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Abstract: As tea is an important economic crop in many regions, efficient and accurate methods for
remotely identifying tea plantations are essential for the implementation of sustainable tea practices
and for periodic monitoring. In this study, we developed and tested a method for tea plantation
identification based on multi-temporal Sentinel-2 images and a multi-feature Random Forest (RF)
algorithm. We used phenological patterns of tea cultivation in China’s Shihe District (such as the
multiple annual growing, harvest, and pruning stages) to extracted multi-temporal Sentinel-2 MSI
bands, their derived first spectral derivative, NDVI and textures, and topographic features. We then
assessed feature importance using RF analysis; the optimal combination of features was used as
the input variable for RF classification to extract tea plantations in the study area. A comparison of
our results with those achieved using the Support Vector Machine method and statistical data from
local government departments showed that our method had a higher producer’s accuracy (96.57%)
and user’s accuracy (96.02%). These results demonstrate that: (1) multi-temporal and multi-feature
classification can improve the accuracy of tea plantation recognition, (2) RF classification feature
importance analysis can effectively reduce feature dimensions and improve classification efficiency,
and (3) the combination of multi-temporal Sentinel-2 images and the RF algorithm improves our
ability to identify and monitor tea plantations.

Keywords: remote sensing; Sentinel-2; tea plantation identification; Random Forest algorithm; feature
selection; China

1. Introduction

Tea is an economically significant crop in global agriculture [1,2] and an important economic
engine in many developing countries [3]. The global tea industry has developed rapidly since the
beginning of this century; according to the International Tea Commission, the global tea plantation area
in 2015 was 4.52 million ha, a 70.6% increase over the 2.65 million ha in 2000 (http://www.inttea.com/).
Tea production played an important role in the development of the Chinese agricultural economy [4],
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and China is now the world’s largest tea producer, with 2.79 million ha under cultivation in 2015,
accounting for 61.7% of global tea plantation area [5,6]. Determining the spatial distribution and area
of tea plantations in a timely and accurate manner is of great significance for analysing and regulating
the industry, optimizing the regional distribution of tea production, and promoting its sustainable
development [7]. This can also provide basic data for yield estimation, disease analysis, environmental
effects, and other research interests.

It is expensive and time-consuming to monitor the large-scale spatial distribution and area of
tea plantations using traditional surveys and statistics. However, remote sensing technology enables
efficient spatiotemporal observation of land-use/land-cover (LULC) change processes [8,9]. The existing
research on tea plantation recognition has used a variety of data sources and classification methods.
Ghosh et al. [10] classified tea plantations and other land cover types in Assam, India, by visual
interpretation of IRS LISS II images, but the classification accuracy was relatively low due to inherent
uncertainty of this approach as well as limitations of the satellite data. A subsequent study used
decision tree classifiers with these images, achieving an overall classification accuracy of 88% [11].
He et al. [12] used an artificial neural network (ANN) ensemble and maximum-likelihood classification
(MLC) to classify land cover based on Landsat TM and topographical data, achieving 81.03% overall
accuracy and 43.33% for tea and mulberry plantations.

As remote sensing technology continues to develop, many high-resolution images have been used
for tea plantation extraction. Fauziana et al. [13] utilized SPOT-7 imagery to determine the tea/non-tea
fractions using linear spectral mixture analysis; this produced high-accuracy results but overestimated
certain tea areas. Dihkan et al. [9] extracted spectral and textural features from high-resolution digital
aerial images and used a modified vegetation index with a Support Vector Machine (SVM) algorithm
to classify LULC types with producer’s and user’s accuracies of 92.09% and 94.68%, respectively.
Xu et al. [4] used the decision tree method with spectral features, normalized difference vegetation
index (NDVI), and direction intensity features from ZY-3 imagery to extract the tea plantation data;
producer’s and user’s accuracies in a mountainous area were 90.05% and 85.58%, respectively, while
those in a plains area were 71.84% and 73.99%. Xu [14] identified tea plantations in GF-1 imagery
using the multi-level rule classification method based on object-oriented and multi-source data fusion,
obtaining producer’s and user’s accuracies of 88.2% and 87.7%, respectively. Chuang and Shiu [15]
used the spectral and texture features of WorldView-2 imagery to interpret tea-related LULC; by
comparing four classification methods, they found that MLC achieved the highest producer’s and
user’s accuracies (87.31% and 95.51%, respectively). Yang [16] also used WorldView-2 imagery to
classify vegetation based on spectral features, NDVI, and fingerprint texture features, with producer’s
and user’s accuracies of 83.3% and 93.67%, respectively.

As tea is a perennial woody evergreen plant, its spectral characteristics are easily confused
with similar vegetation such as orchards and bushes, so it is difficult to achieve ideal accuracy
for tea plantation identification using only spectral features [9]. Previous studies have mainly
used single-temporal medium- or high-resolution optical images for tea plantation recognition.
The identification accuracy when using the former was low, though much improved when using the
latter. However, high-resolution image data have generally been expensive and unable to provide
high temporal resolutions, making it difficult to identify and monitor tea plantations at high temporal
frequencies over large areas. In this context, Sentinel-2 imagery is among the best options for regular
monitoring of tea plantations due to its high spectral and spatial resolution, continuity, affordability
and access, and its history of successful application to multi-temporal classification research for crops
and other vegetation. In this study, we developed an improved method for identifying tea plantations
based on multiple features (spectral reflectance, first-derivative spectra, NDVI, and textures) derived
from multi-temporal Sentinel-2 images and topographic features, verified the accuracy of our method,
and produced a spatially explicit tea plantation map in the chosen study area.
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2. Materials and Methods

2.1. Study Area

We selected the Shihe District (Figure 1) in the western part of Xinyang City, Henan Province,
China as our study area. This is a typical region in the Jiangbei Tea District, one of the four largest
tea districts in China, and covers 1783 km2 between 113◦42′36” E to 114◦08′34´́ E and 31◦24′06” N to
32◦33′00”. The area has a continental monsoon climate within the transition from subtropical to warm
temperate zones, with an average temperature of 15.1 ◦C and an annual precipitation of 1109.11 mm.
The elevation ranges from 54 to 906 m, with the highest terrain in the Tongbai and Dabie Mountains to
the southwest and the lowest in the northeastern plains along the Huaihe River. This district is the
largest county for green tea production in China and is the origin and main production area of the
famous Chinese teas “Xinyang Maojian” and “Xinyang Red”. In 2004, it was named the "Hometown of
Chinese Tea" by the state forestry administration of the People’s Republic of China. At present, tea
plantations in the region cover 472.56 km2 [17], accounting for 26.5% of the district’s total area.
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high-quality tea plants [19,20]. A deep pruning is usually conducted in May following the spring 
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Figure 1. Study area location in Henan Province, China, and digital elevation model (DEM).

Tea in China follows a regular annual growth cycle that begins in late March and goes through
three growth stages and two rest stages before returning to dormancy in mid-late October [18]. Farmers
usually pick tea during the growing stages; in the study area, spring tea begins to be picked in late
March or early April through mid-late May, summer tea is picked in early June through early July, and
autumn tea is picked in early August through early October. Tea plants in the study area are pruned
three times a year to regulate and control their branching habits, promote hierarchy and health, and
prevent pests and diseases; proper pruning can prolong the life of stable/high-yielding, high-quality
tea plants [19,20]. A deep pruning is usually conducted in May following the spring harvest and two
light prunings are conducted in August and September (Figure 2). Our field investigations showed
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that there was a significant difference in appearance between tea plantations before and after deep
pruning (Figure 3).Sensors. 2019, 11, x FOR PEER REVIEW 4 of 16 
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Figure 3. Effect of pruning on tea plantations in the study area: (a,b) field photos of tea plantations
before and after pruning, respectively; (c,d) Sentinel-2 false colour images of tea plantations before and
after pruning, respectively.

2.2. Data and Preprocessing

2.2.1. Sentinel-2 Image Data

The Sentinel-2 satellite images (Level-1C S2) were downloaded from the European Space Agency’s
(ESA) Sentinel Scientific Data Hub. We selected images from four different seasons (18 April 2018;
12 June 2018; 15 September 2017; and 19 December 2017) to account for changes in tea growth influenced
by picking, pruning, weather conditions, and image availability. We choose the blue (B2), green (B3),
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red (B4), and near-infrared (B8) bands with 10 m resolution and four red-edge (B5, B6, B7, and B8A)
bands with 20 m resolution. Radiation calibration and atmospheric correction of the images, as well as
resampling of the red-edge bands from 20 m to 10 m, were carried out in ENVI 5.3 and ENVI 5.5.

2.2.2. Digital Elevation Model (DEM) Data

We obtained 30 m DEM data from NASA Shuttle Radar Topography Mission (SRTM), and used
them, as well as slope and aspect data derived therefrom, as terrain feature variables for tea plantation
identification and mapping.

2.2.3. Ground Survey Data and Sample Datasets

The sample bank of the study area was established using ground survey data and Google Earth
high-resolution remote sensing image data. We used ground surveys in April and June, 2018, to collect
410 samples of typical land-use types, including tea plantations, forest, cropland, built-up, and water.
2259 polygonal samples were obtained by two researchers’ independent visual interpretation of Google
Earth imagery: the number of actual pixels was 29,321, of which 7828 were tea plantations and 21,493
were other categories. Thus, tea plantation samples accounted for 27% of the total, consistent with the
actual proportion of tea plantation area in the study area. Stratified random sampling of the samples
was carried out in ArcGIS 10.2, 70% of which were training samples with the rest serving as validation
samples (Figure 4).
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2.3. Methods

Based on the unique characteristics of tea plantations, we developed a method based on
the multi-temporal and multi-feature Sentinel-2 images to distinguish tea plantations from their
surrounding areas (Figure 5).
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2.3.1. Feature Analysis and Selection

The main LULC types in the study area were tea plantations, evergreen forests, deciduous forests,
dry land, paddy fields, built-up, and water. Our field investigations showed that many southeastern
tea areas were interplanted with agroforestry species (such as chestnuts), so tea plantations were
subdivided into two types: monoculture and polyculture. We extracted the spectral reflectance of
different LULC types from Sentinel-2 multi-temporal images using the sample data, then calculated the
mean reflectance of each type and analysed the spectral differences between tea plantations and the rest
(Figure 6). In the blue (B2), green (B3), red (B4), and red-edge (B5) bands, the spectral characteristics of
both tea plantation types were similar to those of evergreen forest, deciduous forest, paddy fields, and
dry land. In the near-infrared (B8) and red-edge (B6, B7, B8A) bands, although the reflectance of water
was obviously distinct, there were different degrees of confusion between the two tea plantation types
and others in different seasons. Therefore, it was difficult to clearly identify tea plantations using only
the spectral features of the 8 bands, making it necessary to use auxiliary information such as spectral
derivatives, NDVI, textures, and topographical features to improve the identification accuracy.
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When the NDVI was plotted for the eight typical LULC types on each of the four imagery dates
(Figure 7), three clear observations could be made. First, the NDVI of paddy fields, dry land, built-up,
and water was obviously different from tea plantations and forests. Second, the NDVI of monoculture
tea plantations was similar to polyculture tea plantations, evergreen forest, and deciduous forest in
April and September but was significantly lower in June. This was because the vegetative characteristics
of monoculture tea plantations were missing in early June (after harvest and extensive pruning) but
this effect was buffered by the foliage of interplanted (chestnut) trees in the polyculture tea plantations.
Third, the NDVI of monoculture tea plantations and evergreen forest was very similar in December
while that of polyculture tea plantations and deciduous forests was lower. This was because the tea
plants were dormant in December but retained their leaves, such that the NDVI of monoculture tea
plantations was similar to evergreen forest, while that of deciduous forests (following leaf drop) was
lowest, and that of polyculture tea plantations reflected the combination of evergreen tea plants and
deciduous interplanted trees (like chestnuts). In April, June and September, chestnut trees were in the
germination and leaf development stage, rapid growth stage, and fruit ripening stage, respectively,
so their NDVI remained high, while by December, chestnut trees had dropped their leaves, pulling
the NDVI of polyculture tea plantations downward. According to the field survey, most forest in
the study area was deciduous, so the difference in NDVI between December and June can be used
to distinguishing monoculture tea plantations, polyculture tea plantations, and most forest areas.
December was a good period in which to distinguish polyculture tea from other similar types.

Solving the first derivative of spectral reflectance can reflect the change rate of the original
spectral curve and enhance the slight differences in slope for vegetation, better reflecting the essential
characteristics in different growth stages and increasing the separability of land cover types [21,22].
Texture can also reflect the spatial structure characteristics of objects [23]. Compared with other LULC
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types, the spatial textural features of tea plantations were more significant. Adding these features to
the tea plantation extraction process can thus make up for the lack of spatial information for spectral
features and improve the classification accuracy [24]. In the study area, tea plantations were mostly
distributed in low mountainous and hilly areas, such that topographic conditions including elevation,
slope, and aspect directly affected the strip characteristics of tea plantations established along contour
lines. Therefore, we extracted a total of 325 spectral, NDVI, and GLCM textural features from the four
Sentinel-2 images, and topographic features as input variables (Table 1).Sensors. 2019, 11, x FOR PEER REVIEW 8 of 16 
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Table 1. Feature parameters extracted from the four Sentinel-2 images and topographic features.

Feature Type Feature Phase Feature Name Feature Variable Feature Number

Spectral
feature

2018-4-18,
2018-6-12,
2017-9-15,
2017-12-19

Reflectance B2, B3, B4, B5, B6, B7, B8, B8A 32

First derivative
spectral

Der1_B2, Der1_B3, Der1_B4, Der1_B5,
Der1_B6, Der1_B7, Der1_B8, Der1_B8A 32

Vegetation
index

2018-6-12,
2017-12-19

NDVI Ndvi_12-19, Ndvi_12-19- Ndvi_6-12 2

Texture
feature

(GLCM)

2018-4-18,
2018-6-12,
2017-9-15,
2017-12-19

Mean Mea_B2, Mea_B3, Mea_B4, Mea_B5,
Mea_B6, Mea_B7, Mea_B8, Mea_B8A 32

Variance Var_B2, Var_B3, Var_B4, Var_B5, Var_B6,
Var_B7, Var_B8, Var_B8A 32

Contrast Con_B2, Con_B3, Con_B4, Con_B5, Con_B6,
Con_B7, Con_B8, Con_B8A 32

Homogeneity Hom_B2, Hom_B3, Hom_B4, Hom_B5,
Hom_B6, Hom_B7, Hom_B8, Hom_B8A 32

Dissimilarity Dis_B2, Dis_B3, Dis_B4, Dis_B5, Dis_B6,
Dis_B7, Dis_B8, Dis_B8A 32

Correlation Cor_B2, Cor_B3, Cor_B4, Cor_B5, Cor_B6,
Cor_B7, Cor_B8, Cor_B8A 32

Entropy Ent_B2, Ent_B3, Ent_B4, Ent_B5, Ent_B6,
Ent_B7, Ent_B8, Ent_B8A 32

Angular second
moment

Asm_B2, Asm_B3, Asm_B4, Asm_B5,
Asm_B6, Asm_B7, Asm_B8, Asm_B8A 32

Topographic
feature

-

Elevation Ele 1

Slope Slo 1

Aspect Asp 1

Sum 325
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2.3.2. Classification Method

Random Forest (RF) is an ensemble learning algorithm proposed by Breiman that consists of
multiple decision trees or classified regression trees [25]. Each tree is constructed by a certain number
of random samples and random feature training [26–28]. The basic algorithm flow of RF classification
is as follows: (1) Using the bootstrapping sampling method, two-thirds of the data are extracted
as training samples (called in-bag data) and the remaining one-third are validation samples (called
out-of-bag (OOB) data). The latter can be used to estimate the internal error. (2) A classification and
regression tree is constructed for each training sample set to generate a random forest consisting of
N trees. In the growth process of each tree, m is randomly selected from all the features M (usually
m =

√
M). In m features, the optimal segmentation feature is selected according to the Gini coefficient,

calculated as follows:
Gini = 1−

∑
C

p2(C/N) (1)

where C is the number of classes, N is the number of trees, and P represents the probability of belonging
to C. (3) Combining the classification results of N decision trees, the final classification results are
determined by the majority voting principle.

Multi-temporal and multi-category features are helpful for improving the recognition accuracy
of LULC types, but the large dimensions of features involved in classification will lead to increasing
computational complexity and decreasing computational efficiency of the classifier, and not every
feature will have a significant impact on the classification accuracy. Therefore, it is necessary to extract
the importance information of features and obtain a feature subset as small as possible by eliminating
redundant or irrelevant features without significantly reducing the classification accuracy. The RF
algorithm calculates variable importance using OOB data errors. First, for each tree i in the random
forest, errOOB1f

i is calculated by using the OOB data of feature f ; then noise interference is added
to feature f of OOBf

i data randomly, and errOOB2 f
i is calculated again; the formula for calculating

feature f importance is as follows:

FI f =
1
N

∑
N

(
errOOB2 f

i − errOOB1 f
i

)
(2)

When random noise is added, if the classification accuracy of the OOB data decreases dramatically
(that is, errOOB2 increases), this shows that this feature has a clear impact on the prediction results of
samples; in other words, it is of high importance.

2.3.3. Determination of Random Forest Parameter

We built the RF classification model using EnMap-Box 2.2 software [29,30], initially selecting
1–500 decision trees for parameter N. Experimental results(Figure 8) showed that the overall accuracy
(OA) showed a fluctuating upward trend as N increased, but by N= 70 this had stabilized at OA = 95.12%
with a calculation time of 3.5 minutes. When N > 70, the classification accuracy did not improve
effectively, while the calculation time increased significantly, leading to decreased of calculation
efficiency. Therefore, we chose N = 70 to construct the RF classification model.
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2.3.4. Accuracy Analysis of Multi-temporal and Multi-feature Tea Plantation Identification Method

In order to determine the best scheme for tea plantation identification, eight groups of feature
models (Table 2) were designed based on multi-temporal and multi-feature characteristics.

Table 2. Eight groups of feature models used for accuracy analysis.

Feature Model Feature Dimension Description

S1 16 8-band spectral features on 2018-4-18
S2 16 8-band spectral features on 2018-6-12
S3 16 8-band spectral features on 2017-9-15
S4 16 8-band spectral features on 2017-12-19
S 64 8-band spectral features of all four images

GLCM 256 8-band texture features of all four images

S+NDVI+DEM 69 8-band spectral features of all four images +
Vegetation index features + Topographic features

S+NDVI+DEM+GLCM 325
8-band spectral features of all four images +

Vegetation index features + Topographic features +
8-band texture features of 4 phases

We then compared the classification results of the different models (Table 3). Generally speaking,
the classification accuracy showed an upward trend with increasing types of feature variables.
The producer’s accuracy and the overall accuracy for both tea plantation types in the multi-temporal
spectral feature model S increased by 18.01%, 22.08%, and 9.61%, respectively, when compared with
the single-temporal spectral feature model (S1–4).With regard to S, S + NDVI + DEM, and S + NDVI +

DEM + GLCM, the producer’s accuracies of monoculture tea plantations were 93.47%, 93.91%, 94.85,
those for polyculture tea plantations were 81.19%, 82.01%, 82.24%, and the overall accuracies were
95.89%, 96.05% and 96.33%, respectively. The advantages of the multi-source information clearly
complemented one other, which was conducive to increasing the separability of different LULC and
improving the recognition accuracy of tea plantations and the overall classification effect.
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Table 3. Comparison of classification accuracy of different feature models using the RF method.

Feature Model
Monoculture Tea Plantation Polyculture Tea Plantation

OA/% Kappa
PA /% UA /% PA /% UA /%

S1 75.46 71.76 59.11 61.71 86.28 0.6890
S2 87.13 83.92 69.28 58.83 89.06 0.7585
S3 80.92 83.00 74.77 63.24 88.88 0.7512
S4 85.56 77.71 73.60 70.63 89.60 0.7693
S 93.47 92.71 81.19 84.45 95.89 0.9059

GLCM 89.14 91.55 76.64 74.97 93.38 0.8485
S+NDVI+DEM 93.91 92.92 82.01 83.08 96.05 0.9099

S+NDVI+DEM+GLCM 94.85 93.56 82.24 85.02 96.33 0.9163

2.3.5. Optimum Recognition Features for Tea Plantations

Although the classification accuracy of the S+NDVI+DEM+GLCM model was highest, its
abundant feature variables resulted in a low calculation efficiency, making it necessary to select the
optimum recognition features from the full set of 325. There are several methods for finding the optimal
feature combination. One such method is the backward feature elimination algorithm [31]. Another
method involves ranking the feature importance value and accumulating features one by one to the
classifier, then selecting the feature subset with the highest accuracy [32]. Owing to the high feature
dimension in this study, in order to improve the computational efficiency, we adopted a threshold
segmentation method that considers the feature importance value and the number of bands.

Following RF classification feature importance analysis, we carried out experiments with different
numbers of features. Because the RF algorithm was a random selection of samples and features, the
results of each calculation were different, so the mean values of 10 calculations were obtained to avoid
randomness errors. We then ranked the mean values of feature importance and selected features in
four importance classes as input features for RF classification (Table 4).

Table 4. Accuracy comparison of classification results with different numbers of optimum features.

Mean Value of
Feature Importance

Feature
Dimension

Monoculture Tea
Plantation

Polyculture Tea
Plantation OA/% Kappa

PA /% UA /% PA /% UA /%

≥1.00 10 93.28 90.28 78.39 78.76 95.01 0.8870
≥0.90 17 94.10 91.46 80.37 81.71 95.68 0.9020
≥0.80 28 94.29 91.75 81.66 84.62 96.05 0.9100
≥0.75 39 93.28 91.81 81.19 82.94 95.91 0.9068

Using 10 features with average importance over 1.00 resulted in a better performance than any
single-temporal spectral feature (Table 3), with an overall classification accuracy of 95.01%. Using
17 features with average importance over 0.90 produced an overall accuracy of 95.68%. Using 28 features
with average importance over 0.80, produced results close to those achieved when using all 325 feature
classifications. This was due to the addition of optimized multi-temporal spectral, NDVI, textural,
and topographic features, which increased the spectral differences and separability between different
objects. After feature selection, the redundant information was eliminated, and band information
that played a key role in classification was retained; this greatly reduced the dimension of input
features and effectively reduced the computational complexity of the classifier while achieving high
classification accuracy.

In order to further explore the impact of each feature variable on classification accuracy, the
optimal feature combination was used to identify tea plantations in the study area and calculate the
importance of all 28 feature variables, which varied greatly (Figure 9). Ele, Der1_B7-09-15, Ndvi_12-19,
and Ndvi_12-19-Ndvi_6-12 had the greatest importance, indicating that elevation, the first derivative
of the red-edge band (B7) on September 15, winter NDVI, and the difference between winter and
summer NDVI had the greatest contribution to the identification of tea plantations. Seven first spectral
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derivative and mean texture features (Der1_B8A-06-12, Der1_B2-04-18, Der1_B3-06-12, Der1_B8A-12-19,
Der1_B8-06-12, Der1_B8A-04-18, and Mea_B2-06-12) contributed clearly and equally to classification.
Overall, there were 8 spectral features, 15 first derivative spectral features, 2 NDVI features, 1 terrain
feature, and 1 texture feature; only mean texture contributed to classification and its contribution was
low. All four temporal phase features contributed to tea plantation identification, but spectral features
in June and September contributed the most.
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3. Results and Discussion

3.1. Classification Results and Accuracy Assessment

Figure 10 shows the extraction result for tea plantations in the study area using the 28 optimal
features with the RF algorithm. In order to assess the overall result, we merged both tea plantation
types and analysed the confusion matrix of the classification results. Of the 2449 tea plantation pixels,
2365 were correctly extracted and 84 were misclassified as other LULC types, and 98 of the other
6307 pixels were misclassified as tea plantations. Those misclassified as tea plantations were mainly
forest, indicating the serious confusion between these types that affects the accuracy of tea plantation
identification; this occurred mainly because of widespread tea plantations interplanting with other
agroforestry in the study area. In April, June, and September, the polyculture tea plantations were
interplanted with and almost covered by agroforestry. Although these can be distinguished using
December imagery, some confusion remained between these very similar types.
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3.2. Comparison and Analysis Classification Method Accuracy

In order to evaluate the RF method’s performance for tea plantation identification, we used
the same data (28 optimal feature combinations designated above) to identify tea plantations using
the SVM algorithm and compared the results (Table 5). The overall accuracy of the RF method was
1.49% higher and the producer’s and user’s accuracy for tea plantations were 4.12% and 3.57% higher,
respectively, while the classification accuracy of other LULC types was also improved. By comparing
the tea plantation area extracted in this paper with that in the 2017 Xinyang Statistical Yearbook [17],
we determined that the tea plantation areas extracted by RF and SVM were 44,198 ha and 41,829 ha,
respectively, while the statistical area of tea plantations in the study area was 47,256 ha. The relative
errors of the RF and SVM methods were 6.47% and 11.48%, respectively, demonstrating the improved
performance of the former for tea plantation identification. In addition, the highest accuracy of tea
plantation recognition using high-resolution imagery reported in the existing literature reached 95.51%,
while that of medium-resolution imagery reached 88.2%; this shows that the RF classification algorithm
combined with multi-temporal and multi-feature analysis of medium-resolution images was effective
in extracting tea plantation areas.
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Table 5. Comparison of classification accuracies of the RF and SVM methods.

Classes
RF SVM

PA /% UA /% PA /% UA /%

Tea plantation 96.57 96.02 92.45 92.45
Others 98.45 98.67 97.97 97.09
OA/% 97.92 96.43
Kappa 0.9485 0.9107

Feature dimension 28 28

4. Conclusions

We developed a new approach to identifying and classifying tea plantations and tested this
using multi-temporal Sentinel-2 remote sensing imagery from the Shihe District of Xinyang City,
Henan Province, China. We used the distinct phenological cycles of tea management (multiple annual
periods of growth, harvest, and pruning), as well as the distinct characteristics of monoculture and
polyculture tea plantations, to extract the initial classification features for eight typical LULC types
in the area. These features included spectral reflectance, first derivative spectral features, temporal
variations in NDVI, and textural and topographic features. Feature selection was carried out with the
RF classification feature importance algorithm, then the RF classifier was used to extract tea plantation
areas, with the following conclusions:

(1) The combination of multi-temporal and multi-feature classification methods improved the overall
accuracy and tea plantation classification producer’s and user’s accuracies compared with using
single-temporal spectral features.

(2) Selecting features using RF importance classification reduced the dimension of input features
and the computational complexity, resulting in improved classification efficiency and accuracy.
28 features with average importance >0.80 were selected as optimal features, resulting in an overall
classification accuracy of 97.92%, and the producer’s and user’s accuracy for tea plantations of
96.57% and 96.02%, respectively. The classification accuracy was similar to that achieved using
325 initial features before feature selection.

(3) Comparing the classification accuracy of the RF and SVM methods for tea plantation identification,
the former’s overall accuracy was 1.49% higher and the producer’s and user’s accuracies were
4.12% and 3.57% higher, respectively.

Further research should focus on two areas. First, both RF and SVM are shallow machine learning
algorithms, but the use of deep learning algorithms should be tested for the extraction of tea plantations
to further improve recognition accuracy. Second, our methods should be tested and verified in other
tea districts and at a larger scope.
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