
sensors

Article

Numerical Study on Ultrasonic Guided Waves for the
Inspection of Polygonal Drill Pipes

Xiang Wan 1,2, Xuhui Zhang 1,2,* , Hongwei Fan 1,2, Peter W. Tse 3, Ming Dong 1,2 and
Hongwei Ma 1,2

1 School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China;
wx@xust.edu.cn (X.W.); fanhongwei84@163.com (H.F.); jesunatg@hotmail.com (M.D.);
mahw@xust.edu.cn (H.M.)

2 Shaanxi Key Laboratory of Mine Mechanical and Electrical Equipment Intelligent Monitoring, School of
Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China

3 Department of Systems Engineering and Engineering Management, City University of Hong Kong, Tat Chee
Avenue, Kowloon 999077, Hong Kong, China; meptse@cityu.edu.hk

* Correspondence: zhangxh@xust.edu.cn; Tel.: +86-029-85583159

Received: 29 March 2019; Accepted: 28 April 2019; Published: 8 May 2019
����������
�������

Abstract: The polygonal drill pipe is one of the most critical yet weakest part in a high-torque drill
machine. The inspection of a polygonal drill pipe to avoid its failure and thus to ensure safe operation
of the drilling machine is of great importance. However, the current most frequently used ultrasonic
inspection method is time-consuming and inefficient when dealing with a polygonal drill pipe,
which is normally up to several meters. There is an urgent need to develop an efficient method to
inspect polygonal drill pipes. In this paper, an ultrasonic guided wave technique is proposed to
inspect polygonal drill pipes. Dispersion curves of polygonal drill pipes are firstly derived by using
the semi-analytical finite element method. The ALID (absorbing layer using increasing damping)
technique is applied to eliminate unwanted boundary reflections. The propagation characteristics of
ultrasonic guided waves in normal, symmetrically damaged, and asymmetrically damaged polygonal
drill pipes are studied. The results have shown that the ultrasonic guided wave technique is a
promising and effective method for the inspection of polygonal drill pipes.

Keywords: ultrasonic guided waves; polygonal drill pipes; detection of damages

1. Introduction

Drilling machinery are important equipment in geological exploration, resource exploitation,
ocean drilling, drilling in polar regions, and deep continental scientific drilling. The weakest part
in a drilling machine is the drill stem. A drill stem is a critical component that links ground with
underground. It functions by transferring torque and power to the drill bit underground, exerting bit
pressure and circulating mud during the drilling. A drill stem is usually composed of a polygonal drill
pipe, several circular drill pipes, a drill collar, a stabilizer, and several joints used to connect each part
of the drill stem. A polygonal drill pipe is a special kind of drill pipe with a polygonal outer surface
and circular inner surface. A polygonal drill pipe is connected between a rotary table and a circular
drill pipe. Its main function is to turn the rotation of the rotary table into the rotation of the whole
drill stem. During the drilling operation, a polygonal drill pipe suffers from harsh environments and
complex loads. Therefore, defects (i.e., corrosion, cracks, and voids) are prone to occur in the interior
of a polygonal drill pipe. The inspection of polygonal drill pipes is of great importance and urgency to
ensure safe and reliable operation of drilling machines.

In practice, square and hexagonal drill pipes are two types of most frequently used polygonal
drill pipes in high-torque drill machines. Typical square and hexagonal drill pipes are illustrated in
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Figure 1a,b, respectively. A polygonal drill pipe is composed of the upper joint, which is connected to
a rotation table and the drill pipe body; and the lower joint, which is connected to a circular drill pipe.
The length of a typical drill pipe body can be up to 10 meters. The cross section of a typical drill pipe
body remains the same along the axis direction. Its outer surface is polygonal and its inner surface is
circular. As shown in Figure 1a,b, the outer surfaces of the cross section of the square and hexagonal
drill pipe body are square and hexagonal, respectively. The inner surfaces of the cross section are
circular. We mainly focus on the polygonal drill pipe body, as the upper and lower joints in a polygonal
drill pipe are quite short compared to the length of the drill pipe body. Consequently, in this paper,
“a polygonal drill pipe” mainly refers to “the body part of a polygonal drill pipe”.
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In this study, we will focus on studying the inspection of polygonal drill pipes. The traditional 
ultrasonic methods are mainly based on point-to-point inspection systems, where the interrogating 
energy is conveyed in the form of shear or longitudinal bulk waves into a structure directly below 
the transmitter. In light of this fact, it is obvious that they become extremely time-consuming and 
inefficient when dealing with polygonal drill pipes with the length up to ten meters. Therefore, the 
conventional ultrasonic technique is not suitable for detecting damages in the polygonal drill pipes. 
There is an urgent need to develop an efficient method to inspect polygonal drill pipes. 

The Ultrasonic guided wave technique [4–8] has recently evolved as a highly efficient inspection 
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inspecting structures of many fields (i.e., plates [9–12], pipelines [13–16], and railways [17]). 
Ultrasonic guided waves enable a line-to-line inspection method, which makes it uniquely suitable 
for inspecting large structures. It is expected to alleviate the aforementioned disadvantages and to 
improve the inspection efficiency. According to our literature review, using ultrasonic guided waves 
for the detection defects in polygonal drill pipes has not been reported. In this study, the ultrasonic 
guided wave technique is proposed to inspect the long length of polygonal drill pipes. With this 
purpose, two major issues will be investigated and addressed. First, characteristics of ultrasonic 
guided waves propagating in polygonal drill pipes are studied. Their phase and group velocity 
dispersion curves are derived. Proper wave modes are identified and used to inspect polygonal drill 
pipes. Second, ultrasonic guided waves with the identified modes are used to inspect polygonal drill 
pipes. The interaction of ultrasonic guided waves with symmetric and asymmetric damages in 
polygonal drill pipes are also discussed. During the numerical simulation studies, ALID (absorbing 

Figure 1. Structural diagram of polygonal drill pipes: (a) A square drill pipe; (b) a hexagonal drill pipe.

The ultrasonic technique is one of the most frequently used methods for inspecting drill pipes.
Ushakov [1] reported the detection of cracks in drill pipes by using ultrasonic testing. An automatic
ultrasonic flaw detection of the upset region of the drill pipe was proposed by Tu [2]. Chen [3]
used ultrasonic phased array technology to detect the corrosion damage in the inner surface of drill
pipes. In these studies, conventional ultrasonic technology was applied to inspect circular drill pipes.
However, the inspection of polygonal drill pipes has received little attention, and very few studies
have been conducted on the detection of damages in polygonal drill pipes.

In this study, we will focus on studying the inspection of polygonal drill pipes. The traditional
ultrasonic methods are mainly based on point-to-point inspection systems, where the interrogating
energy is conveyed in the form of shear or longitudinal bulk waves into a structure directly below the
transmitter. In light of this fact, it is obvious that they become extremely time-consuming and inefficient
when dealing with polygonal drill pipes with the length up to ten meters. Therefore, the conventional
ultrasonic technique is not suitable for detecting damages in the polygonal drill pipes. There is an
urgent need to develop an efficient method to inspect polygonal drill pipes.

The Ultrasonic guided wave technique [4–8] has recently evolved as a highly efficient inspection
method for large-scale structures. It shows great potentials in NDT (Nondestructive Testing)
for inspecting structures of many fields (i.e., plates [9–12], pipelines [13–16], and railways [17]).
Ultrasonic guided waves enable a line-to-line inspection method, which makes it uniquely suitable
for inspecting large structures. It is expected to alleviate the aforementioned disadvantages and to
improve the inspection efficiency. According to our literature review, using ultrasonic guided waves
for the detection defects in polygonal drill pipes has not been reported. In this study, the ultrasonic
guided wave technique is proposed to inspect the long length of polygonal drill pipes. With this
purpose, two major issues will be investigated and addressed. First, characteristics of ultrasonic guided
waves propagating in polygonal drill pipes are studied. Their phase and group velocity dispersion
curves are derived. Proper wave modes are identified and used to inspect polygonal drill pipes.
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Second, ultrasonic guided waves with the identified modes are used to inspect polygonal drill pipes.
The interaction of ultrasonic guided waves with symmetric and asymmetric damages in polygonal
drill pipes are also discussed. During the numerical simulation studies, ALID (absorbing layer using
increasing damping) is introduced to both ends of polygonal drill pipe models to eliminate unwanted
boundary reflections. The rest of this paper is organized as follows. The SAFE (semi-analytical
finite element method) is used to study the dispersion relations of polygonal drill pipes in Section 2.
Numerical setups are presented in Section 3, and ALID is also introduced in this section. Numerical
results are shown and discussed in Section 4. Conclusions are drawn, at last, in Section 5.

2. Characteristics of Guided Waves Propagating in Polygonal Drill Pipes

When applying ultrasonic guided waves to inspect polygonal drill pipes, knowing about the
characteristics of ultrasonic guided waves propagating in polygonal drill pipes is quite necessary.
Obtaining their dispersive relations is a prerequisite. Due to the complex geometry of the cross section,
building the analytical dispersion equation is quite difficult. In this section, the SAFE method [18–21]
was proposed to study characteristics of guided waves travelling in polygonal drill pipes and to derive
their dispersion curves.

2.1. SAFE Formulations

In this subsection, a square drill pipe was taken as an example to illustrate how the SAFE method
is employed to derive its phase and group velocity dispersion curves.

Assuming the cross section of a square drill pipe is x–y plane and waves propagate in the
z-direction as shown in Figure 2.
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Figure 2. SAFE (semi-analytical finite element) model of a square drill pipe.

The displacement, strain, and stress vectors at any point (x, y, z) in the media of a square drill pipe
are denoted as u, ε, and σ respectively. The strain–stress relationship is expressed as σ = Cε, where C
is the elastic stiffness tensor. The strain vector is written by the strain–displacement relationship as

ε =

[
Lx
∂
∂x

+ Ly
∂
∂y

+ Lz
∂
∂y

]
u, (1)

where the formulations of Lx, Ly, and Lz can be found in the references [20,21].
The displacement field is assumed to be harmonic, propagating along the direction z, and spatial

functions are used to describe its amplitude in the cross-sectional plane x–y as

u(x, y, z, t) =


ux(x, y, z, t)
uy(x, y, z, t)
uz(x, y, z, t)

 =


ux(x, y)
uy(x, y)
uz(x, y)

ei(ξz−ωt), (2)

where i is the imaginary unit, ξ is the wave number, and ω denotes the angular frequency.
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The square drill pipe’s cross-sectional domain Ω can be represented by a system of finite elements
with domain Ωe. The discretised version of the displacement expressions in Equation (2) over the
element domain can be expressed in terms of the shape functions Nk(x, y), and the nodal unknown
displacements (Uxk, Uyk, Uzk) in the x, y, and z directions as

u(e)(x, y, z, t) =



n∑
k=1

Nk(x, y)Uxk

n∑
k=1

Nk(x, y)Uyk

n∑
k=1

Nk(x, y)Uzk



(e)

ei(ξz−ωt) = N(x, y)q(e)ei(ξz−ωt), (3)

where n denotes the number of nodes per element, and N(x, y) and q(e) are shape function matrix and
nodal displacement vector, respectively. Their expressoion can be found in the references [20,21].

The strain vector in the element represented as a function of the nodal displacements are written as

ε(e) =

[
Lx
∂
∂x

+ Ly
∂
∂y

+ Lz
∂
∂y

]
N(x, y)q(e)ei(ξz−ωt) = (B1 + iξB2)q(e)ei(ξz−ωt), (4)

B1 = LxN,x + LyN,y, (5)

B2 = LzN, (6)

where N,x and N,y are the derivatives of the shape function matrix with respect to the x and y directions,
respectively.

The homogeneous general wave equation is obtained as [18][
K1 + iξK2 + ξ2K3 −ω

2M
]
M

U = 0, (7)

where the formulations of K1, K2, K3, and M are illustrated in the references [20,21].
The final form of the eigenvalue problem in Equation (7) is written as[

K1 + ξK̂2 + ξ2K3 −ω
2M

]
M

Û = 0, (8)

where Û is a new nodal displacement vector. Nontrivial solutions can be obtained by solving a
twin-parameter generalized eigenproblem in wave number ξ and angular frequency and ω.

For a given value of ξ, the corresponding value of ω can be obtained by solving the eigenvalue
problem of Equation (8). By applying cp = ω/ξ, the phase velocity dispersion curves can be derived.

Group velocity can be calculated directly at each (ξ,ω) solution point without any contribution
from adjacent points. The procedure starts by evaluating the derivative of the Equation (8) with respect
to the wavenumber ξ:

∂
∂ξ

([
K(ξ) −ω2M

]
ÛR

)
= 0, (9)

where K(ξ) = K1 +ξK̂2 +ξ2K3 and ÛR denotes the right eigenvector. Pre-multiplying the Equation (18)
by the transpose of the left eigenvector ÛT

L :

ÛT
L

[
∂
∂ξ

K(ξ) − 2ω
∂ω
∂ξ

M
]
ÛR = 0. (10)

Since ∂ω/∂ξ is a scalar, the group velocity can be expressed as

cg =
∂ω
∂ξ

=
ÛT

L

(
K̂2 + 2ξK3

)
ÛR

2ωÛT
L MÛR

. (11)
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From the Equation (11), the group velocity can be computed for each individual solution (ξ,ω) of
the dispersion relations at a time independently of any adjacent solution.

2.2. Phase and Group Velocity Dispersion Curves in Polygonal Drill Pipes

By using the formulations in Section 2.1, phase and group velocity dispersion curves in polygonal
drill pipes could be derived. In this section, square, hexagonal, and octagonal drill pipes, as well as a
referential hollow cylinder were considered. Their cross sections are shown in Figure 3. The inner
surfaces of polygonal drill pipes are circle with a radius of 20 mm, which is equal to the inner radius
of the referential hollow cylinder. The outer surfaces of polygonal drill pipes are square, hexagon,
and octagon, respectively. The radius of their circumcircle is 30 mm, which is identical to the outer
radius of the referential hollow cylinder. The dispersion curves of the referential hollow cylinder
have been known for a long time and are used as references to study the dispersion characteristics of
polygonal drill pipes.
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(d) the referential hollow cylinder.

The material of polygonal drill pipes, as well as the referential hollow cylinder, is carbon steel.
The density, elastic modulus, and Poisson’s rate are 8000 kg/m3, 192 GPa, and 0.33, respectively.
Phase velocity and group velocity dispersion curves of polygonal drill pipes can be derived by the
GUIGUW software [22]. Figure 4a,c,e refer to the phase velocity dispersion curves of the square,
hexagonal, and octagonal drill pipes, respectively. Figure 4b,d,f illustrate the corresponding group
velocity dispersion curves. Dispersion curves of symmetric modes of the referential hollow cylinder
are illustrated in Figure 5. From these figures, several findings can be clearly observed. First, for each
polygonal drill pipe, at a specific frequency, there are multiple modes in existence and the number of
modes is much larger than that of the referential hollow cylinder. Second, the number of modes is
increased with the frequency. Third, as the number of edges of the outer surface of the cross section is
increased, the phase and group velocity dispersion curves become sparse.

Each Lamb wave mode in polygonal drill pipes can be identified by its wave shape. First order
longitudinal L(0,1) and torsional T(0,1) modes, as well as second order longitudinal mode L(0,2) in
these polygonal drill pipes are identified. These identified modes are labelled in the corresponding
figures. Hexagonal drill pipe’s mode shapes of the first order longitudinal and torsional, as well as
second order longitudinal modes are illustrated in Figure 6a–c, respectively. As the edges of the cross
section is increased, dispersion curves of L(0,1), T(0,1), and L(0,2) modes are getting close to those of
the referential hollow cylinder. L(0,1) mode at the frequency below 20 kHz and L(0,2) mode at the
frequency range from 40 to 100 kHz are almost flat and possess the highest group velocity. The nearly
flat characteristic of the dispersion curves indicates that these two modes are almost non-dispersive and
they can propagate a very long distance with the duration of the wave packet unchanged. These two
modes with the highest group velocity travel faster than any other modes. Therefore, they will
appear ahead in the time domain waveform, which will make the received waveform much more
convenient to process and interpret. The dispersion curve of T(0,1) mode in the square drill pipe is
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not a straight line yet. However, the dispersion curves of T(0,1) mode in the hexagonal and octagonal
drill pipes are straight, which are similar to that of the referential hollow cylinder. T(0,1) mode is
also non-dispersive, making it the preferred candidate for inspecting polygonal drill pipes. Therefore,
L(0,1), L(0,2), and T(0,1) modes can be used for inspecting polygonal drill pipes.
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3. Numerical Setups

The hexagonal drill pipe is one of the most frequently used polygonal drill pipe, thus it was taken
as an example to study ultrasonic guided waves for the inspection of polygonal drill pipes. In order to
eliminate the influence of boundary reflections, ALID (absorbing layer using increasing damping) was
added to finite element models of hexagonal drill pipes. It is firstly introduced in Section 3.1.

3.1. The ALID Technique

The ALID is an absorbing layer that is made of a material with the same properties as those of the
area of study, except for having a gradually increasing damping.

The equation of dynamic equilibrium in the time domain is written as

[M]
..
u + [C]

.
u + [K]u = f , (12)

with [M], [C], and [K] referring to the mass, damping, and stiffness matrices, respectively.
Stiffness or mass proportional damping can be introduced in time domain finite models and it is

generally termed as Rayleigh damping. Consequently, the damping matrix [C] can be expressed as

[C] = α[M] + β[K], (13)

where α and β denote the mass and stiffness proportional damping coefficients.
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In an ALID with a boundary perpendicular to the x axis, the value of α and β are gradually
increased in the x direction. The following formulations are set:

α(x) = αmaxX(x)mandβ(x) = βmaxX(x)m, (14)

where αmax and βmax are positive real numbers and X(x) varies from 0 at the interface between the
ALID and the area of study to 1 at the end of the ALID, following a power law whose order is defined
by m.

It is noted that the introduction of damping decreases with the value of the stable time increment
when solving the finite element model with central difference explicit scheme [18]. The damping value
at the end of an ALID is usually very large compared to the values commonly used in the structures.
A high value of α causes a relatively small decrease in the stable increment, whereas a value of β usually
has a very strong effect leading to a great loss in computational efficiency. Therefore, it is preferable to
avoid using β to define ALID with an explicit scheme. In this paper, we only have α for numerical
studies. The Equation (14) changes to the following formulation

α(x) = αmaxX(x)m and β(x) = 0. (15)

It is obvious to see that the proper definition of the layer parameters (i.e., the length of the layer L),
variation of the attenuation parameter α, and the power law m is essential to achieve an efficient and
accurate model. In FE (Finite element) models, as the space is discretized, the gradual increase of α
occurs by steps. An ALID is defined as a series of sub layers having the same material properties but
different values of α. It is preferable to minimize the change of α between two adjacent sub layers. It is
recommended to have one-element-thick sub layers.

Suppose an ALID with the length La has n sub layers, and the length of each sub layer is la,
the attenuation parameter of ith sub layer α(i) is defined as.

α(i) = αmax

(
ila
La

)m

, (16)

where i varies from 1 to n. The value of i equals to 1, corresponding to the sub layer next to the interface
and n corresponding to the sub layer at the end of the ALID. According to [23], in order to achieve an
efficient and accurate model, these parameters can be selected as follows. αmax is selected to be larger
than 10 f 0, where f 0 denotes the excitation frequency. La is set to larger than 2λ, in which λ refers to the
wavelength. The length of the sub layer la equals to element size. The value of m is set to 2 or 3.

3.2. FE Model

In this paper, numerical simulations were performed by using ABAQUS software. A schematic
finite element model for the hexagonal drill pipe is illustrated in Figure 7a. The radius of the circular
inner surface of the hexagonal drill pipe is 20 mm. The circumcircle radius of the outer surface of the
hexagonal drill pipe is 30 mm. The length of the hexagonal drill pipe is L. ALID regions are applied at
both ends with a length of La. The detailed information for the ALID regions is shown in Figure 7b.
The ALID region is consisted of a series of sub layers with a length of la. Uniform surface traction is
symmetrically enforced on the outer surface of the excitation region which is located at the left end of
the hexagonal drill pipe. The length of the excitation region is Le. As shown in Figure 7c,d, axial and
circumferential surface tractions are distributed uniformly and symmetrically around the outer surface
of the excitation region to generate longitudinal and torsional modes in the hexagonal drill pipe,
respectively. The damage zone is located at a position Ld from the left end of the hexagonal drill pipe.
For the normal hexagonal drill pipes, there is no damage in the damage zone. For symmetrically
damaged hexagonal drill pipe, as illustrated in Figure 7e, there is a symmetric damage which is
consisted of three slots symmetrically distributed around the damage zone. The length and the
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height of the slots are denoted by Lw and Lh, respectively. Similarly, for the asymmetrically damaged
hexagonal drill pipe, as shown in Figure 7f, there is an asymmetric defect which consisted of three
adjacent slots. Two monitoring points marked by red dots are located at the center of the left and
right edges of the hexagonal drill pipe. They are used to record reflected and transmitted time domain
waveforms, respectively. It is noted that for longitudinal modes (i.e., L(0,1) and L(0,2) modes) that axial
displacements are recorded, and for torsional modes (i.e., T(0,1) mode), circumferential displacements
are recorded.Sensors 2019, 19, x FOR PEER REVIEW 9 of 21 
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Figure 7. Schematic model for the hexagonal drill pipe: (a) Overall finite element model; (b) ALID
(absorbing layer using increasing damping) model; (c) excitation for generating longitudinal modes;
(d) excitation for generating torsional modes; (e) symmetric damage model; and (f) asymmetric
damage model.

3.3. Excitation Signal

A tone burst consisting of N cycles with a specified center frequency f 0 was used as the excitation
signal and it is formulated in Equation (17)

F(t) = F0 sin(2π f0t) × (sin(π f0t/N))2, (17)

where F0 refers to the amplitude of the excited signal.
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An example of the excitation temporal waveform and its frequency spectrums are illustrated in
Figure 8a,b, respectively.Sensors 2019, 19, x FOR PEER REVIEW 10 of 21 
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3.4. Element Size and Time Step

In general, a higher-order element type, a denser mesh, and smaller time step will give a more
accurate simulation result, but will also cost more in terms of calculation time and computer resources.
In order to obtain adequate accuracy and high efficiency, in normal polygonal drill pipes, a second-order
rectangular element type was used for discretization and the maximum element size and time step
was adopted according to [24,25]. For the numerical integration scheme, the explicit method was used.
The integration method was the central difference method

∆I =
λmin

20
, (18)

∆t =
1

20 fmax
, (19)

where ∆I is the element size and ∆t the time step; λmin and fmax are shortest wavelength and highest
frequency of interest, respectively.

For a polygonal drill pipe with a damage, in the damage region, the element size was selected
smaller than in the normal region. An example of meshing results is illustrated in Figure 9.
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4. Results and Discussions

In this section, three important influential factors on the ultrasonic guided waves propagating
in polygonal drill pipes are studied in Section 4.1. They are the selection of the proper number of
excitation burst cycles, the temporal waveforms received from polygonal drill pipes with the outer
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surfaces of increasing number of edges, and the effectiveness of the applied ALIDs. Ultrasonic guided
waves of longitudinal and torsional modes interacting with symmetric and asymmetric damages in
polygonal drill pipes are investigated in Section 4.2.

4.1. Influential Factors on the Ultrasonic Guided Waves Propagating in Polygonal Drill Pipes

4.1.1. The Influence of the Number of Excitation Burst Cycles on Received Temporal Waveforms

The tone-burst signal for exciting guided waves in a waveguide is normally a few cycles of sine
waves modulated by the Hanning window. The larger the number of the excitation signal, the wider
the duration of the excitation pulse, and the narrower the band of its frequency spectrum. The selection
of a proper number of excitation burst cycles is a perquisite when using ultrasonic guided waves for
non-destructive testing. When selecting a small number, unwanted modes, which lie close the desired
mode, may be generated simultaneously, especially for complex waveguides whose dispersion curves
are dense (e.g. polygonal drill pipes). When selecting a large number, the desired wave packet (i.e.,
the reflected waveform from a damage) may overlap with unwanted wave packets (e.g., the reflections
from edges). Therefore, selecting a proper number of excitation burst cycles is of great importance
when inspecting polygonal drill pipes by ultrasonic guided waves.

Figure 10 illustrates the received time–domain waveforms received from a hexagonal drill pipe
under the excitation of the tone burst pulse with 5, 10, and 20 cycles, denoted by blue, green, and red
curves, respectively. The middle upper part of the figure shows the corresponding local enlargement.
The length of the polygonal drill pipe was 3000 mm. Axial surface traction was exerted on the left
section. Longitudinal modes at the center frequency of 60 kHz were excited. The received point was also
set at the left edge. In the figure, the first and second wave packets refer to the direct and reflected waves,
respectively. The propagation distance of the reflected wave packets was 6000 mm. They appeared at
around 1.24 × 10−3 s. The group velocity was calculated as 6000 mm/1.24 × 10−3 s = 4838 m/s, which is
close to the theoretical group velocity of L(0,2) mode shown in Figure 4. It was verified that the reflected
wave packets were L(0,2) mode. It was clearly observed that the waveform generated from the tone
burst of five cycles was prone to suffer from the fluctuation. It was inferred that the fluctuation may
have resulted from the influence of the adjacent modes of the desired mode. The fluctuation contributed
to the poor signal-to-noise ratio of the waveform of five cycles. However, the signal-to-noise ratio
was improved significantly in the received waveforms of 10 and 20 cycles. Furthermore, it was found
that the signal-to-noise ratio was increased with the number of cycles of the excitation tone burst.
In this paper, a tone burst of 10 or 20 cycles were used for the excitation of ultrasonic guided waves in
polygonal drill pipes.
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4.1.2. The Influence of the Outer Surfaces of Increasing Edges on Temporal Signals

In this subsection, time domain responses of square, hexagonal, and octagonal drill pipes and
the referential pipe under the same excitation conditions are compared and studied. Their sectional
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parameters are the same as illustrated in Figure 3a–d, respectively. The length of the polygonal drill
pipes and the referential pipe were set to 3000 mm. Longitudinal L(0,2) mode at the center frequency
of 60 kHz was excited in these waveguides.

Figure 11 shows the temporal signals received from the polygonal drill pipes and the referential
hollow cylinder. In the figure, the first and second wave packets refer to the direct and reflected
waves, respectively. It was obviously found that the time domain wave packets received from these
waveguides were quite similar. With the increasing number of edges of the outer surface of the
polygonal drill pipes, the time domain waveform was getting closer to the signal received from the
referential hollow cylinder. These observations indicated that using ultrasonic guided waves for
inspecting polygonal drill pipes was feasible. Furthermore, ultrasonic guided wave propagation
characteristics from these polygonal drill pipes were quite similar. In the following sections, a specific
polygonal drill pipe (a hexagonal drill pipe) was taken as an example to study ultrasonic guided waves
propagating in normal and damaged polygonal drill pipes.
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4.1.3. Temporal Waveforms Received from Normal Hexagonal Drill Pipes with and without
ALID Regions

In this subsection, temporal waveforms acquired from hexagonal drill pipes with and without
applying ALID regions are compared. The effectiveness of ALID regions to remove the unwanted
reflections from the boundaries is verified. The length of the hexagonal drill pipe L was set to 3200 mm.
The excitation signal was a tone burst of 20 cycles at the center frequency of 60 kHz. Axial surface
traction was enforced evenly and symmetrically around the excitation region to generated longitudinal
guided modes. According to the dispersion curve presented in Figure 4c,d, both L(0,1) and L(0,2)
modes would be generated. The parameters for the ALID regions were set as follows. The maximum
attenuation parameter was set to 6 × 105. The length of La was 200 mm. The length of the sub layer la
was 4 mm, which was equal to element size. The value of m was set to 3.

Time domain waveforms obtained from a hexagonal drill pipe without and with applying ALID
regions are shown in Figure 12a,b, respectively. It is noted that these waveforms are acquired at the
point that is located at the center of the hexagonal drill pipe. In Figure 12a, there are six wave packets
which include the reflections from the left and right boundaries. They are divided into L (0,2) and
L(0,1) modes. The wave packet 1O, 3O, 4O, and 6O belong to L (0,2) mode. The rest wave packet 2O
and 5O are L(0,1) mode. The wave propagation path analysis for each wave packet are illustrated in
Figure 13. Figure 13a,b show the analysis for wave packets of L(0,2) and L(0,1) modes, respectively.
After applying ALID regions, from the Figure 12b, it was clearly observed that only the direct wave
packets were present and all the reflections from the boundaries were eliminated. The wave packets 1O
and 2O refers to the direct L(0,2) and L(0,1) modes, respectively. These results indicated the effectiveness
of the ALID technique to eliminate the wanted boundary reflections. The using ALID facilitates the
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study of ultrasonic guided waves interacting with damages by avoiding overlapping the signals from
a boundary and from a damage.Sensors 2019, 19, x FOR PEER REVIEW 13 of 21 
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4.2. Ultrasonic Guided Waves Interacting with Damages in Polygonal Drill Pipes

In this section, ultrasonic guided waves of longitudinal and torsional modes interacting with
symmetric and asymmetric damages in hexagonal drill pipes are studied in detail.

4.2.1. L(0,1) Mode at the Center Frequency of 15 kHz

Axial surface traction was enforced uniformly and symmetrically around the excitation religion of a
normal, symmetrically, and asymmetrically damaged hexagonal drill pipe, respectively. The excitation
signal was a tone burst at the center frequency of 15 kHz with 10 cycles. According to the dispersion
curve presented in Figure 4c,d, only the L(0,1) mode will be generated. The length of the hexagonal
drill pipes L was 4800 mm. The symmetric and asymmetric damages were located 2000 mm from
the left side. The length Lw and height Lh were set to 16 and 4 mm, respectively. ALID regions were
applied to both sides of the hexagonal drill pipes. The parameters for the ALID regions were set as
follows. The maximum attenuation parameter αmax was set to 2 × 105. The length of La was 800 mm.
The length of the sub layer la was 4 mm, which was equal to element size. The value of m was set to 3.

Reflected and transmitted time domain waveforms received from the normal hexagonal drill pipe
are shown in Figure 14a,b, respectively. In the reflected temporal waveforms, there was no reflection.
There was only wave packet and it was the excitation packet. The transmitted wave packet appeared
at 1.02 × 10−3 s. Its propagation distance was 4800 mm. Therefore, the calculated group velocity was
4800 mm/1.02 × 10−3 s = 4706 m/s. It was close to the value 4656 m/s, which was the theoretical group
velocity of L(0,1) mode at the frequency of 15 kHz, as shown in Figure 4d. It was verified that the wave
packet is the direct L(0,1) mode.

Figure 14c,d illustrate the reflected and transmitted waveforms received from the corresponding
symmetrically damaged hexagonal drill pipe. In the reflected waves, except for the excitation wave
packet, there was one reflected wave packet. The wave packet appeared at 8.4 × 10−4 s. Suppose it
was reflected from the damage, its propagation distance was 4000 mm. Therefore, the calculated
group velocity of this wave packet was 4000 mm/8.4 × 10−4 s = 4762 m/s, which was also close to
the theoretical group velocity value of L(0,1) mode at 15 kHz. It was verified that this wave packet
was reflected from the symmetric defect. In the transmitted waves, the wave packet appeared at
1.02 × 10−3 s. It was the transmitted L(0,1) mode.

Reflected and transmitted waveforms from the asymmetrically damaged hexagonal drill
pipe are shown in Figure 14e,f, respectively. In Figure 13e, except for the first excitation wave
packet, there were two reflected wave packets in the domain waveform. The first wave packet
appeared at 0.84 × 10−3 s. It had been verified that it was the reflected L(0,1) mode. The second
one appeared at 1.38 × 10−3 s. Suppose it was converted from the L(0,1) mode due to the
presence of the asymmetric damage. The calculated group velocity of the converted mode was
2000 mm/(1.38 × 10−3

− 0.84 × 10−3/2) s = 2170 m/s. It was close to 2232 m/s, which was the theoretical
group velocity value of F(1,1) mode at 15 kHz, as illustrated in Figure 4d. It was proved that the second
reflected wave packet was F(1,1) mode and it was converted from L(0,1) mode due to the presence of
the asymmetric defect. In Figure 13f, the first wave packet was the transmitted L(0,1) mode. There was
an additional wave packet. It appeared at 1.76 × 10−3 s. Suppose it was converted from L(0,1) mode,
its calculated group velocity was 2800 mm/(1.76 × 10−3

− 0.84 × 10−3/2) s = 2121 m/s. It was close to
the theoretical value. Therefore, it was verified that the second transmitted wave packet was F(1,1)
mode, which was converted from the L(0,1) mode. From Figure 4d, it was found that at the frequency
of 15 kHz, L(0,1) mode has the largest group velocity. The group velocity of the converted F(1,1) mode
was smaller than that of L(0,1) mode. Therefore, in the reflected and transmitted waves, the converted
F(1,1) wave packet laged behind the L(0,1) mode wave packet. The presence of the L(0,1) wave packet
in the reflected time domain waveforms implied that there was a damage in the inspected hexagonal
drill pipe. Furthermore, the presence of an additional converted wave packet in the reflected and
transmitted waves indicated that the damage was asymmetric.
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Figure 14. Time domain waveforms received from hexagonal drill pipes under the excitation of
axial surface traction at the center frequency of 15 kHz: (a) and (b) reflected and transmitted waves
from a normal hexagonal drill pipe, respectively; (c) and (d) reflected and transmitted waves from a
symmetrically damaged hexagonal drill pipe, respectively; and (e) and (f) reflected and transmitted
waves from an asymmetrically damaged drill pipe, respectively.

4.2.2. Exciting Longitudinal Modes at the Center Frequency of 60 kHz

In the previous Section 4.2.1, axial surface traction was excited symmetrically at a low center
frequency of 15 kHz to generate a single L(0,1) mode guided wave in hexagonal drill pipes. In this
section, axial surface traction was excited at a slightly high center frequency of 60 kHz. According to
the dispersion curve presented in Figure 4c,d, under the axial and symmetric excitation, L(0,1) and
L(0,2) modes would be generated simultaneously. The excitation signal was a tone burst at the center
frequency of 60 kHz with 20 cycles. The length of hexagonal drill pipes L was 6000 mm. The symmetric
and asymmetric damages were located 2500 mm from the left side. The length Lw and height Lh were set
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to 8 and 4 mm, respectively. The parameters for the ALID regions were set as follows. The maximum
attenuation parameter αmax was set to 6 × 105. The length of La was 200 mm. The length of the sub
layer la was 4 mm, which was equal to element size. The value of m was set to 3.

Reflected and transmitted time domain waveforms received from the normal hexagonal drill pipe
are shown in Figure 15a,b, respectively. In the reflected temporal waveform, there was only the excitation
wave packet. There were two wave packets in the transmitted time domain waveform. The first and
second wave packets appeared at 1.23 × 10−3 s and 2.69 × 10−3 s, respectively. The propagation distance
was 6000 mm. Therefore, the calculated group velocities were 6000 mm/1.23 × 10−3 = 4878 m/s and
6000 mm/2.69 × 10−3 s = 2230 m/s. They were close to the values 4893 and 2327 m/s, which were the
theoretical group velocity of L(0,2) and L(0,1) modes at the frequency of 60 kHz, respectively. It was
verified that the first and second wave packets were the direct L(0,2) and L(0,1) modes, respectively.

Figure 15c,d present the reflected and transmitted waveforms received from the corresponding
symmetrically damaged hexagonal drill pipe, respectively. In the reflected waves, except for the
excitation wave packet, there were three reflected wave packets. It could be verified that the wave
packets 1O and 3O referred to the reflected L(0,2) and L(0,1) modes, respectively. Furthermore, in the
transmitted waves, the wave packets 1O and 3O also denoted the transmitted L(0,2) and L(0,1) modes,
respectively. How was the wave packet 2O generated in the reflected and transmitted waves? Here the
wave packet 2O was analyzed. As the incident waves were the symmetric L(0,1) and L(0,2) modes
and the damage was also symmetric, the wave packet 2O could not be asymmetric or flexural modes.
It could only be the symmetric modes. Exactly speaking, it could only be the longitudinal symmetric
modes. According to the phase and group velocity dispersion curves in Figure 4c,d, at the frequency
of 60 kHz, there are only two longitudinal symmetric modes, which are L(0,1) and L(0,2) modes.
The wave packet 2O propagated between the wave packets 1O and 3O. Its group velocity lies between
the group velocities of L(0,1) and L(0,2) modes at the frequency of 60 kHz. Therefore, the wave
packet 2Owas not the direct L(0,2) or L(0,1) mode. It could only be the converted mode. Suppose the
wave packet 2O was converted from L(0,2) to L(0,1) mode. In the reflected wave, the calculated
propagation period was 2500 mm/4893 m/s + 2500 mm/2327 m/s = 1.59 × 10−3 s, which was close
to the measured value 1.65 × 10−3 s. In the transmitted waves, the calculated propagation time was
2500 mm/4893 m/s + 3500 mm/2327 m/s = 2.02 × 10−3 s, which was also close to the measured value
2.08 × 10−3 s. It was thus verified that the wave packet 2Owas converted from L(0,2) mode to L(0,1)
mode due to the presence of a symmetric damage. This finding was in accordance with the result
obtained in a circular hollow cylinder with a symmetric defect reported in the previous study [26].
The mechanism of generating L(0,1) mode from the direct L(0,2) mode at the symmetric damage was
not so clear. One possible reason is that the presence of the slot damage reduces the thickness of
the polygonal drill pipe, which makes the excitation frequency bellow the cut-off frequency of the
L(0,2) mode.

Reflected and transmitted time domain waveforms from the asymmetrically damaged hexagonal
drill pipe is shown in Figure 15e,f, respectively. By comparing the Figure 14c,e, several findings
were clearly observed. First, there were five wave packets in the reflected waves obtained from the
asymmetrically damaged hexagonal drill pipe. Second, the arrival time of the wave packets 1O, 2O,
and 3O in the reflected waveform from the asymmetric damaged hexagonal drill pipe were the same to
the corresponding wave packets in the waveform from the symmetric damaged structure. The wave
packets 1O and 3Owere the reflected L(0,2) and L(0,1) modes, respectively. The wave packet 2Owere
the converted waves from the L(0,2) mode to L(0,1) mode due to the existence of the defect. Third,
two additional wave packets, 4O and 5O, appeared in the waveform, which was the converted flexural
modes due to the asymmetric damage. The same findings could be obtained from the transmitted
waves shown in Figure 15f. The presence of converted flexural modes in the reflected and transmitted
waves can be used to identify the asymmetry of a damage in the hexagonal drill pipe.
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axial surface traction at the center frequency of 60 kHz: (a) and (b) reflected and transmitted waves
from a normal hexagonal drill pipe, respectively; (c) and (d) reflected and transmitted waves from a
symmetrically damaged hexagonal drill pipe, respectively; and (e) and (f) reflected and transmitted
waves from an asymmetrically damaged drill pipe, respectively.

4.2.3. Exciting Torsional Mode at the Center Frequency of 50 kHz

In the previous Sections 4.2.1 and 4.2.2, axial surface traction is excited to generate longitudinal
modes in the hexagonal drill pipes. In this section, circumferential surface traction was excited
symmetrically to generate a single T(0,1) mode guided wave in hexagonal drill pipes. The excitation
signal was a tone burst at the center frequency of 50 kHz with 20 cycles. The length of hexagonal
drill pipes L was 3000 mm. The symmetric and asymmetric damages were located 1000 mm from the
left side. The length Lw and height Lh were set to 16 and 4 mm, respectively. The parameters for the
ALID regions were selected as follows. The maximum attenuation parameter αmax was set to 5 × 105.
The length of La was 120 mm. The length of the sub layer la was 4 mm, which was equal to element
size. The value of m was set to 3.
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Torsional reflected and transmitted time domain waveforms received from the normal hexagonal
drill pipe are shown in Figure 16a,b, respectively. In the reflected waves, only the excitation packet
appeared. In the transmitted waves, the wave packet appeared at 1.04 × 10−3 s. Its propagation
distance was 3000 mm. Therefore, the calculated group velocity was 3000 mm/1.04 × 10−3 s = 2884 m/s.
It was close to the value of 2917 m/s which was the theoretical group velocity of T(0,1) mode at the
frequency of 50 kHz, as shown in Figure 4d.

Figure 16c,d illustrate the torsional reflected and transmitted waveforms received from the
corresponding symmetrically damaged hexagonal drill pipe. In the reflected waves, except for the
excitation wave, the reflected wave packet appeared at 6.9 × 10−4 s. Suppose it was reflected from the
damage, its propagation distance was 2000 mm. Therefore, the calculated group velocity of this wave
packet was 2000 mm/6.9 × 10−4 s = 2898 m/s, which was also close to the theoretical group velocity
value of T(0,1) mode at 15kHz. It was verified that this wave packet was reflected from the symmetric
defect. In the transmitted waves, the wave packet appeared at 1.04 × 10−3 s. It was verified that it was
the transmitted T(0,1) mode.

Torsional reflected and transmitted waveforms from the asymmetrically damaged hexagonal drill
pipe are shown in Figure 16e,f, respectively. In Figure 16e, it was found that, except the excitation and
the reflected T(0,1) wave packets, additional wave packets appeared in the reflected waves. They were
converted flexural modes, which were due to the existence of an asymmetric damage. There were more
than one converted modes in the waveform. The same observation could be found in the transmitted
waves in Figure 16f.
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Figure 16. Time domain waveforms received from hexagonal drill pipes under the excitation of
circumferential surface traction generating T(0,1) mode at the center frequency of 50 kHz: (a) and (b)
reflected and transmitted waves from a normal hexagonal drill pipe, respectively; (c) and (d) reflected
and transmitted waves from a symmetrically damaged hexagonal drill pipe, respectively; and (e) and
(f) reflected and transmitted waves from an asymmetrically damaged drill pipe, respectively.

5. Conclusions

In this paper, for the purpose of inspecting the long range of polygonal drill pipes by using
the ultrasonic guided wave technique, characteristics of ultrasonic guided waves propagating in
polygonal drill pipes are studied and the interactions between ultrasonic guided waves and damages
are investigated. First, the phase velocity and group velocity dispersion curves in polygonal drill pipes
are derived by using the semi-analytical finite element method. It is found that the multiple modes are
in existence at a specific frequency and the number of modes is much larger than that of the referential
hollow cylinder. As the number of edges of the outer surface of the cross section is increased, the phase
and group velocity dispersion curves become sparse. Second, based on the derived phase velocity
and group velocity dispersion curves, ultrasonic guided waves of longitudinal and torsional modes
propagating in normal, symmetrically damaged, and asymmetrically damaged hexagonal drill pipes
are studied. In order to eliminate the influence of boundary reflections, the ALID technique is applied
to both ends of a hexagonal drill pipe to remove the unwanted end reflections. It is illustrated that,
in the reflected waves, the presence of reflected wave packets implies the existence of damage in the
inspected hexagonal drill pipe. Furthermore, the presence of converted flexural wave packets in the
reflected or transmitted waves indicates that the damage is asymmetric. Our study results have shown
that inspecting polygonal drill pipes using the technique of ultrasonic guided waves is feasible and
effective. It is a promising method for detecting damage in polygonal drill pipes with high efficiency
and accuracy. In future work, an experimental study on the inspection of polygonal drill pipes using
ultrasonic guided waves will be conducted.
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