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Abstract: For the integration of global navigation satellite system (GNSS) and inertial navigation system
(INS), real-time and accurate fault detection is essential to enhance the reliability and precision of the
system. Among the existing methods, the residual chi-square detection is still widely used due to its
good real-time performance and sensibility of fault detection. However, further investigation on the
performance of fault detection for different observational conditions and fault models is still required.
In this paper, the principle of chi-square detection based on the predicted residual and least-squares
residual is analyzed and the equivalence between them is deduced. Then, choosing the chi-square
detection based on the predicted residual as the research object, the influence of satellite configuration
and fault duration time on the performance of fault detection is analyzed in theory. The influence of
satellite configuration is analyzed from the number and geometry of visible satellites. Several numerical
simulations are conducted to verify the theoretical analysis. The results show that, for a single-epoch
fault, the location of faulty measurement and the geometry have little effect on the performance of fault
detection, while the number of visible satellites has greater influence on the fault detection performance
than the geometry. For a continuous fault, the fault detection performance will decrease with the increase
of fault duration time when the value of the fault is near the minimal detectable bias (MDB), and faults
occurring on different satellite’s measurement will result in different detection results.

Keywords: GNSS/INS integration; fault detection; chi-square test; satellite configuration; fault
duration time

1. Introduction

Due to the good complementary characteristics, the integration of the inertial navigation system
(INS) and the global navigation satellite system (GNSS) can achieve superior performance to either of
them operating alone [1,2], and is widely applied on unmanned aerial vehicles (UAVs). The GNSS/INS
integration can obtain the optimal estimates of the navigation parameters by using a Kalman filter
with correct state and observation models. As a self-contained system, INS is immune to jamming
and interference [3,4]. Hence, it is usually considered as the common reference system and assumed
absolutely reliable. However, the GNSS measurements are easy to be interfered and may contain
faults. In this case, the integration can’t offer reliable and accurate navigation information due to the
fault observations [5]. In general, the navigation sensors faults can be classified into two types in the
time domain: the single-epoch fault and continuous fault. Among these two types, the continuous
fault has a greater influence on the filtering precision due to the long duration time. If the fault is not
timely diagnosed, the whole navigation will be polluted and the navigation precision will degrade [6].
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Therefore, it is necessary to carry out the real-time fault detection and isolation to ensure the reliability
and precision of the integrated navigation system [7].

Until now, many mature fault detection methods have been proposed, which can be classified into
three categories, i.e., hardware redundancy methods, analytical redundancy methods, and nonanalytical
redundancy methods [6,8]. The hardware redundancy configuration usually exceeds the minimum
necessary and increase the cost of the navigation equipment [9,10]. The nonanalytical redundancy
methods essentially are data-driven methods based on machine learning [6]. These methods have
good performance in detection and identification for nonlinear systems and uncertainty of system
models. The representative methods mainly include artificial neural network (ANN) [9,11,12], support
vector machine (SVM) [13], and Gaussian process regression (GPR) [14]. The major challenge of this
kind of method is how to build an appropriate regressive model depending on the input/output data.
Another drawback that needs to be overcome is that these methods usually involve a large amount of
calculation and are hard to meet the requirement of real-time performance.

The chi-square detection method, which belongs to the analytical redundancy category and has
less calculation, is the classical method and still widely used [15–17]. Brumback and Srinath proposed
a chi-square test based on the difference between the two state estimates for fault detection in Kalman
filters [18]. Using recursive filtering and the residual chi-square test, an integrity and quality control
procedure called detection, identification, and adaptation (DIA) was investigated by Teunissen [19].
Compared to the state chi-square detection method, the residual chi-square detection method can detect
the abrupt fault in time with a small amount of computation, but it does not work well in gradual fault
detection [10]. In order to improve the performance of chi-square fault detection method for gradual
fault, many improved methods had been proposed. Based on the chi-square detection, the autonomous
integrity monitoring by extrapolation (AIME) method in which the measurements used are not limited
to a single epoch was proposed [20]. Solution separation is another fault detection method which
uses the difference between the main filter solution and the subfilter solution to determine the test
statistic. The representative methods are multiple solution separation (MSS) [21,22] and normalized
solution separation (NSS) [7,23]. The performance of MSS and AIME for gradual fault were tested
and the analysis revealed that both methods had advantages and disadvantages [24]. MSS guarantees
satisfactory detection performance theoretically, but it has heavy calculation burden due to the design
of multiple filters. AIME can achieve higher availability; however, there is no good way to confirm
the detection performance based on theory. A new rate detector algorithm based on AIME has been
developed [4] and the test results show that the rate detector algorithm has better detection performance
than AIME for gradual faults. The approach for detecting the gradual fault based on least squares
support vector machine (LS-SVM) and AIME was proposed in [25]. Based on the replaced innovation
obtained from the LS-SVM, the test statistics can follow fault amplitudes more accurately.

The above methods are mainly based on the predicted residual of Kalman filter. In geodetic
surveying, the commonly used method is based on the least-squares residual (estimated residual) [26].
In order to apply the related methods of GNSS receiver autonomous integrity monitoring (RAIM) into
GNSS/INS integration, Hewitson proposed an extended RAIM (eRAIM) through adopting least-squares
principles for the state estimation in a Kalman filter [27]. This method formed the test statistic basing
on the least-squares residual obtained by integrating the measurements with one-step prediction of the
state parameters, and it can detect faults in the dynamic model and isolate them from the measurement
model. The relation between the predicted residual vector-based chi-square test and the estimated
residual vector-based chi-square test is not given. In this contribution, we analyze the principle of
these two methods and give the equivalence proof.

Most previous studies didn’t consider the influence of satellite configuration on the performance
of fault detection, and this influence is mainly reflected in the geometry and the number of visible
satellites. When the number of satellites is given, the geometry of visible satellites will have an influence
on the filtering precision of the integration. Zaminpardaz et al. [28] analyzed how geometry changes in
the measurement setup affect the testing procedure of the DIA method. However, they didn’t analyze
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the influence of the number of visible satellites on the performance of fault detection. That analysis
was mainly focused on GNSS and the related analysis for GNSS/INS integration was not discussed.
Wang et al. [29] conducted fault separability analysis for multiple faults in GNSS/INS integration.
This analysis investigated the impact of the number of visible satellites, satellite geometry, and the
number of system state models on the correlation coefficients between fault detection test statistics.
This work mainly analyzed the influence on the fault separability, but the analysis of the influence on
fault detection is not researched. Hence, there is a need to analyze how changes in the geometry and
number of visible satellites affects the performance of fault detection in GNSS/INS integration.

The residual chi-square method is a global test method which evaluates the quality of measurement
in system level [30]. For tightly-coupled GNSS/INS integration, identifying and isolating the faulty
measurement correctly is another key issue of fault detection. Usually, a local test is conducted to
identify the outlier after the global test is accomplished. The commonly used identification method is
the data snooping based on Baarda’s w-test [31]. If the global test is rejected, the measurement fault
can be identified by the local test [32]. After that, the filter measurement update will be done by using
the normal measurements. However, this scheme ignores the influence of the fault duration time on
the performance of fault detection. Differing from the detection method based on the least-squares
residual in geodetic surveying, the Kalman filter is a regressive process, and the previous detection
and filtering results will have a great influence on the later detection and state estimation precision.
For a single-epoch fault, due to the short duration time, isolating the faulty measurement will hardly
bring bad influence on the filtering precision and the fault detection performance. However, for a
continuous fault, isolating the faulty measurement may result in the degradation of the filter’s precision
and the sensitivity of fault detection, and for different measurement conditions and fault duration
time, the degradation may be variant. Nevertheless, most of the previous studies mainly aimed at
reducing the time delay of gradual fault detection, the influence of measurement conditions and fault
duration time on fault detection after fault identification and isolation was seldom taken into account,
especially for abrupt faults. Among the two types of fault, the amplitude of a gradual fault increases
with fault duration time, while an abrupt fault can be regarded as a constant fault error during a
period of time. Hence, the satellite configuration and fault duration time may have greater influence
on the abrupt fault detection than the gradual fault detection after fault identification and isolation.
Therefore, there is a need to analyze the influence of measurement conditions and fault duration time
on the performance of abrupt fault detection.

In this contribution, to have an overall understanding of the performance of the residual chi-square
detection method and deepen the application of it in GNSS/INS integration, we analyze the principle
of two residual chi-square detection methods and give the equivalence deduction of them in theory.
Then, the influence of the satellite configuration and fault duration time on the performance of fault
detection for abrupt fault is analyzed. In addition, several numerical simulation tests are conducted to
verify the conclusion of the theoretical analysis.

The rest of this paper is organized as follows. The GNSS/INS integration model is given in
Section 2. The principle of chi-square detection based on the predicted residual and least-squares
residual is analyzed and the equivalence between them is deducted in Section 3. Section 4 analyzes
how the satellite configuration and fault duration time affect the performance of fault detection.
Simulation results and analysis are shown in Section 5. Finally, the conclusions are drawn in Section 6.

2. GNSS/INS Integration Model

2.1. GNSS/INS Integration State Model

For tightly-coupled GNSS/INS integration, the system state model consists of the error state
equations of both INS and GNSS. The state vector is usually chosen as

X = [φE,φN,φU, δvE, δvN, δvU, δL, δλ, δh, εx, εy, εz,∇x,∇y,∇z, δtu, δtru]
T (1)
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where φE, φN, φU are the misalignment angles, δvE, δvN, δvU are the east, north, and upward velocity
errors, respectively. δL, δλ, δh denote the latitude, longitude, and height errors, εx, εy, εz and ∇x, ∇y, ∇z

represent the gyro biases and accelerometer biases. δtu, δtru are the range bias and range drift related
to the receiver clock.

2.2. GNSS/INS Integration Measurement Model

In the measurement model, the observation vector consists of the pseudorange differences between
INS and GNSS. The system measurement equation can be written as

Z = HX + V (2)

where Z denotes the measurement vector, H denotes the measurement matrix, and V denotes the
measurement noise vector. When the number of visible satellites is n, it can be obtained

Z =


δρ1

δρ2

· · ·

δρn

 =

ρ1

I
ρ2

I
· · ·

ρn
I

−

ρ1

G
ρ2

G
· · ·

ρn
G

, H =
[

0n×6 Hρ1 0n×6 Hρ2
]

(3)

where ρi
I, ρ

i
G(i = 1, 2, · · · , n) denote the pseudorange of INS and GNSS, respectively. Hρ1 and Hρ2 are

matrices that denote the relationship between measurements and state vector [25].

3. Fault Detection and Isolation Based on Chi-Square Test

3.1. Fault Detection Based on Chi-Square Test

3.1.1. Principle of Chi-Square Detection Based on Predicted Residual

The linear discrete time varying system model can be described as{
Xk = Φk,k−1Xk−1 + Γk−1Wk−1
Zk = HkXk + Vk

(4)

where Xk is the state vector, Φk,k−1 is the transition matrix, Γk−1 is the coefficient matrix, Zk represents
the measurement vector, Hk is the measurement model matrix. Wk is the process noise which is
commonly assumed as a zero-mean Gaussian white noise with covariance matrix Qk, and Vk is the
measurement noise which is commonly assumed as a zero-mean Gaussian white noise with covariance
matrix Rk. Wk and Vk are independent.

The one step prediction of the state in Kalman filter is

Xk,k−1 = Φk,k−1X̂k−1 (5)

The predicted residual vector is
vk = Zk −HkXk,k−1 (6)

The covariance of the predicted residual vector is

Pvk = HkPk,k−1HT
k + Rk (7)

where Pk,k−1 is the covariance matrix of state prediction Xk,k−1.
When no fault occurs, the residual vector is white noise and its mean is 0. If the measurement

vector contains a fault, the statistical characteristics of the residual will change, and its mean is no
longer equal to 0. Define two hypotheses, the null hypothesis H0 and the alternative hypothesis H1.
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H0 denotes no fault and can be expressed as

H0 : vk ∼ N(0, Pvk) (8)

H1 denotes the existence of a fault and can be given by

H1 : vk ∼ N(µ, Pvk) (9)

where µ is the mean of vk.
Then, the fault detection function is

Λk = vT
k P−1

vk vk (10)

where Λk obeys the χ2 distribution and its degree of freedom is the dimension of observations vector
Zk. Under the null hypothesis, Λk ∼ χ

2(0, n), while under the alternative hypothesis, Λk ∼ χ
2(σ, n),

where σ is the noncentrality parameter and can be obtained as:

σ = µTP−1
vkµ (11)

When the false alarm rate is defined as α, according to the Neyman–Pearson criterion, the threshold
Td can be worked out through solving the equation P

{
Λk > Td

}
= α [10]. The fault detection criteria is:Λk > Td fault occurs

Λk ≤ Td no fault occurs
(12)

3.1.2. Principle of Chi-square Detection Based on Least-Squares Residual

For the linear discrete system (4), the state estimation of Kalman filter and its covariance matrix
can be expressed as  X̂k = Xk,k−1 + Kk

(
Zk −HkXk,k−1

)
Pk = (I −KkHk)Pk,k−1

(13)

Then, the least-squares residual vector can be expressed as

vk = Zk −HkX̂k (14)

The corresponding covariance matrix is

Pvk = Rk −HkPkHT
k (15)

In the same way, the fault detection function can be expressed as

Λk = vT
k P−1

vk vk (16)

where Λk obeys the χ2 distribution and its degree of freedom is the dimension of measurement vector
Zk. The fault detection criteria is the same as Equation (12).

3.1.3. Equivalence Analysis of the Two Methods

According to the Kalman filter equations and matrix theory, the relation of least-squares residual
vector and the predicted residual vector can be expressed as

vk = (I −HkKk)vk (17)
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where Kk = Pk,k−1HT
k P−1

vk is the filter gain matrix. Hence, the above equation can be written as

vk = PvkR−1
k vk (18)

Combining Equations (10) and (18), we can get

Λk = vT
k P−1

vk vk

= (PvkR−1
k vk)

T
P−1

vk PvkR−1
k vk

= vT
k R−1

k PvkR−1
k vk

(19)

According to Equation (15), it can be obtained that

P−1
vk = (Rk −HkPkHT

k )
−1

= R−1
k + R−1

k Hk(P−1
k −HT

k R−1
k Hk)

−1
HT

k R−1
k

= R−1
k + R−1

k HkP−1
k,k−1HT

k R−1
k

= R−1
k

(
Rk + HkP−1

k,k−1HT
k

)
R−1

k
= R−1

k PvkR−1
k

(20)

Therefore, the fault detection function Λk can be written as

Λk = vT
k P−1

vk vk

= vT
k R−1

k PvkR−1
k vk

(21)

Combining Equations (19) and (21), we can get

Λk = Λk (22)

Equation (22) indicates that the fault detection function Λk based on the least-squares residual and
the fault detection function Λk based on the predicted residual are equivalent. The difference between
them is that the calculation of Λk is done before the Kalman filter measurement update, while Λk can
just be calculated after the measurement update is finished. Hence, the fault detection based on the
predicted residual is chosen as the research object, and the performance of it will be analyzed in the
later parts.

3.2. Fault Isolation Based on Local Test

The residual chi-square detection method is a global detection method, it can’t identify the faulty
measurement. To identify and isolate the faulty measurement, the local test method is introduced.

Assume the residual vector at time k is vk, then the fault detection function is given as [33]

λi
k =

cT
i P−1

vk vk√
cT

i P−1
vk ci

, i = 1, · · · , n (23)

where ci is the unit vector with the ith element equal to one. λi
k is the standardized residual.

The fault detection criteria is
∣∣∣λi

k

∣∣∣ > Nα0/2(0, 1) fault occurs∣∣∣λi
k

∣∣∣ ≤ Nα0/2(0, 1) no fault occurs
(24)
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Usually, the relationship between the probability of false alert for the ith pseudorange α0 and the
global test probability of false alert α can be expressed as [34,35]

α0 = 1−
n√

1− α (25)

Every dimensional measurement should be tested to identify the fault because the fault may occur
on each measurement. After the fault identification, the faulty measurement is usually isolated, while
the rest of the normal measurements are used to conduct the filter measurement update process.

4. Analysis of Influencing Factors of Fault Detection Performance

4.1. Performance Indicator of Residual Chi-Square Detection Method

To analyze the performance of residual chi-square detection method, the concept of the minimal
detectable bias (MDB) is introduced. The MDB is defined as the minimal model error that can just be
detected [36].

It is assumed that a fault occurs on the ith measurement, then the measurement model can be
written as

Zk = HkXk + Vk + li∇ (26)

where ∇ is the fault error on the ith observation, and li = (0, 0, · · · , 1, · · · , 0)T is the unit vector with the
ith element equal to one, when the residual vector is

vk = Zk −HkXk,k−1 = vk + li∇ (27)

which has the expectation
E(vk) = µ = li∇ (28)

Then, the noncentrality parameter of fault detection function can be expressed as

σ∇ = µTP−1
vk µ = (li∇)

TP−1
vk li∇ = ∇2P−1

vk ii (29)

where P−1
vk ii is the ith diagonal element of covariance matrix P−1

vk .
The MDB for the ith diagonal observation can be obtained as

|∇|min =
√
σ/P−1

vk ii (30)

where σ is the noncentrality parameter, which is a function of α and the probability of missed detection
β, and can be given by

σ = χ2
α(n) − χ

2
1−β(n) (31)

The larger the value of fault, the easier the fault can be detected. When the value of fault is
smaller than MDB, it is difficult to detect the fault accurately and the probability of missed detection
will increase.

4.2. The Influence of Satellite Configuration on the Performance of Fault Detection for a Single-Epoch Fault

From the above analysis, it can be seen that the MDB is related to the noncentrality parameter σ
and covariance P−1

vk ii. For certain probabilities of false alarm and missed detection, when the number
of visible satellites is given, the noncentrality parameter σ is constant, the MDB is only related to P−1

vk ii,
and the relation between them is negative. Hence, define 1/P−1

vk ii as the dilution of minimal detectable
bias (DOMDB), and the larger the DOMDB, the larger the MDB.
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According to Equation (7), it can be obtained that

P−1
vk =

(
HkPk,k−1HT

k + Rk
)−1

= R−1
k −R−1

k Hk
(
P−1

k,k−1 + HT
k R−1

k Hk
)−1

HT
k R−1

k

(32)

P−1
vk ii is the ith diagonal element of covariance matrix P−1

vk , and can be expressed as

P−1
vk ii = R−1

k ii −Hi
k

(
P−1

k,k−1 + HT
k R−1

k Hk
)−1(

Hi
k

)T(
R−1

k ii
)2

= R−1
k ii −Hi

kPk
(
Hi

k

)T(
R−1

k ii
)2

=
[
Rii

k −Hi
kPk

(
Hi

k

)T
](

R−1
k ii

)2
(33)

where R−1
k ii is the ith diagonal element of covariance matrix R−1

k , Rii
k is the ith diagonal element of

covariance matrix Rk, Hi
k is the ith row of Hk. From the above equation, it can be seen that P−1

vk ii is related
to the accuracy of GNSS observation, the state estimation covariance matrix Pk and the corresponding
measurement matrix Hi

k. And P−1
vk ii is negatively related to Pk and Rk, while Pk is negatively related

to process noise covariance matrix Qk. In other words, the worse the accuracy of IMU and GNSS
measurement, the smaller the value of P−1

vk ii, and the lower the sensibility of fault detection. For a
determined integration, the accuracy of IMU and GNSS measurement is constant, so P−1

vk ii is only
related to the measurement matrix Hi

k and state estimation covariance matrix Pk, while Pk depends
on the measurement matrix Hk to a great extent. The different geometry of satellites will lead to the
difference of measurement matrix Hk, which will result in the different precision of Pk.

When the geometry is good, after the Kalman filter is converged, Pk tends to be a stable value
close to 0, although the difference of measurement matrix Hk results in the different precision of Pk,
the difference of precision is very small, which means that P−1

vk ii mainly depends on Rii
k . When the

geometry is poor, the filtering error will get larger, for the same satellite, the value of P−1
vk ii will get

smaller. However, compared to the value of Rii
k , the change of the value of Hi

kPk
(
Hi

k

)T
caused by the

increase of filtering error is very small. In other words, the increase of filtering error will not cause a
very noticeable change in the value of P−1

vk ii, which has two meanings. One is that although different
geometry of satellites will result in the different precision of Pk, this will have a very small influence on
the covariance P−1

vk ii. In other words, the geometry of the satellites will minorly affect the performance
of fault detection. The second meaning is that for a given geometry, although each of the satellites
has different elevation and azimuth, the P−1

vk ii of them are similar. That is to say, for single-epoch fault
detection, no matter which satellite’s measurement has the fault error, the difference of fault detection
results will be very small. This conclusion is quite different from that in GNSS RAIM. Of course,
the premise of the above conclusion is that the filtering error is not very large and the fault detection
method is available. Just like the geometry would affect the availability of RAIM, if the geometry is so
poor that the filtering error is too large, the availability of the fault detection method will be challenged.

When the number of satellites varies, the noncentrality parameter σ and the threshold Td will
change too, and they will increase with the growth of the number. Besides, the growth of the visible
satellites’ number will also change the measurement matrix, which will affect the state estimation
precision directly. Hence, these two factors will affect the performance of fault detection.

4.3. The Influence of Fault Duration Time and Geometry on the Performance of Fault Detection for a
Continuous Fault

The single-epoch fault has little impact on the filtering precision, whereas a continuous fault
occurring during a period of time has a greater effect on the filtering precision, which may cause the
filtering precision get worse, and even result in divergence. There is a need to analyze the influence of
the fault duration time on the filtering precision and fault detection performance.
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The traditional fault detection and isolation (FDI) method conducts the measurement update
of Kalman filter by using the normal measurements after the fault isolation. For the convenience
of analysis, assume that fault occurs on the ith dimension of the measurement vector, then the new
measurement matrix H̃k after the fault isolation can be written as

H̃k =
[
H1

k ; · · · ; Hi−1
k ; Hi+1

k ; · · · ; Hn
k

]
(34)

where Hi
k is the ith row element of Hk. Then, the new state estimation covariance matrix P̃ki can

be written as P̃ki =
(
H̃

T
k R̃
−1
k H̃k + P−1

k,k−1

)−1
, where R̃k is the noise covariance matrix of the remainder

measurements. According to the matrix theory, the relation between Pk and P̃ki can be expressed as

Pk =
(
H̃

T
k R̃
−1
k H̃k + P−1

k,k−1 +
(
Hi

k

)T
δ−2Hi

k

)−1

=
(
P̃
−1
ki +

(
Hi

k

)T
δ−2Hi

k

)−1

= P̃ki − P̃ki
(
Hi

k

)T
(
δ2 + Hi

kP̃ki
(
Hi

k

)T
)−1

Hi
kP̃ki

= P̃ki − ∆Pk

(35)

where δ2 is the variance of the measurement error. From the above equation, it can be proved that the
following equation is established

P j j
k ≤ P̃ j j

ki (36)

where P j j
k and P̃ j j

ki are the jth diagonal element of covariance matrix Pk and P̃ki, respectively.
Equation (36) indicates that the state estimation error after fault isolation will be larger than that

of a filter without faulty measurement. The Kalman filter is a continuous recursion process, thus the
current filter results will have an influence on the next filter process. If a fault error still exists and
occurs on the ith dimension of the measurement vector at time k + 1, after the fault detection and
isolation, the state estimation covariance matrix of the Kalman filter can be written as

P̃(k+1)i =
(
H̃

T
k+1R̃

−1
k+1H̃k+1 + P̃

−1
k+1,k

)−1
(37)

where P̃k+1,k = Φk+1,kP̃kiΦ
T
k+1,k + Γk+1,kQkΓT

k+1,k is the covariance matrix of the predicted state at time
k + 1. The corresponding covariance matrix of state estimation without fault can be expressed as

Pk+1 =
(
HT

k+1R−1
k+1Hk+1 + P−1

k+1,k

)−1
(38)

where Pk+1,k = Φk+1,kPkΦT
k+1,k + Γk+1,kQkΓT

k+1,k. According to Equation (35), the relation between

Pk+1,k and P̃k+1,k can be given as

Pk+1,k = P̃k+1,k −Φk+1,k∆PkΦT
k+1,k (39)

Inverting both sides of Equation (39), we can get

P−1
k+1,k = (P̃k+1,k −Φk+1,k∆PkΦT

k+1,k)
−1

= P̃
−1
k+1,k + P̃

−1
k+1,kΦk+1,k[

(∆Pk)
−1 + ΦT

k+1,kP̃
−1
k+1,kΦk+1,k

]−1
ΦT

k+1,kP̃
−1
k+1,k

= P̃
−1
k+1,k + ∆P̃

−1
k+1,k

(40)
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Then, the relation between Pk+1 and P̃(k+1)i can be given as

Pk+1 =
(
HT

k+1R−1
k+1Hk+1 + P−1

k+1,k

)−1

=
[
H̃

T
k+1R̃

−1
k+1H̃k+1 +

(
Hi

k+1

)T
δ−2Hi

k+1 + P̃
−1
k+1,k + ∆P̃

−1
k+1,k

]−1

=
[
P̃
−1
(k+1)i +

(
Hi

k+1

)T
δ−2Hi

k+1 + ∆P̃
−1
k+1,k

]−1

(41)

When the convergence of Kalman filter is established, we can get Pk+1 ≈ Pk, comparing
Equations (35) and (41), it can be obtained that(

P̃
−1
ki +

(
Hi

k

)T
δ−2Hi

k

)−1
=

[
P̃
−1
(k+1)i +

(
Hi

k+1

)T
δ−2Hi

k+1 + ∆P̃
−1
k+1,k

]−1
(42)

If the maneuver of the vehicle is not very large and it moves at a relatively low speed, we can
assume that Hi

k+1 hardly changes compared with Hi
k, and Hi

k+1 ≈ Hi
k can be obtained. Hence, it can be

obtained from Equation (42) that
P̃ j j

ki < P̃ j j
(k+1)i

(43)

Equation (43) indicates that the state estimation error will accumulate over a period of time.
The rate of accumulation will be variant for different locations of the faulty measurement. In GNSS/INS
integration, the state vector X includes attitude, velocity, and position, and they have different units.
In order to evaluate the influence of a satellite’s pseudorange measurement on the precision of state
estimation, two concepts are introduced. One is the precision of positioning (POP), which is chosen to
evaluate the filter precision, and the definition of POP is expressed as

POP =

√√√√ 9∑
j=7

P j j
k (44)

where P j j
k is the jth diagonal element of covariance matrix Pk. Although POP just contains the

covariance of positioning error, it can still reflect the state estimation precision to some degree. And the
smaller the POP, the higher the precision of state estimation.

The other one is the differential precision of positioning (DPOP), which is chosen to evaluate
the influence of a satellite’s pseudorange measurement on the precision of state estimation, and it is
defined as

DPOP =

√√√√ 9∑
j=7

P̃ j j
ki −

√√√√ 9∑
j=7

P j j
k , i = 1, 2, · · · n (45)

The above equation expresses the DPOP of the ith satellite, which is the difference between
the POP calculated with all the satellites’ measurements except that of the ith satellite and the POP
calculated with all the satellites’ measurements. If the ith satellite has the largest DPOP, it means that
this satellite’s measurement has the greatest influence on the precision of state estimation and isolating
this satellite’s measurement will result in the largest reduction of the state estimation precision. For this
situation, if the fault lasts for a long time, the state estimation precision will decrease with time, which
will result in the increase of MDB and the reduction of the sensibility of fault detection. On the contrary,
if the ith satellite has the smallest DPOP among the n satellites, isolating this satellite’s measurement
will result in the smallest reduction of the state estimation precision. For this situation, the duration
time will have little effect on the fault detection performance.

DPOP reflects the influence of one satellite’s measurement on the precision of state estimation
for a certain geometry of visible satellites. When the geometry varies, the influence of one satellite’s
measurement on the precision of state estimation will be different. To analyze the performance of fault
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detection when fault occurs on the same satellite’s measurement in different geometries, a concept
called relative differential precision of positioning (RDPOP) is introduced, and it can be expressed as

RDPOP =

√
9∑

j=7
P̃ j j

ki −

√
9∑

j=7
P j j

k√
9∑

j=7
P j j

k

, i = 1, 2, · · · n (46)

It can be seen from the Equation (46) that RDPOP reflects the degree of the decrease of filtering
precision after isolating the faulty measurement. For a given geometry, RDPOP has the same meaning
as DPOP. When the geometry varies, RDPOP can be used to reflect the influence of the same satellite’s
measurement on the filtering precision of different geometries. The larger the RDPOP, the greater the
influence of the same satellite’s measurement on the filtering precision. When the number of satellites
is the same, it can be concluded that if the RDPOP of the ith geometry is the largest among the n
geometries, the fault detection performance in this geometry will be the worst for the same fault model
occurring on the same satellite of the n geometries.

Besides, when the value of the fault is near the MDB, the probability of missed detection is still
a little large. If the fault duration time is long, a large number of missed detection phenomena will
happen, which will result in the decrease of state estimation precision. According to Equation (10), it can
be seen that the fault detection function is related to the residual vector vk and its covariance matrix Pvk.
When missed detection occurs, the component caused by error tracking will decrease the value of the
test statistics and eventually result in the reduction of the sensibility of fault detection. As mentioned
before, DPOP reflects the contribution of one satellite’s measurement to the precision of state estimation,
the larger DPOP shows the greater contribution to the state estimation. Similarly, for faults with the
same value, it can be obtained that the missed detection phenomena occurring on the satellite which
has the larger DPOP will bring worse precision of state estimation, which will cause worse sensibility
of fault detection. Therefore, for a given geometry of visible satellites, the same fault error occurring
on different satellite’s measurement will lead to different results of fault detection.

5. Simulation Analysis

In this section, several numerical simulation tests are conducted to verify the above analysis.
The influence of satellite configuration and fault duration time on the performance of fault detection is
investigated. The simulation conditions are as follows:

The gyro constant drift is 0.1 ◦/h with its random drift 0.1 ◦/h, the constant bias and random bias
of accelerometer is 50 µg. The initial geographical position is 108◦ east longitude, 34◦ north latitude,
the initial velocity is zero, and the initial azimuth is 90◦. The flight trajectory includes acceleration,
deceleration, climbing motion, diving motion, and turning motion. The simulation time of flight
trajectory is 1600 s. The standard deviation of GNSS pseudorange measurement error is 10 m. The false
alarm rate and missed detection rate of fault detection are 0.001 and 0.2, respectively.

To verify the analysis, numerical simulation tests under different measurement conditions are
conducted. The geometry of visible satellites is chosen randomly according to the real BDS geometry
at Xi’an, China. The BDS simulation data is provided by a GNS8330 simulator. The output frequency
of IMU and GNSS is 100 Hz and 1 Hz, respectively, and the Kalman filter cycle is 1 s.

The probabilities of missed detection and false alarm are commonly used to measure the
performance of fault detection. Define alternative hypotheses hi(i = 1, 2, · · · , n), hi denotes that fault
error occurs on the ith dimensional observation. Then, the probabilities of missed detection can be
expressed as

PMDi = P
{
Λk < Td/hi

}
(47)
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Usually, the probability of false alarm is given as

PFA = P
{
Λk > Td/H0

}
(48)

In practical application, faults occurring at different dimensions of the measurement vector may
result in different false alarm phenomena. Therefore, in this paper, we define a new probability of
false alarm PFAi , and it denotes the probability of a false alarm under the condition that fault error
occurs on the ith dimensional observation. In the later tests, these two indices will be used to evaluate
the performance of fault detection. In each test, a 10,000-run Monte Carlo simulation is conducted to
obtain the statistical results of fault detection.

5.1. The Verification of the Influence of Satellite Configuration on Fault Detection for a Single-Epoch Fault

The influence of satellite configuration on the performance of fault detection consists of the
geometry and number of visible satellites. Hence, the verification and analysis will be conducted from
these two aspects respectively.

5.1.1. Test on the Influence of the Geometry on Fault Detection

In this test, in order to analyze the influence of the geometry on fault detection, the performance
of fault detection under several different geometries with four visible satellites are investigated.
First, the fault detection results under three geometries in which the filtering error is not very large are
investigated and shown in Figure 1. It can be seen that although the geometries of visible satellites
are different, the fault detection results are nearly the same, and the MDB of each satellite in three
geometries is about 48.5 m. In order to analyze the reason why this phenomenon happens, the POP
and DOMDB of three geometries are calculated and the results are shown in Figure 2.

It can be seen from Figure 2a that the first geometry has the worst positioning precision among
the three geometries and the precision is much lower than those of the other two geometries, while the
third one has the best precision and the precision is a little higher than the second one. The results
in Figure 2b indicate that the DOMDB of each satellite under three geometries are almost the same,
the reason is that DOMDB mainly depends on the variance of measurement noise when the filter
is converged. The similar DOMDB means that each satellite has almost the same MDB; therefore,
the fault detection result for each satellite has little difference.
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Figure 1. The fault detection results under three different geometries of four visible satellites. (a) Sky 
plot views of the satellite geometries; (b) The probabilities of missed detection under different 
alternative hypotheses as a function of fault error. 
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Figure 2. The comparison of precision of positioning (POP) and dilution of minimal detectable bias 
(DOMDB) of three different geometries. (a) POP; (b) DOMDB. 

The above tests are based on the three geometries in which the Kalman filter is converged and 
the filtering error is not very large. To fully verify the influence of the geometry on the performance 
of single-epoch fault detection, a poor geometry in which the filtering error has a trend of 
divergence is selected to conduct a new simulation test. The fault detection performance at three 
different epochs with different filtering error is investigated and compared. The comparison of the 
POP and DOMDB under the new satellite geometry are shown in Figure 3, while the corresponding 
fault detection results are shown in Figure 4. 
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Figure 1. The fault detection results under three different geometries of four visible satellites. (a) Sky
plot views of the satellite geometries; (b) The probabilities of missed detection under different alternative
hypotheses as a function of fault error.
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Figure 2. The comparison of precision of positioning (POP) and dilution of minimal detectable bias 
(DOMDB) of three different geometries. (a) POP; (b) DOMDB. 
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fault detection results are shown in Figure 4. 
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Figure 2. The comparison of precision of positioning (POP) and dilution of minimal detectable bias
(DOMDB) of three different geometries. (a) POP; (b) DOMDB.

The above tests are based on the three geometries in which the Kalman filter is converged and the
filtering error is not very large. To fully verify the influence of the geometry on the performance of
single-epoch fault detection, a poor geometry in which the filtering error has a trend of divergence is
selected to conduct a new simulation test. The fault detection performance at three different epochs
with different filtering error is investigated and compared. The comparison of the POP and DOMDB
under the new satellite geometry are shown in Figure 3, while the corresponding fault detection results
are shown in Figure 4.
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Figure 2. The comparison of precision of positioning (POP) and dilution of minimal detectable bias 
(DOMDB) of three different geometries. (a) POP; (b) DOMDB. 

The above tests are based on the three geometries in which the Kalman filter is converged and 
the filtering error is not very large. To fully verify the influence of the geometry on the performance 
of single-epoch fault detection, a poor geometry in which the filtering error has a trend of 
divergence is selected to conduct a new simulation test. The fault detection performance at three 
different epochs with different filtering error is investigated and compared. The comparison of the 
POP and DOMDB under the new satellite geometry are shown in Figure 3, while the corresponding 
fault detection results are shown in Figure 4. 
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Figure 4. The fault detection results at three different epochs. (a) The detection results at the first 
epoch; (b) The detection results at the second epoch; (c) The detection results at the third epoch. 

5.1.2. Test on the Influence of the Number of Visible Satellites on Fault Detection  

In this test, in order to analyze the influence of the number of visible satellites on fault detection, 
the performance of fault detection under two, four, and six visible satellites is investigated, and the 
results are shown in Figure 5. 

It can be seen from Figure 5 that for faults with the same value, the probability of missed 
detection under two visible satellite is the lowest among the three cases, and the probability of 
missed detection increases with the number of satellites when the value of fault is between 20 m 
and 80 m. To analyze why this phenomenon happens, the DOMDB of each satellite in the 
integration with two, four, and six visible satellites is calculated respectively, and the results are 
shown in Figure 6.  

It can be seen that the DOMDB of each satellite is nearly the same when the number of 
satellites is constant. When the number of satellites varies, the DOMDB changes a little, and the 

Figure 3. The comparison of POP and DOMDB of three different epochs under the new satellite
geometry. (a) Sky plot view of the new satellite geometry; (b) POP; (c) DOMDB.

It can be seen from Figure 3a that the difference between the POP of the three epochs is noticeable,
and the filtering error of the third epoch is very large. However, the result in Figure 3b indicates that
the difference between the DOMDB of them is very small, which means that the sensibility of fault
detection at these three epochs is nearly the same. Furthermore, the fault detection results in Figure 4
show that although the filtering error is very large and has large difference, but the fault detection
result for a single-epoch is almost impervious. Comparing the fault detection results in Figures 1 and 4,
it can be obtained that the different satellite geometry will result in different filtering precision, but the
fault detection result for single-epoch fault is less affected by the geometry.
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Figure 4. The fault detection results at three different epochs. (a) The detection results at the first 
epoch; (b) The detection results at the second epoch; (c) The detection results at the third epoch. 
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(b) The detection results at the second epoch; (c) The detection results at the third epoch.

5.1.2. Test on the Influence of the Number of Visible Satellites on Fault Detection

In this test, in order to analyze the influence of the number of visible satellites on fault detection,
the performance of fault detection under two, four, and six visible satellites is investigated, and the
results are shown in Figure 5.

It can be seen from Figure 5 that for faults with the same value, the probability of missed detection
under two visible satellite is the lowest among the three cases, and the probability of missed detection
increases with the number of satellites when the value of fault is between 20 m and 80 m. To analyze
why this phenomenon happens, the DOMDB of each satellite in the integration with two, four, and six
visible satellites is calculated respectively, and the results are shown in Figure 6.

It can be seen that the DOMDB of each satellite is nearly the same when the number of satellites
is constant. When the number of satellites varies, the DOMDB changes a little, and the DOMDB
under two visible satellites is a little larger than that under four and six satellites, this is because the
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filtering precision under two visible satellites is much lower than that under four and six satellites.
Although the DOMDB mainly depends on the measurement noise covariance, when the filtering
precision is very low, it will also have a great influence on the DOMDB. According to the analysis
in Section 4.1, the MDB is related to both the noncentrality parameter σ and the DOMDB. When the
number of satellites increases, the noncentrality parameter σ gets larger rapidly, while the DOMDB
just changes a little, so the MDB increases with the number of satellites.
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Figure 5. The fault detection results under two, four, and six visible satellites. (a) Sky plot views of 
the satellite geometries; (b) The probabilities of missed detection under different alternative 
hypotheses as a function of fault error. 
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Figure 5. The fault detection results under two, four, and six visible satellites. (a) Sky plot views of the
satellite geometries; (b) The probabilities of missed detection under different alternative hypotheses as
a function of fault error.
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Figure 5. The fault detection results under two, four, and six visible satellites. (a) Sky plot views of 
the satellite geometries; (b) The probabilities of missed detection under different alternative 
hypotheses as a function of fault error. 
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Figure 6. Comparison of each satellite’s DOMDB in the integration with two, four, and six visible
satellites, respectively. (a) The results under two visible satellites; (b) The results under four visible
satellites; (c) The results under six visible satellites.
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5.2. The Verification of the Influence of Satellite Configuration and Fault Duration Time on Fault Detection for a
Continuous Fault

From the above tests in Section 5.1, it can be seen that both the geometry and number of visible
satellites will affect the performance of fault detection for single-epoch fault, and the number of
visible satellites has greater influence. Hence, in this section, the influence of fault duration time on
fault detection under different number of visible satellites will be investigated by three tests firstly.
The number of visible satellites is chosen as two, four, and six, respectively, and the geometries of them
are the same as those in Section 5.1. Then, the influence of geometry on fault detection will be verified
under three geometries with four visible satellites.

5.2.1. Test on the Influence of the Fault Duration Time on Fault Detection with Two Visible Satellites

For a single-epoch fault, the fault error occurring on a different satellite will hardly affect the
performance of fault detection. However, isolating a different satellite’s measurement would result
in the difference of state estimation precision, which may have variant influence on the later fault
detection. Therefore, the DPOP of each satellite is investigated firstly to express the different influence
of each satellite’s measurement on the state estimation precision, and the result is shown in Figure 7.
The two satellites are marked as S1 and S2, respectively.
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(b) DPOP of each satellite as function of time. 
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Figure 7. The geometry and DPOP of two visible satellites. (a) Sky plot view of the satellite geometry;
(b) DPOP of each satellite as function of time.

It can be seen from Figure 7 that both the DPOP of S1 and S2 have a tendency of rapid increase
with time, and the DPOP of S1 is a little larger than that of S2. In other words, regardless of whether
the fault error occurs on S1 or S2, isolating the faulty measurement will result in a great decline of
positioning precision, and isolating the measurement of S1 will cause worse precision than isolating
the measurement of S2.

To verify the influence of fault duration time on detection performance, we set six different fault
models, and the fault duration time of them is 10 s, 40 s, 80 s, 120 s, 160 s, and 200 s, respectively.
The results of fault detection for fault error occurring on S1 and S2 are shown in Figure 8. From Figure 8,
it can be seen that compared with the single-epoch fault, the fault detection performance for the
continuous fault has obvious difference, and the probability of missed detection increases with the
duration time of fault. For a single-epoch fault with the value equal to 60 m, the probability of missed
detection is about 0.01, while for the same size of fault which lasts for 200 s, the probabilities of missed
detection and false alarm are about 0.55 and 0.7, respectively. This comparison indicates that fault
duration time has a great influence on fault detection performance. As there are only two visible
satellites, isolating one of them will result in a great decline of the filtering precision; thus, for the same
fault model, the fault detection performance for a fault occurring on S1 or S2 is nearly the same.
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Figure 8. The results of fault detection with two visible satellites. (a) Fault occurs on S1; (b) Fault 
occurs on S2. 
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Firstly, the DPOP of each satellite is investigated, and the result is shown in Figure 9. The four 
satellites are marked as S1, S2, S3, and S4, respectively. 
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Figure 9. The geometry and DPOP of four visible satellites. (a) Sky plot view of the satellite 
geometry; (b) DPOP of each satellite as function of time. 

It can be seen from Figure 9(b) that among the four satellites, the largest DPOP happens when 
the measurement of S2 is isolated, while isolating S1 results in the minimum DPOP, and the 
tendency of the increase of DPOP is very slow. Hence, to analyze the influence of fault duration time 
on the performance of fault detection, the fault detection results for a fault error occurring on the 
measurements of S1 and S2 are investigated and shown in Figure 10. The fault models are the same 
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Figure 8. The results of fault detection with two visible satellites. (a) Fault occurs on S1; (b) Fault
occurs on S2.

5.2.2. Test on the Influence of the Fault Duration Time on Fault Detection with Four Visible Satellites

Firstly, the DPOP of each satellite is investigated, and the result is shown in Figure 9. The four
satellites are marked as S1, S2, S3, and S4, respectively.
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Figure 9. The geometry and DPOP of four visible satellites. (a) Sky plot view of the satellite 
geometry; (b) DPOP of each satellite as function of time. 

It can be seen from Figure 9(b) that among the four satellites, the largest DPOP happens when 
the measurement of S2 is isolated, while isolating S1 results in the minimum DPOP, and the 
tendency of the increase of DPOP is very slow. Hence, to analyze the influence of fault duration time 
on the performance of fault detection, the fault detection results for a fault error occurring on the 
measurements of S1 and S2 are investigated and shown in Figure 10. The fault models are the same 
as those in Subsection 5.2.1. 

Figure 9. The geometry and DPOP of four visible satellites. (a) Sky plot view of the satellite geometry;
(b) DPOP of each satellite as function of time.

It can be seen from Figure 9b that among the four satellites, the largest DPOP happens when the
measurement of S2 is isolated, while isolating S1 results in the minimum DPOP, and the tendency of the
increase of DPOP is very slow. Hence, to analyze the influence of fault duration time on the performance
of fault detection, the fault detection results for a fault error occurring on the measurements of S1 and
S2 are investigated and shown in Figure 10. The fault models are the same as those in Section 5.2.1.
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Figure 10. The results of fault detection with four visible satellites. (a) Fault occurs on S1; (b) Fault 
occurs on S2. 
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Figure 11. The geometry and DPOP of six visible satellites. (a) Sky plot view of the satellite geometry; 
(b) DPOP of each satellite as function of time. 

From Figure 11(b), it can be seen that the DPOP of S6 has a faster trend of increase compared 
with those of the other five satellites, while the tendency of the other five DPOP is very slow, and 
among them, the DPOP of S3 is the smallest. This means that isolating the measurement of S6 will 
result in the largest decline of positioning precision, while when a fault occurs on one of the other 
five satellites, isolating the faulty measurement will cause relatively smaller decrease of precision, 

Figure 10. The results of fault detection with four visible satellites. (a) Fault occurs on S1; (b) Fault
occurs on S2.

It can be seen from Figure 10 that the probability of missed detection increases with the increase
of the fault duration time regardless of whether the fault occurs on S1 or S2. Comparing PMD1 and
PMD2 , it can be seen that the fault duration time has greater influence on PMD2 than on PMD1 , and PMD2

increases much faster than PMD1 with the increase of fault duration time. For the same fault model,
a fault occurring on S2 may cause larger probabilities of missed detection and false alarm than S1,
especially when the value of fault is near the MDB. When the value of fault is large enough, the faulty
measurement can be detected correctly without missed detection, and the probability of false alarm is
nearly equal to the given value 0.001.

5.2.3. Test on the Influence of the Fault Duration Time on Fault Detection with Six Visible Satellites

Firstly, the DPOP of each satellite is investigated, and the result is shown in Figure 11. The six
satellites are marked as S1, S2, S3, S4, S5, and S6, respectively.
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Figure 10. The results of fault detection with four visible satellites. (a) Fault occurs on S1; (b) Fault 
occurs on S2. 
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From Figure 11b, it can be seen that the DPOP of S6 has a faster trend of increase compared with
those of the other five satellites, while the tendency of the other five DPOP is very slow, and among
them, the DPOP of S3 is the smallest. This means that isolating the measurement of S6 will result in the
largest decline of positioning precision, while when a fault occurs on one of the other five satellites,
isolating the faulty measurement will cause relatively smaller decrease of precision, and isolating the
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measurement of S3 will bring the smallest decline. The fault detection results for fault error occurring
on the measurements of S6 and S3 are investigated and shown in Figure 12.
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occurs on S6.

It can be seen from Figure 12 that the fault duration time has greater influence on PMD6 than PMD3 .
For the same fault with small value, fault occurring on S6 may cause larger probability of missed
detection and false alarm than S3. In Figure 12b, when the value and duration time of fault are 60 m
and 200 s, respectively, PMD6 is about 0.41, and PFA6 is about 0.52, which means that a large number of
missed detections and false alarms happen under this fault model, and the probability is much higher
than that of single-epoch fault detection. While for the same fault model occurring on S3, it can be
seen that PMD3 and PFA3 are about 0.05 and 0.001, which is nearly the same as that of single-epoch
fault detection.

To verify the influence of the increase of visible satellites number on the performance of fault
detection for the same satellite, the fault detection results with six visible satellites for a fault occurring
on S1 and S2 are investigated and shown in Figure 13.
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Comparing Figure 8, Figure 10, and Figure 13, it can be seen that for the same fault model, when
the fault duration time is relatively short, the fault detection performance under two visible satellites is
better than that under four and six visible satellites. But, when the fault duration time gets longer,
the influence of fault duration time on the fault detection performance will decrease with the increase
of the visible satellites number. When the fault duration time increases to a certain value, the greater
the number of visible satellites, the better the fault detection performance. The reason is that the
influence of one satellite’s measurement on the navigation precision will decrease with the increase
of the number of visible satellites. This conclusion can also be obtained from the comparison of the
DPOP of S1 and S2 in Figure 7, Figure 9, and Figure 11. Therefore, it can be seen that when the number
of visible satellites is large enough, isolating the faulty measurements will not bring large degradation
of filtering precision and fault detection performance.

5.2.4. Test on the Influence of the Geometry on Fault Detection for Continuous Fault with Four
Visible Satellites

To verify the influence of the geometry on the detection performance for a continuous fault,
the fault detection results for a fault occurring on the same satellite of different geometries with four
visible satellites are investigated. It can be seen from Figure 1 that S3 in geometry 1, S2 in geometry 2,
and S1 in geometry 3 are the same satellite. Here, we mark this satellite as G1, and the fault detection
results for fault occurring on G1 in three geometries are shown in Figure 14.
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It can be seen from Figure 14a that the RDPOP in geometry 2 is the largest among the three cases,
while that in geometry 1 is the smallest, which means that the satellite G1 has the greater influence
on the filtering precision in geometry 2 than in geometries 1 and 3. Figure 14b–d shows that, for the
same fault model, especially when the value of fault error is near the MDB, the probabilities of missed
detection and false alarm in geometry 2 are higher than those in geometries 1 and 3. This conclusion is
consistent with the result in Figure 14a.

6. Conclusions

In this paper, the principle and performance of the residual chi-square detection method, which is
the commonly used method in the field of fault detection for GNSS/INS integration, are investigated.
The equivalence deduction of chi-square detection based on the predicted residual and least-squares
residual is given. Then, to examine the performance of residual chi-square detection under different
observational conditions and fault models, the influence of some important factors, such as the number
and geometry of visible satellites and the fault duration time, on the performance of fault detection is
analyzed in theory. To verify the theoretical analysis, several numerical simulations are conducted.
The main conclusions of simulation tests are listed as follows.

1. For single-epoch fault detection, when the number of satellites is given, the geometry of
satellites has little effect on the performance of fault detection, and the MDB of each satellite is nearly
the same. When the number of satellites varies, the MDB increases with the increase of satellite number.
But, regardless of which satellite’s measurement has fault error, the difference of fault detection results
will still be very small. Therefore, there is no need to adopt a different detection method for a fault
occurring on a different satellite.

2. For continuous fault detection, the probability of missed detection increases with the increase
of fault duration time when the value of the fault is within a certain range, especially near the MDB.
For a given geometry, the fault duration time has greater influence on the satellite which has larger
DPOP. When the number of satellites is given, the fault duration time has different influence on the
same satellite in different geometries, and the larger the RDPOP, the greater the influence. When the
number of satellites increases, the influence of fault duration time on the fault detection performance
will decrease.

In practical application, the measurement conditions and fault models may be variant and
unknown. For continuous fault detection, these factors will have great influence on the fault detection
performance. Ignoring the influence of them and adopting the same fault detection and isolation
method for different situations may result in bad fault detection and filtering precision. Therefore, it’s
very important to adopt different fault detection and isolation methods for different measurement
conditions and fault models. According to the research results of this work, future research work will
focus on how to realize the adaptive adjustment of fault detection, isolation, and adaptation according
to the number and geometry of visible satellites.
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