimization
(MODPSO) algorithm for solving underwater cooperative confrontation decision-making model.
Next, Section 4 carries out the simulation experiments, followed by an analysis of the performance.
Finally, Section 5 gives the conclusion.

2. Problem Formulation

Ensuring that the decision-making model is more adaptive to the battlefield environment, our
goal is to reduce weapon consumption as much as possible and to consider the decision preferences of
the commander. This section will focus on the sonar signal recovery, separation, and the mathematical
description of underwater cooperative confrontation decision-making.

2.1. Underwater Sonar Signal Processing Method

The goal of accurate detection is the foundation of attacking the target precisely. Due to the
particularity of the multi-AUV working environment, the complex sensor system composed of a variety
of sensors has become an indispensable part of the AUV. At present, the sensors used by AUVs mainly
include sensors for sonar, positioning, laser ranging, vision, infrared, inertia, and acoustic sensitivity.
A sonar sensor uses the ultrasonic reflection principle to detect the external environment, obstacles,
and other positional information. Therefore, the AUV relies on the sensor system to achieve dynamic
real-time obstacle avoidance and formation coordination, and to perceive local news in a dynamic
unknown marine environment.

The accuracy of underwater sonar detection directly affects the strategy adopted by the both sides.
Due to the disturbance of the sea surface and the seabed reverberation, ocean noise and self-noise will
reduce the performance of the sonar detection. In order to improve the correct rate of sonar detection,
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it is necessary to remove the additive noise in the sonar receiving array and separate the denoised
mixed sources one by one in the process of detecting and optimizing the sonar signals.

2.1.1. Acoustic Sensor Signal Recovery

Suppose the source with additive noise is:

r(k) = r1(k) + . . .+ rN(k) + n(k) (1)

The sonar array output signal of the underwater acoustic sensor is:

s(k) = r(k) × h(k) = (r1(k) + . . .+ rN(k) + n(k)) × h(k) (2)

Recovery signal obtained by the channel equalizer is:

y(k) = x(k) × e(k) = (r1(k) + . . .+ rN(k) + n(k)) × h(k) × e(k) (3)

The equalizer e used to supplement the channel, and the actual channel influence h satisfy the
Equation (4)

h(k) × e(k) =
∑

i

h(i)e(k− i) ≈ cδ(k− k0) (4)

where c is the constant coefficient for the source signal recover.

2.1.2. Signal Separation

According to the principle of acoustic sensor signal recovery, it assumes that there are M sensors
of the sonar receiving array, as shown in Equation (5).

CUM4(ri(k) = E
{∣∣∣ri(k)

∣∣∣4}− 2E2
{∣∣∣ri(k)

∣∣∣2}− ∣∣∣∣E{
r2

i (k)
}∣∣∣∣2 (5)

where ri(k)(i = 1, 2, . . . , N) is not a zero signal. It is based on N narrow-band, non-Gaussian, mutually
statistically independent and fourth-order cumulant.

y(k) = r(k) = r1(k) + . . .+ rN(k) + n(k) (6)

where n(k) = [n1(k), n2(k), . . . , nN(k)]
Tni(k)(i = 1, 2, . . .M) is the additive white Gaussian noise of the

ith array elements. The mean value is zero, the variance is δ2. The cost function based on the logarithm
kurtosis maximization criterion is:

y(ω) =
1
4

ln(

∣∣∣CUM4[y(k)]
∣∣∣

E2[
∣∣∣y(k)2

∣∣∣] ) (7)

The second signal source can be obtained by removing the first signal from the original mixed-signal,
and the calculation formula is:

y2(k) = y1(k) − ω̂2d1(k) (8)

where d1(k) is the first separated signal source, ω̂2 is the weight coefficient of the filter, which is an
N-dimensional column vector.

l1(ω̂1) =
1
p
‖y2(k)‖

p (9)

p is a positive integer between 4 and 8. Minimize l1(ω̂1), then the iterative formula of ω̂1 can be
written as Equation (9).

ω̂1(k + 1) = ω̂1(k) + η1(k)y1(k)(s2(k̂ + 1))p− 1 (10)
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The recovered signal can be separated according to Equation (10).

2.2. Mathematical Description of Underwater Cooperative Confrontation Decision-Making

In the process of underwater cooperative confrontation, AUVs need to attack or defend against one
threat target or multiple threat targets. Therefore, target allocation is vital to solving the confrontation
decision-making problem. Target allocation involves allocating various targets to system members in
an operational process according to specific requirements. A reasonable target allocation strategy can
improve the overall survival probability and operational effectiveness of AUVs. Figure 1 shows the
target allocation in the collaborative confrontation process.
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Figure 1. Allocation in the process of underwater cooperative confrontation.

According to the form of confrontation between the two parties, target allocation can be divided into
direct confrontation target allocation and indirect confrontation target allocation. Direct confrontation
means that both the system members and the assigned targets can attack. The purpose of both sides is
to destroy the other side directly. Therefore, in the process of target allocation, it is necessary to ensure
the rational allocation of resources and to ensure that the threat of targets to system members is as
small as possible. Indirect confrontation refers to an assigned target that has no attack power, and
it can only evade attacks in a certain way. Therefore, the target allocation process needs to consider
how to allocate resources reasonably so that the success rate of confrontation is the highest. This paper
mainly addresses research on the indirect confrontational target allocation.

In the process of cooperative confrontation, the cost of attacking or defending the target is generally
different, due to the difference in target “priority” and relative motion information. Therefore, the
key to solving underwater target allocation is to describe the problem adequately and determine the
corresponding allocation rules. In the collaborative attack problem, in order to not miss the real target,
it is necessary to ensure that at least one AUV attacks each target. The decision variable di j is defined
to indicate the distribution relationship between the AUV i and the target j. di j = 1 represents that
AUV i is assigned to attack target j, otherwise di j = 0. Target allocation strategies can be represented
by the decision matrix (suppose there are Nt targets and Nm AUVs).

D =


d11 d12 . . . d1Nt

d21 d22 . . . d2Nt
...

...
. . .

...
dNm1 dNm2 . . . dNmNt


The constraints for underwater target allocation are described as following:

Nm∑
i=1

di j ≥ 1 i ∈ {1, 2, . . . , Nm} (11)

Nt∑
j=1

di j ≥ 1 j ∈ {1, 2, . . . , Nt} (12)
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There four allocation scenarios that may be in the target allocation scheme are: a single AUV
attacks a single target; a single AUV attacks multiple targets; multiple AUVs collaboratively attack
a single target; and multiple AUVs collaboratively attack multiple targets. This paper studies the
fourth scenario.

In multiple AUVs cooperative naval warfare, the purpose of optimizing target allocation is to
make each AUV save itself as much as possible, avoid repeated attacks, and achieve maximum damage
to the whole targets. Since antagonism is complex, many factors must be considered in the process,
such as damage probability, total path cost, total time, total energy consumption, and so on. Minimizing
the total path cost requires completing the global task with minimal path cost. Reducing the whole
time to complete a global task is to expect to complete all tasks in the shortest amount of time. When
AUVs confront, minimization of the total energy consumption of the weapon is the least requirement.
Therefore, target allocation is a multi-constrained multivariate combinatorial optimization problem.
Constructing a multi-objective optimization function and using a multi-objective optimization method
can provide multiple allocation strategies for commanders. Moreover, it can adapt to the battlefield
situation better.

In the past, the weighted method was usually used to solve the multiple targets allocation, which
transformed multi-objective optimization into a single objective optimization problem. Although the
strategic solution obtained by this method often can achieve a high damage probability, it also may
cause mutual loss. In war confrontation, the aim is assumed to minimum own side loss and maximize
the opponent damage probability. Therefore, factors that should be considered include maximum
profit, minimum loss, and so on. As multiple objective functions should be considered at the same
time, it is appropriate to solve the problem using the multi-objective optimization theory.

Effective communication is the basis and guarantee for achieving multi-AUV collaborative
confrontation. Due to the complex underwater environment and the AUV movement, communication
between AUVs is limited in most cases. It is necessary to discuss the influence of communication
constraints on the synergy of AUV. In the underwater confrontation, the threat target state parameter
obtained by the attacker AUV is provided by the sonar sensors. Due to the underwater communication
delay, the attacker gets the threat target position x(t0 + ∆t), and the actual target position is x(t0),
∆t is the delay time of underwater communication. The communication delay influence factor

D =

√
(xs−x0)

2+(ys−y0)
2+(zs−z0)

2√
x2

0+y2
0+z2

0

is introduced to evaluate the influence of underwater communication

delay on the underwater AUV confrontation effect. Where (xs, ys, zs) represents the target position of
the sonar sensor for attacking the AUV and (x0, y0, z0) represents the actual position of the target. The
mathematical description of multi-objective decision-making model is shown as follows:

Suppose that in a naval battle, multiple AUVs of R side cooperate to attack multiple targets of B
side, the AUV formation is composed of Nm AUVs. The total number of weapons is m and the number
of threat target is Nt. In one confrontation, the minimum opponent residual threat probability and the
minimum number of weapons consumed by AUVs are selected as objective functions to construct the
multi-objective decision model:

minF(π) = (P(π), W(π), D(π))

P(π) = min 1
Nt

Nt∑
j=1

[
m∏

l=1
(1− (1−D(π))Pi j)

δ(i− j)]

W(π) = min
Nm∑
i=1

m∑
l=1

δ(i− j)

D(π) =

√
(xs−x0)

2+(ys−y0)
2+(zs−z0)

2√
x2

0+y2
0+z2

0

s.t.
m∏

l=1
(1− Pi j)

δ(i− j)
≤ KP

(13)
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P(π) is the minimum opponent residual threat probability, Pi j is the damage probability of ith AUV
attacking jth target. W(π) is the minimum number of weapon consumed. KP is the opponent residual
threat threshold. The term δ(i− j) is the Kronecker delta defined by

δ(i− j) =
{

0 i f i , j
1 i f i = j

(14)

It is used to indicate that unit i of the R side has been assigned to target unit j of the B side.
Generally, performance indicators P(π) and W(π) are contradictory. Minimizing survival probability
means that it will consume more weapons, while minimizing consumed weapons may indicate that the
survival antagonistic probability increases. Therefore, it does not exit the unique solution to optimize
the two performance indices at the same time. The optimal solution is a Pareto solution set that may
contain more than one element.

3. MODPSO for Solving Underwater Cooperative Target Allocation

The research on decision-making for underwater cooperative confrontation in naval warfare aims
to find the most suitable target allocation strategies according to the changing battlefield situation and
the decision preferences of the commander. It is a non-continuous discrete problem. The research on
target allocation with PSO mainly focuses on the continuous domain, which is to say, the variables
that describe the particle state and the characteristics of motion are continuous. There is little research
on discrete decision-making. In this paper, the multi-objective discrete particle swarm optimization
algorithm is used to solve the underwater multi-objective decision-making model.

The velocity and position update formula of the fundamental particle swarm optimization
algorithm is difficult to express the discrete domain problem such as coordinated multi-objective
allocation. Therefore, this paper draws on the idea of a genetic algorithm and designs the particle
position and velocity update formula that accords with the discrete domain characteristics of the
problem. At the same time, this paper also combines the discrete particle swarm optimization algorithm
with the multi-objective optimization algorithm to solve the underwater cooperative confrontation
decision-making problem. The particle coding, update of the speed, position, individual particle leader,
and global particle leader selection are detailed in the following.

3.1. Particle Coding

The decision variables must be coded to clearly express the physical meaning of particles. Particle
coding includes the position and velocity of the particle. Each particle represents a possible solution.
How to make particles correspond to feasible solutions is the key to solving problems. During
underwater antagonism, each weapon is assigned once, and each target is attacked by at least one
weapon. The AUV that performs the task corresponds with the threat target. The nature number
coding form is used in this paper.

Nature number coding is applied to illustrate the AUV number assigned to the threat targets.
The particle position represents a candidate scheme for target allocation, in other words, which threat
target is allocated to which AUV. The length of each particle is equal to the total number of targets.

Assume that the total number of particles is R, the rth particle position vector is Xr =

[ Xr1 Xr2 . . . Xri . . . XrNt ], Xri(i = 1, 2, . . . , Nt) is an integer between 0 and Nt.
For example, there are four AUVs and five threat targets. Figure 2 shows possible particle coding

is Xr = [ 1 2 3 4 2 ]. It represents the first AUV attacks the second target, and the second AUV
attacks the first target, etc.
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3.2. Particle Update Formula

Each particle in the PSO may adjust its position according to its own and neighboring-particles
experience. Then it moves toward its best position or the best position of its neighbor. According to
the characteristics of underwater cooperative confrontation, combining with the genetic algorithm, the
position and the velocity update formulas of the particle are redefined. The velocity of the particle is
defined as the changing rate of the position of the particle.

Vk+1
i (t) = c2 → F3(c1 → F2((ω→ F1(Xk

i (t))), pi(t)), pg(t)) (15)

Xk+1
i (t) = Xk

i (t) + Vk+1
i (16)

ω→ F1(Xk
i (t)) is inertia part,ω indicates that the velocity of the particle is a replacement operation

with probability ω. Define Φ(t) as intermediate variables, and rand1( ) is a random number in [0,1].
If rand1( ) < ω, then Φ(t) = F1(Xk

i (t)), else Φ(t) = Xk
i (t). That is

Φ(t) =
{

F1(Xk
i (t)) rand1( ) < ω

Xk
i (t) rand1( ) ≥ ω

(17)

c1 → F2((ω→ F1(Xk
i (t))), pk

i (t) is self-awareness part. The particle adjusts its position according
to the individual extreme value pi(t). c1 → F2((ω→ F1(Xk

i (t))), pi(t) indicates that the velocity of the
particle is a cross operation with probability c1. Define Ψ(t) as intermediate variables, and rand2( ) is
a random number in [0,1]. If rand2( ) < c1, then Ψ(t) = F2(Φ(t), pi(t)), else Ψ(t) = Φ(t). That is

Ψ(t) =
{

F2(Φ(t), pi(t)) rand2( ) < c1

Φ(t) rand2( ) ≥ c1
(18)

c2 → F3(c1 → F2((ω→ F1(Xk
i (t))), pi(t)), pg(t)) is social awareness part. The

particle adjusts its position according to the global optimal extremum pi(t).
c2 → F3(c1 → F2((ω→ F1(Xk

i (t))), pi(t)), pg(t)) indicates that the velocity of the particle is a
cross operation with probability c2. Define rand3( ) is a random number in [0,1]. If rand3( ) < c2,
then Vk+1

i (t) = F3(Ψ(t), pg(t)), else Vk+1
i (t) = Ψ(t). That is

Vk+1
i (t) =

{
F3(Ψ(t), pg(t)) rand3( ) < c2

Ψ(t) rand3( ) ≥ c2
(19)

In the iterative process, pi(t) and pg(t) are continuously updated, and the final output pg(t) is the
global optimal solution.

3.3. Individual Particle Leader Renewal

The individual particle leader is the best particle position from the initial to the present iteration
times. It can be regarded as the memory of the particle. The individual particle leader is renewed
based on the constrained dominance relationship. Suppose pi is the individual particle leader of Xk

i ,
the k + 1 generation of new particles is Xk+1

i . The individual particle leader pk+1
i is replaced by Xk+1

i
when pi is constrained dominance by Xk+1

i ; pk+1
i is replaced by Xk+1

i or pi randomly, when neither of
them is dominant from each other, else pk+1

i is replaced by pi.

3.4. Reserve Solution Set Renewal

Since the feasible reserve set applies an optimum solution, the feasible reserve set is updated
by using the Pareto dominance relationship in the final process of the algorithm calculation. Firstly,
combine the existing elements in the feasible reserve set and the new feasible solutions in particle
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swarm into a new population. Secondly, the non-dominant elements in the population are selected,
and these elements are preserved in the feasible reserve set by using the Pareto dominance relationship.
If the number of items in the feasible reserve set exceeds its inherent capacity Na, the method in [33] is
used to calculate the crowding distance of each element. Keep the most sparsely distributed elements,
that is, the elements with excessive congest distance values will be kept.

The infeasible reserve set is updated based on the updated feasible reserve set. Combine the
existing elements in the infeasible reserve set and the new infeasible solutions in the particle swarm into
a new population, and reselect the elements from the population to carry them out into the infeasible
reserve set. The non-feasible solution which dominates the elements of the feasible reserve set, as well
as the non-feasible solutions which are not dominated by the feasible reserve set elements and are
located in the sparse area, are preserved in the non-feasible reserve set.

3.5. Global Particle Leader Selection

In the process of optimization, if the element in the infeasible reserve set is chosen as a global
particle leader, the global development ability of the algorithm will be enhanced. If the element of
the feasible reserve set is selected as the global particle leader, it can guide the particle to develop the
feasible region deeply, and improve the quality of the existing feasible noninferior solution.

This paper adopts a dynamic allocation strategy based on the selection probability, for balancing
the above two selection approaches effectively. In the iteration of the algorithm, the global leader
of the particle is selected from the infeasible reserve set and the feasible reserve set with probability
pst(0 ≤ pst ≤ 1) and 1− pst respectively.

pst = pst1 − pst2
k

kmax
(20)

where kmax is the algorithm termination iterations, pst1 and pst2 are constant numbers satisfying
0 ≤ pst1 ≤ pst2 ≤ 1. In the beginning, the global particle leader is selected from the infeasible reserve set
with a high probability, which will help to maintain the diversity of particles and enable the particle
to search for more feasible regions, including isolated feasible regions. As the number of iterations
increase, the algorithm gradually focuses on the feasible reserve set. It means that the algorithm will
have more chances to search for the feasible region in the late iteration, to deeply explore the existing
feasible non-inferior solutions. Experiments show that the algorithm has good performance when pst1
and pst2 are 0.7 and 0.6, respectively. When the non-feasible reserve set is empty, their global leader
will be selected from the feasible reserve set for all particles. Similarly, when the feasible reserve set is
empty, the global leader will be chosen from the infeasible reserve set for all particles.

The proposed multi-objective discrete particle swarm optimization algorithm is shown in Figure 3.
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Figure 3. Chart of the multi-objective discrete particle swarm optimization (MODPSO) algorithm.

This paper combines the discrete particle swarm optimization (DPSO) algorithm with the
multi-objective optimization algorithm to solve the confrontation decision-making problem under
the influence of underwater communication delay. They are well adapted to the characteristics of
decision-making discretization and take into account the decision preferences of the commander.
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4. Simulation Experiments

To illustrate the correctness of the underwater cooperative confrontation model established and
the effectiveness of the MODPSO algorithm, a typical scenario simulation is implemented.

4.1. Simulation Setup

It postulates that we have five AUVs armed with 15 weapons, and find ten targets by sensors. The
target residual threat threshold is 0.1. Table 1 shows the weapon number of AUV formation. Table 2
shows the damage probability of each weapon.

Table 1. Number of autonomous underwater vehicle (AUV) formation armed with weapons.

AUV Formation Weapons Number

A1 W1~W3
A2 W4~W6
A3 W7~W9
A4 W10~W12
A5 W13~W15

Table 2. Probability of each weapon.

Weapon

Target
1 2 3 4 5 6 7 8 9 10

1 0.53 0.82 0.91 0.85 0.75 0.62 0.84 0.82 0.78 0.64
2 0.76 0.81 0.91 0.75 0.91 0.78 0.80 0.64 0.60 0.83
3 0.83 0.74 0.86 0.53 0.84 0.93 0.60 0.81 0.74 0.80
4 0.83 0.81 0.92 0.84 0.86 0.83 0.60 0.78 0.65 0.67
5 0.71 0.71 0.72 0.90 0.78 0.66 0.86 0.69 0.84 0.82
6 0.82 0.60 0.56 0.92 0.57 0.73 0.62 0.87 0.75 0.64
7 0.85 0.83 0.60 0.78 0.87 0.84 0.79 0.65 0.60 0.78
8 0.81 0.72 0.62 0.91 0.88 0.67 0.78 0.90 0.84 0.58
9 0.65 0.63 0.84 0.87 0.57 0.72 0.64 0.87 0.82 0.57

10 0.83 0.84 0.88 0.80 0.73 0.72 0.87 0.78 0.91 0.67
11 0.85 0.88 0.78 0.86 0.58 0.79 0.81 0.80 0.82 0.64
12 0.84 0.87 0.89 0.67 0.84 0.89 0.56 0.75 0.64 0.85
13 0.62 0.71 0.84 0.57 0.78 0.87 0.88 0.72 0.65 0.62
14 0.93 0.85 0.79 0.67 0.83 0.81 0.64 0.85 0.84 0.86
15 0.57 0.71 0.62 0.87 0.58 0.79 0.86 0.84 0.72 0.90

This article provides a comparison between the MODPSO algorithm and the NSGA-II algorithm to
demonstrate the effectiveness and efficiency of the proposed algorithm. In the NSGA-II, the population
size is 100, the evolutionary population is the same as the external population, and the number of
iterations is 100. The crossover probability is 0.82, and the probability of variation is 0.15. In the
MODPSO, the population size is 100, the number of iterations is 100, and each particle represents an
underwater cooperative confrontation strategy. The threshold of the MODPSO external population
is 25. In the simulation, the confrontation strategy exceeding the damage probability threshold is
deleted. Choose from unallocated weapons to hit targets that do not reach the probability of damage.
We discuss the impact of communication delay factors on underwater cooperative countermeasure
strategies in different ranges.

4.2. Simulation Results

Figure 4 shows the simulation results. The abscissa is the objective function W(π), and the
ordinate is the objective function P(π). The NSGA-II and MODPSO converge on the found Pareto
optimal solution set, respectively, and shown by the connection. The evolutionary population of the



Sensors 2019, 19, 2211 12 of 16

MODPSO is shown in the point set of the figure. We can see that the MODPSO algorithm has better
searching ability and particle diversity.
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Figure 4. Results of the two algorithms.

The MODPSO algorithm is used to solve the issue under different group sizes and iterations,
which runs 50 times, respectively. Table 3 shows the average running time of the algorithm.

Table 3. Mean running time.

Number of Iterations
Population Size

50 100 200

50 0.55634 1.2211 2.7173
100 1.2538 2.6963 5.2719
200 2.5843 4.8592 9.5971

As can be seen from Table 3, the MODPSO algorithm can effectively meet the real-time requirements
of the underwater cooperative confrontation decision-making model. The distribution breadth index
SP is used to evaluate the distribution uniformity of the Pareto solution. The smaller the SP value, the
more uniform the Pareto solution distribution. Under the condition that the population size is 100 and
the number of iterations is 100, the algorithm runs 50 times, independently. The statistical results of SP
values are as follows:

As can be seen from Figure 5, the distribution of the Pareto optimal solution set obtained by the
MODPSO algorithm for solving the underwater cooperative confrontation decision is the most uniform
and stable.
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4.3. Analysis and Discussion

In the process of confrontation, there is no need to assign targets to all weapons. The more weapons
you consume, the lower the survival probability is. When the expected damage effect is achieved, it
is not necessary to waste all the weapons. Therefore, the firepower is preserved. It saves strength
for attacking subsequent targets. Depending on the expected opponent residual threat threshold
index, the established multi-objective decision-making model can save power sources. Figure 6 shows
the optimization strategies under different weapon consumption. The symbol “N” indicates that the
weapon is assigned to the corresponding target. All of them are feasible, and it can be selected by the
commander depending on the specific situation.
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ammunition consumption amount is 10 to achieve the operational expectation. When the 
communication delay impact factor is between 0.005 and 0.0245, the amount of ammunition 
consumption needs to be increased to 12.When the communication delay impact factor is between 
0.0245 and 0.0274, the amount of ammunition consumption needs to be increased to 14.When the 
communication delay impact factor is 0.0275, all 15 munitions carried need to be launched, and at 
this time, the target residual threat probability is just at the critical minimum threat threshold. If the 
communication delay impact factor is higher than 0.0275, the ammunition carried can no longer 
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Figure 6. Target allocation scheme under different weapon consumption.

Figure 7 shows the impact of the communication delay impact factor on the choice of underwater
countermeasures. It can be noted that when the communication delay influence factor is lower than
0.005, the strategy choice is approximately equal to the ideal state, and the ammunition consumption
amount is 10 to achieve the operational expectation. When the communication delay impact factor
is between 0.005 and 0.0245, the amount of ammunition consumption needs to be increased to 12.
When the communication delay impact factor is between 0.0245 and 0.0274, the amount of ammunition
consumption needs to be increased to 14. When the communication delay impact factor is 0.0275, all
15 munitions carried need to be launched, and at this time, the target residual threat probability is
just at the critical minimum threat threshold. If the communication delay impact factor is higher than
0.0275, the ammunition carried can no longer complete the expected damage effect on the targets.



Sensors 2019, 19, 2211 14 of 16Sensors 2019, 19, x FOR PEER REVIEW 14 of 16 

 

0.000 0.005 0.010 0.015 0.020 0.025 0.030
9

10

11

12

13

14

15

am
m

un
iti

on
 c

on
su

m
pt

io
n

communication delay impact factor  
Figure 7. Weapon consumption under different communication delay influence factors. 

The underwater cooperative countermeasure strategy can be selected by the multi-objective 
discrete particle swarm optimization algorithm. Due to the complexity of underwater cooperative 
confrontation, it is necessary to consider the influence of communication delay on the choice of 
underwater countermeasures. The commander can choose the optimal confrontation strategies 
based on the battlefield situation, which is more in keeping with the actual naval warfare situation. 

5. Conclusions 

This paper studies the decision-making problem of underwater cooperative confrontation 
deeply. Moreover, it establishes an underwater multi-objective collaborative confrontation decision 
model with minimum opponent residual threat probability and minimum weapon consumption as 
the objective functions, which is constrained by communication delay. According to the 
discontinuity of the confrontation strategy, the particle coding form is improved, and the discrete 
particle swarm optimization algorithm is used to find the optimal solution. This paper analyzes the 
choice of strategies that are influenced by communication delay factors in different value ranges. 
Under the premise of satisfying the residual threat threshold of the opponent, due to the 
communication delay, the weapon consumption will be increased even when the other conditions 
are the same. The simulation results show that underwater communication delay has an inevitable 
impact on the choice of underwater countermeasures strategies. The established multi-objective 
decision model helps us make priority decisions based on actual combat, reduce weapons 
consumption, and save resources while meeting the expectations of target damage. This research 
has certain practical significance and provides a more reasonable research idea for effectively 
solving the problem of underwater coordinated confrontation decision-making. 

Author Contributions: The work proposed in this paper was a collaboration of all authors. N.W., M.L. 
designed and established the theoretical model. N.W. analyzed the data, performed the experiments and wrote 
the paper; M.L. provided some ideas to improve and perfect the paper, W.C. reviewed the manuscript. All 
authors read and approved the manuscript. 

Funding: This work was supported by the National Natural Science Foundation of China under Grant 
51679201, 51879219 and the Key Project of Shaanxi Provincial Education Department under Grant 18JS094. 

Acknowledgments: The authors would like to thank the reviewers for their constructive and useful 
suggestions, which have considerably improved the quality of the manuscript. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Babel, L. Coordinated target allocation and UAV path planning with timing constraints. J. Intell. Rob. Syst. 
2018, 94, 1–13, doi:10.1007/s10846-018-0910-9. 

2. Beard, R.W.; Mclain, T.W.; Goodrich, M. Coordinated target allocation and intercept for unmanned air 
vehicles. In Proceedings of the IEEE International Conference on Robotics and Automation (Cat. 
No.02CH37292), Washington, DC, USA, 11–15 May 2002. 

Figure 7. Weapon consumption under different communication delay influence factors.

The underwater cooperative countermeasure strategy can be selected by the multi-objective
discrete particle swarm optimization algorithm. Due to the complexity of underwater cooperative
confrontation, it is necessary to consider the influence of communication delay on the choice of
underwater countermeasures. The commander can choose the optimal confrontation strategies based
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5. Conclusions

This paper studies the decision-making problem of underwater cooperative confrontation deeply.
Moreover, it establishes an underwater multi-objective collaborative confrontation decision model
with minimum opponent residual threat probability and minimum weapon consumption as the
objective functions, which is constrained by communication delay. According to the discontinuity
of the confrontation strategy, the particle coding form is improved, and the discrete particle swarm
optimization algorithm is used to find the optimal solution. This paper analyzes the choice of
strategies that are influenced by communication delay factors in different value ranges. Under
the premise of satisfying the residual threat threshold of the opponent, due to the communication
delay, the weapon consumption will be increased even when the other conditions are the same. The
simulation results show that underwater communication delay has an inevitable impact on the choice
of underwater countermeasures strategies. The established multi-objective decision model helps us
make priority decisions based on actual combat, reduce weapons consumption, and save resources
while meeting the expectations of target damage. This research has certain practical significance and
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