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Abstract: The femtocell has evolved as a great solution for improving coverage and traffic offloading
from the current LTE cellular networks, and it accomplishes the dreams of the high data rate for
indoor mobile users. However, the exponentially expanding LTE femtocells cause interference in the
network, as they share the same licensed spectrum with a macrocell. To tackle this issue, numerous
interference mitigation techniques have been proposed in the literature. In this paper, we proposed
an Active Power Control (APC) technique, which not only reduces Inter-Cell Interference (ICI) in a
Macro User Equipment (MUE), generated from the downlink transmission power of an inadequately
deployed femtocell, but also reduces unnecessary power consumption to achieve a green femtocell
network. The simulation results show that the proposed APC technique effectively reduces ICI
and optimizes the throughput performance of the MUE. Compared with the existing power control
techniques, the APC technique provides a balanced trade-off in attaining necessary Quality-of-Service
(QoS) of the Femto User Equipment (FUE) and reducing ICI to the victim MUE existing in the close
proximity of the femtocell.

Keywords: active power control; Signal-to-Interference-plus-Noise-Ratio; inter-cell interference;
femto user equipment; macro user equipment; path loss; green Impact and CO2 emission

1. Introduction

The rapidly expanding demand for higher bandwidth, coverage and data rate in the mobile
network has been a great stimulant to develop system capacity. The overlaid femtocell over macrocell
in the heterogeneous network (HetNet) is a promising technology to accomplish the dreams of greater
coverage, high efficiency and enhance the capacity of the cellular network. Femtocell is an energy
efficient base station also called Femto Base Station (FBS) [1]. The femtocells are specifically designed
for an indoor environment to enhance the capacity and quality having coverage of 10–20 m, named
femto access point (FAP) [2]. The FAP shares the same licensed frequency spectrum with macrocell as
it connected to the mobile operator’s network using public infrastructure such as broadband internet
backhaul [3]. Traffic offloading from the LTE cellular network is currently a widely used method to
manage exponentially increasing data traffic [4]. A femtocell is a promising candidate in this regard,
as 45% of the mobile data traffic is offloaded through the femtocell because most of the data traffic
originates from the indoor environment [5]. It is expected that, in the near future, indoor environments
like schools, airports, homes, and offices will generate 60% and 90% of voice traffic and data traffic,
respectively [6]. Although femtocells are deployed in the existing macrocell network to enhance
network coverage in an indoor environment, the User Equipments (UEs) connected to them might be
indoor or outdoor, depending on their location [7].

One of the attractive features of the femtocell is the access style. Three kinds of access control
modes exist for the femtocell, i.e., closed, hybrid and open access modes. In the closed access mode, no
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other user can access femtocell services except for a Closed Subscriber Group (CSG) [8]. In the hybrid
access mode, the CSG is prioritized over all other users, whereas in open access mode, all users i.e.,
OSG (Open Subscriber Group) can enjoy the service of the femtocell [9,10]. The access control mode
plays an important role in terms of interference, i.e., the Inter-Cell Interference (ICI) is worse in the
CSG mode [11].

The overlaid femtocell over macrocell in the two-tier heterogeneous network, where anmacrocell
base station (also known eNB), works as a primary system and the Femto Base Station (also known
as HeNB) as a secondary system. The two systems share the same frequency spectrum and work
in a frequency reuse fashion [12]. The deployment of the femtocell has a massive role to manage
interference in the two-tier network [13]. Inadequately deployed femtocell by users has lack of
coordination with the macrocell. Normally the operator does not control such femtocells. The inter-cell
interference becomes worse when the user deploys the femtocell in an ad-hoc style and moves it from
one place to another. This can dramatically deteriorate the performance of the whole system by causing
interference to cell edge Macro User Equipment (MUE) [14].

High transmission power of the femtocell enhances indoor coverage area and better signal
strength; on the contrary, it causes a great amount of interference to the victim MUE existing
in the coverage area of the femtocell. The interference is much worse when the MUE has the
lower signal strength from the macrocell as compared to signal power from the femtocell [15].
This type of interference causes severe QoS degradation of the system, packet loss, transmission
delay, and communication link failure. Besides the interference, high transmission power increases
the atmospheric Carbon Dioxide (CO2) concentrations. The findings in the [16], show that the
Information and Communication Technology (ICT) produces around 830 million tons of CO2 every
year and is expected to double by 2020, which means more energy waste since carbon emission
is a straightforward result of energy usage in the world, especially when we know that the main
components of heterogeneous networks, which are the Macro Base Stations (MBSs) and FBSs, since the
number of these stations in every country is growing exponentially. This means the rising demand of
energy consumption increases carbon emission in the environment [17]. Thus, HeNB power should be
carefully tuned for reducing the CO2 emissions but still maintaining QoS of the user. In this scenario,
adaptive, active and cognitive resources management techniques can be the advanced solution rather
than conventional resources management and customary cell planning [18,19].

In this paper, we proposed an Active Power Control (APC) technique, which not only reduces
ICI to the victim MUE, generated by the downlink transmission power of the abysmal set up of
femtocell, but also reduces unnecessary power losses by actively tuning its downlink transmission
power. Although femtocells are low powered base stations, these power savings are crucial for the
green deployment of femtocells, especially for dense deployment of femtocells that would result
in increasing the total network consumption as millions of femtocells are expected to be deployed
in the next few years. The simulation results show that the proposed APC technique effectively
reduces the ICI and optimizes the throughput performance of MUE. Compared with the power
control techniques based on the objective Signal-to-Interference-plus-Noise-Ratio (SINR) of Femto
User Equipment (FUE), the MUE-assisted power control technique and range-based power control
technique, the APC technique provides a balanced trade-off in attaining necessary Quality-of-Service
(QoS) for FUE and mitigation of ICI to the macro user existing in the close proximity of the femtocell.

The rest of the paper is arranged in the following sections. Related work and the system model
are discussed in Sections 2 and 3, respectively. In Section 4, we discussed the existing power control
techniques, whereas we presented the proposed Active power Control Technique (APC) in Section 5.
We analyze the performance of the proposed and the existing approaches by conduction of simulation
in Section 6. Finally, in Section 7, we draw a conclusion.
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2. Related Work

Recently, numerous techniques have been presented in the literature to control downlink
transmission power of the femtocell. In [20], a distributed joint resource allocation algorithm has been
proposed to mitigate ICI in the two-tier femto-macro network. This algorithm consists of spectrum
sensing, transmission mode selection and channel state information (CSI) estimation. The cognitive
femtocell senses the unused slots and assigns a set of slots for each user. The slot allocation works
is well in conjunction with power allocation centred on geometric programming to enhance the
overall performance of the system. In [21], the proposed algorithm gradually reduces the downlink
transmission power, whenever they informed about a cell edge macrocell users getting interference
from its transmission power. This interference avoidance technique works when it receives information
about MUE in the vicinity of the femtocell. Interference avoidance technique enables to deploy
multiple femtocells in an indoor environment with higher capacity. The author presented cross-tier
signal-to-leakage-plus-noise (SLNR) based Water Filling (CSWF) power allocation algorithm [22] for
the mitigation of interference from the femtocell to the macrocell users. Cross-tier SLNR method
reduces the major part of cross-tier downlink interference by using a modified Water Filling (WF)
power allocation algorithm to determine the transmission power for each Resource Block (RB) of the
femtocell. Cognitive power control technique in [23] used to address the interference problem from
a femto base station to the nearby macrocell users. The FBS has the ability to sense its surrounding
in terms of spectrum sensing and obtain the required information about downlink radio resources
of a macrocell user. The FBS then tunes its transmission power efficiently and enhances the system
capacity by mitigating interference. In [2], the Stochastic Approximation (SA) algorithm for downlink
power control based on the information received through macrocell signalling. The femtocell then
updates its downlink transmission power based on this information. The adjustment of Downlink
(DL) power is based on the Channel Quality Indicator (CQI) and the ACK/NAK signal. A dynamic
power tuning technique presented in [24] is used to tackle the downlink interference from HeNB
to MUE. The HeNB tunes its downlink power based on information received from the interfered
MUE. This interference mitigation technique helps to reduce the consumption of power and enhance
the throughput of MUE. The MUE exists in the close proximity of HeNB, and receives interference
from HeNB, to reduce such interference; a power control scheme proposed in [25] based on network
listening. In [26], a novel scheme is proposed for interference mitigation in downlink cognitive
femtocell networks, which is called joint channel allocation and power assignment. This scheme
aims to reduce interference from the femtocell to MUEs and co-tier interference by collaboratively
allocating power resources and channels between several femtocells; it depends on the Physical
Cluster (PC) and the Virtual Cluster (VC). The writer also presented subcarrier power allocation
and a VC-based power budget adjustment algorithm and Hungarian algorithm to better allocation
of resources, minimize both co-tier and cross-tier interference in the femtocell. In [27], distributed
coordination techniques in the DL of macrocells for controlling ICI caused by a femtocell in two-tier
networks, where opportunistically reuse resources is an inherent requirement. The technique emphasis
is on the autonomous operation of femtocell by self-organizing deployment. In [28], the downlink
power control scheme presented to reduce the interference caused by a femtocell to its neighboring
cell users. The femtocell will adjust the minimum transmit power on the basis of partial path-loss
compensation which helps to reduce interference to adjacent cells and its users, that maintain the SINR
level and assuages the required Quality-of-Service (QoS) of femtocell user. To minimize the interference
caused by femtocells to MUEs in the downlink, a distributed Reinforcement Learning (RL) technique is
used in [29], which is also called Distributed Power Control using Q-learning (DPC-Q). This technique
identifies the sub-optimal pattern of power allocation in cognitive femtocell networks for increasing
femtocell capacity. Independent Learning (IL) and Cooperative Learning (CL) approaches are applied
to enhance performance.
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3. System Model

The two-tier macro–femto heterogeneous network is where a macrocell and femtocell work as an
essential primary system and secondary system, respectively, both systems share the same frequency
(f = 2 GHz) spectrum [30]. PM represents the downlink transmission power of the eNB. Similarly, the
HeNBs transmit with a fixed power PF. In the LTE-Advanced (LTE-A) network, the system resources
are divided along time slots and frequency sub-carriers. These resources are scheduled or distributed
to users in units of Physical Resource Blocks (PRBs). We assume that the K PRBs are distributed
uniformly among the MUEs in the macro-cell and the same resources are reused within each femtocell.
In this paper, we consider an inadequately deployed HeNB in an indoor environment. The HeNB
is linked to a macrocell through a broadband Internet backhaul link. The femtocell works in close
access mode, where only CSG users can subscribe the services of the femtocell. The access styles of
HeNB plays an important role in dealing with the interference. The interference is much sever in the
closed access mode. Therefore, we consider the CSG mode to take the worst interference scenario
into account.

Figure 1 shows the interference scenario of inter-cell interference (ICI) between the elements of
the primary and secondary systems. In this case, the downlink link transmission of HeNB is the source
of interference to MUE existing in its close proximity. We adopted the 3GPP LTE-A pathloss model for
urban deployment of the femtocell [31].

 

 
Figure 1. Interference scenario in HeNB and nearby macro and femto users.

3.1. Pathloss Model

The reduction of the power density of radio propagation from the Macro Base Station (MBS) to
UE (indoor and outdoor) described in terms of pathloss calculated according to 3GPP LTE-Advanced
pathloss model for urban deployments [32], which is given as.

PLM(dB) =

{
15.3 + 37.6log10(R1) + Lp (Indoor)

15.3 + 37.6log10(R1) (Outdoor)
(1)

The PLM denoted as pathloss from the macrocell to the User equipment, R1 is the range from the
MBS to UE whereas the Lp is the penetration loss through walls.
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Similarly, the path loss from the femtocell to MUE and FUE existing in the close proximity (indoor
and outdoor) can be calculated by using the path model as follows:

PLF(dB) =

{
38.46 + 20log10(R2) (Indoor)

max(15.3 + 37.6log10(R2), 38.46 + 20log10(R2)) + Lp (Outdoor)
(2)

The PLF denoted as pathloss from the femtocell to the User Equipment. Similarly, the R2 is the
distance from HeNB to indoor and outdoor users.

3.2. Spectral Efficiency

In this paper, the spectral efficiency estimated by using Truncated Shannon Bound (TSB). The TBS
has been used in 3GPP to optimally approximate the actual throughput by treating it as a function of
SINR experienced by the user [32–34]. The spectral efficiency can be estimated as:

ThrTBS =


Thr = 0 For SINR < SINRmin

Thr = Bwαlog2(1 + SINR) For SINRmin < SINR < SINRmax

Thr = Thrmax For SINR > SINRmax

(3)

In (3), bandwidth is denoted by Bw, the lower limit of SINR denoted by SINRmin (throughput
is zero below SINRmin) and upper limit denoted by SINRmax ( equal to the throughput of highest
coding rate/modulation), whereas α is used to match the link level performance.

4. Power Control Techniques

4.1. Power Control Technique Assisted by FUE

In a real scenario, the HeNB instructs all the FUE to measure the received signal power from the
neighboring interferer BS and send a feedback report [35]. The HeNB utilize the received information
from the FUE and make necessary adjustments in downlink transmission power. The FUE-assisted
power control technique (FUEAPCT) can be expressed as:

PFUEAssisted = max(Pmin, min(Po, Pmax)) (4)

In (4), Pmin and Pmax is the minimum and maximum transmission power of the femtocell.

Po = Pr FUEi + PLFBS→FUEi + εo (5)

Here, Pr FUEi is the received power at FUEi, PLFBS→FUEi is the pathloss from the FBS to the FUEi.
εo is set to maintain the necessary QoS of femto users in (5).

4.2. Power Control Technique Assisted by MUE

The HeNB adjusts downlink transmission power based on the received information from
the macro user through eNB backhaul, since there is no direct interface between MUE and the
HeNB, the MUE sends measured information (interference message) to HeNB via the eNB backhaul.
The HeNB utilizes the recived information from the MUE to tune its downlink transmission power.
The MUE-assisted power control Technique (MUEAPCT) can be illustrated as:

PMUEAssisted = max(min(αPSINR + β, Pmax) Pmin) (6)



Sensors 2019, 19, 2015 6 of 14

In (6), PSINR define SINR between the macro user and the nearest femtocell, whereas α is a linear
scalar that allows altering the slope of power control mapping curve, β is a parameter expressed in dB
that can be used for altering the dynamic range of power control [35].

4.3. Range-Based Power Control Technique (RBPCT)

The Femtocell can adjust its downlink transmission power by considering the coverage area and
the radius of both the macrocell and the femtocell; it also helps to maintain co tier-interference for
inadequate deployment and dense femtocell networks [36]. The femtocell can dynamically tune its
downlink transmission power by dividing the macrocell transmission power (PM) over its coverage
area (XM = log10(RM)) and femtocell coverage area(xFi = log10(rFi )), we obtained Y as follows:

Y =
PM
XM

(7)

In (7), the relationship between eNB downlink transmission power and its coverage area
represented by Y. Consequently, it can be utilized to derive HeNB downlink power (Pi) as follows:

Pi = Y× xFi (8)

Using Equation (8), Femtocell can adjust its downlink transmission power.

5. Proposed Active Power Control Technique

Figure 1 shows the ICI scenario between the elements of the primary and the secondary system.
The downlink transmission power of femtocell causes interference to the MUE that existing in its
coverage area. In such condition, MUE starts the handover or cell re-selection process. Since the
femtocell is working in closed access mode, the macro user cannot subscribe to the services of the
femtocell. In order to deal with such a scenario, the MUE measures the interference level from the
HeNB and sends an interference message (IM) to the femtocell based on the Interference Indication
Function (IDF) [37]. The IDF determines whether the interference experienced by the macro user is
higher or lower than the threshold interference level. The IDF can be expressed as.

Ii = Pi
t ψi(Ri)

−β (9)

xi =

{
0, Ii 6 IThreshold

1, Otherwise
(10)

In (9), Pi
t is the transmit power of the femtocell Fi. ψ represents log-normal shadowing, whereas

the path loss is given as (R)β. The range from the interfered FBS to UE is denoted as R, whereas the
path loss component for the indoor transmission is β. In (10), IThreshold is the interference threshold
set for the macro user. The IDF determines whether the interference experienced by the macro user
is higher than the threshold interference to maintain the desired QoS of the MUE or the interference
is lower than the threshold level. Based on the IDF, the macro user decides to send the interference
message (IM) including HeNB information to eNB. When the femtocell receives the IM from the
macro user via eNB backhaul, it understands that the non-CSG user is getting interference from its
downlink transmission.

In the first stage of the active power control technique, we introduced different power levels
and time levels to tune the downlink power of the HeNB. The power levels (Px, Py and Pz) and time
levels (TL1 and TL2) were used to reduce and enhance transmission power based on received IM.
The APC technique activates when the femtocell receives an IM from the MUE, The femtocell then
takes necessary measures to tune its downlink transmission power from Px to Py ( reduces ∆down).
The time levels play an important role in the smooth tuning of HeNB transmission power. If the
femtocell receives a new IM from the nearby MUE, it would not reduces its transmission power to
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Pz level until the time level (TL1) expires. Similarly, when HeNB has no IM and TL1 expires, then
the time level TL2 starts and the transmission power level of the femtocell increases from Pz to Py

(∆up). The same procedure of reducing and increasing transmission power will be carried out based
the HeNB receiving a new interference message. Figure 2 show the femtocell adjusts its transmission
power to respond to the IM from the MUE under the active power control technique.

Figure 2. Femtocell transmit power tuning (Px, Py and Pz).

The femtocell updates it downlink transmission power based on IM using following formulas

Pt = Px No Inter f erence Message (11)

Pt = Py = Px − ∆down Inter f erence Message & TL1 starts (12)

Pt = Pz = Py − ∆down New Inter f erence Message & TL1 running (13)

Pt = Py = Pz + ∆up No Inter f erence Message & TL2 starts (14)

Pt = Px = Py + ∆up No Inter f erence Message & TL2 running (15)

The IDF only focuses on the interference level of MUE. In order to maintain the necessary QoS of
the FUE, we used the QoS Indication Function (ξ) in the second step, which indicates the minimum
required QoS of FUE. The QoS Indication Function can be expressed as follows:

ξ =
Pre f ΓFUE

minRSRPj
(16)

In (16), ΓFUE is the minimum required SINR for FUE. Pre f is the downlink reference signal transmit
power of the HeNB. minRSRPj is the Reference signal received power measured by the FUEj.

Using the above-described statement, the femtocell then effectively tunes its downlink power as:

PAPC = max(Pmin, min(ξ Pt, Pmax)) (17)

In (17), Pmax and Pmin are the maximum and minimum transmit power respectively.
Based on the aforementioned information, the received downlink SINR of the macro user

equipment on PRB k (k = 1, . . . , K) can be calculated as:

SINRk
MUE =

Pk
MPLM

∑F
i=1 xi Ii + ∑

F
Pk

FAPC
PLF + ∑

M′
Pk

M′PLM′ + Pn
(18)

In (18), Pk
M and PLM are the transmit power and pathloss of the serving eNB respectively. Pk

FAPC
is

the transmit power of the interfering HeNB under the proposed power control scheme, whereas PLF
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is the pathloss from the interfering HeNB to UE. Similarly, Pk
M′ and PLM′ are the transmits power and

path loss of the interfering eNB to UE respectively. Pn is the thermal noise density.
The received SINR of the Femto user equipment using the same analysis can be expressed as

SINRk
FUE =

Pk
FAPC

PLF

∑F
i=1 xi Ii + ∑

M
Pk

MPLM + ∑
F′

Pk
F′PLF′ + Pn

(19)

In (19), Pk
FAPC

and Pk
F′ are the transmission power of the serving and interfering femtocell respectively.

PLF′ is the pathloss from the interferering HeNB to the UE.
Comparing with the existing techniques the proposed technique has the following advantages.

1. The Active Power Control Technique effectively reduces the inter-cell interference and optimize
the throughput performance of the MUE.

2. The proposed technique not only reduces ICI to MUE but also maintains the QoS of FUE by
considering the RSRP (Reference Signal Received Power) feedback from the Femto user to adjust
its downlink transmission power.

3. The femtocell actively tunes its downlink power by using the power levels (Px, Py and Pz) and
time levels (TL1 and TL2), Hence, the proposed APC approach reduce the unnecessary power
consumption to achieve green femtocell network.

4. Compared with existing power control approaches, the proposed approach offers significantly
better performance in terms of downlink throughput CDF of the macro user and the femto user,
the average throughput, FBS Power consumption and the green impact and CO2 emission.

The outlines of the proposed method are summarized in the Table 1.

Table 1. Active Power Control Approach.

Input Interference Messages and FUE feedback report.
Output Downlink Transmission Power tuning.

step 1 Using (10), the macro user decides to send IM including HeNB information to
eNB.

step 2 HeNB instruct its users to send a feedback report. Based on the (16), which
indicates the minimum required QoS, the FUE send the information to HeNB.

step 3 Based on the IM from the MUE and QoS indication report from the FUE, HeNB
actively tune its downlink transmission power using (17)

6. Simulation Results and Discussion

We conducted extensive numerical experiments in MATLAB according to simulation assumptions
and parameters used in 3GPP [38]. Table 2 shows a few summarized parameters. For simplicity, we
have considered the widely used full buffer traffic model. It is characterized by the fact that the UE
always has data to transmit or receive in the full buffer traffic model. The simulated interference
scenario is shown in Figure 1. We assumed the dense urban deployed HeNB located in 25× 25 house at
the boundary of the centered eNB. The radius of eNB and HeNB is set to 500 m and 25 m, respectively.
The eNB has a maximum transmitting power of 43 dBm. Similarly, the HeNB has 21 dBm and 0 dBm
maximum and minimum transmitting power respectively. In this simulation, the close access mode is
considered, which is the most favorite mode of indoor users, in which the CSG users enjoy higher data
rate and capacity and non-CSG users are not allowed to use the femtocell services. The interference is
severe in closed access mode as compared to other access modes.
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Table 2. Simulation parameters.

Parameters Assumptions

Carrier frequency ( f ) 2 GHz
Transmit power of macrocell (PM) 43 dBm
HeNB Noise Figure 8 dB
Femtocell’s Transmit Power (PF) Pmax = 21 Bm and Pmin = 0 dBm
Lognormal shadowing standard deviation for Femtocell 4 dB
Macrocell coverage Area (R1) 500 m
Shadowing standard deviation for Macrocell 8 dB
Femtocell Coverage Area (R2) 25 m
Exterior wall penetration loss 5 dB
Interior penetration loss (Lp) 15 dB
Thermal Noise Density (η) −174 dBm/Hz
Bandwidth (Bw) 10 MHz
Macrocell antenna Gain 14 dBi
Access Mode CSG
Interference threshold, IThreshold −72 dBm
Minimum separation UE to HeNB 0.2 m
Minimum separation UE to eNB 35 m
TL1 and TL2 200 ms
∆up and ∆down 2 dB
Traffic Model Full Buffer
Minimum required SINR for FUE (ΓFUE) 10 dB

In this paper, we conducted the simulation with “No Power Control or Fixed Power Control
Technique (FPCT)” as baseline, where there is no power control technique activated in the femtocell,
therefore, the femtocell transmits maximal power. It is a fact that high transmission power of HeNB
provides better signal strength, good coverage to the femto users; conversely, the cell edge macro users
receive interference from it. Therefore, the interference technique operating in the femtocell should
provide a balanced trade-off between the throughput of macrocell and femtocell users.

In the following subsections, we evaluated the performance of proposed and existing power
control techniques in-terms of downlink throughput distribution, average throughput distribution,
FBS power consumption and green impact and CO2 emission by conducting numerical experiments.

6.1. Analyzing Downlink Throughput Distribution

The simulation results in Figure 3 show that the downlink throughput distribution of macro users,
which is also called non-CSG users in this case. The downlink throughput of macro user drops severely
when there is no power control technique activated in the femtocell. However, the proposed active
power control technique outperforms its counterparts. It can be seen from the Figure 3, the macro user
achieve value of CDF of throughput 2.90 Mbps at 0.5 or 50% under the proposed APC technique, at the
same point the FPCT, FUEAPCT, MUEAPCT and RBPCT achieve 2.60 Mbps, 2.73 Mbps, 2.77 Mbps
and 2.71 Mbps receptively.



Sensors 2019, 19, 2015 10 of 14

Figure 3. Downlink Throughput CDF of the Macrocell User.

Figure 4 shows the downlink CDF of the femto users. From the results, it can be seen that the
proposed APC technique offers better performance except for ”No Power control approach”. With
no power control, the HeNB transmits maximal power. Therefore, the femto users enjoy higher
throughput at the cost of MUE performance. It can be seen from Figure 4 that the femto user achieves
value of CDF of throughput 16.17 Mbps at 0.5 or 50% under the proposed APC technique, at the same
point the FPCT, FUEAPCT, MUEAPCT and RBPCT achieve 16.98 Mbps, 15.23 Mbps, 14.36 Mbps and
14.01 Mbps receptively.

From the Figures 3 and 4, we can easily see that the APC technique provide a balanced trade-off
between the downlink throughput of macro users and femtocell users. In other words, this power
control technique reduces the interference level to macro users while meeting the required QoS
standard of the femto users.

Figure 4. Downlink Throughput CDF of the Femtocell User.

6.2. Average Throughput

In this subsection, we presented a comparison graph of the average throughput of the MUE and
FUE under FUE-assisted, MUE-assisted, range based power control technique and the proposed active
power control technique in Figure 5. The graph indicates that the proposed power control provides
a balanced trade-off between the performance of the femto user and the macro user.
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Figure 5. Average throughput under different power control approaches.

6.3. FBS Power Consumption

In Figure 6, we plot the FBS power consumption against the number of the active subscribers.
In this scenario, the femtocell transmits under the aforementioned power control techniques in a
radio-hostile environment. In order to carry out a candid comparison, the number of assigned resource
blocks for a user were kept constant. We can see from Figure 6 that the proposed active power control
technique outperforms its counterpart in reducing unnecessary power losses. Under the same scenario,
the APC approach consumed 13.51% less power than the baseline. Whereas, the FUEAPCT, MUEAPCT
and RBPCT, respectively, consumed 7.5% , 6.39% and 4.9% less power as compared to the baseline.

Figure 6. FBS Power Consumption Vs number of active subscribers.

6.4. Green Impact and CO2 Emission

The CO2 emission depends on the power supply in the base station. The important factor in the
green impact and CO2 emission is the conversion factor (c f ). The value of CO2 emission conversion
factor is different for the different energy sources [39]. The total CO2 emission can be calculated
as follows:

CO2 Emission (kg) = Power (kWh)× c f (20)

Based on the statistics in [40], the power consumption of a full load HeNB is assumed to be
165.42 kWh/year. The author in [41], assumed a constant CO2 emission conversion factor of 0.5 kg
CO2-e/kWh. Using the c f , we can estimate that a full load HeNB under No Power control approach
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emits 82.71 kg of CO2 per year. Table 3, shows the estimated CO2 saving per year for one femtocell
deployed in the dense urban area. From the Table 3, we can see that the proposed active power control
technique offer better performance compared to its counterpart by saving 11.17 kg of CO2 emission
per year.

Table 3. Green Impact Calculation and CO2 Emission.

Power Control Techniques Power Saving (%) CO2 Saving (kg/year)

FUE Assisted Power Control Technique 7.5 6.20
MUE Assisted Power Control Technique 6.39 5.29
Range Based Power Control Technique 4.9 4.05
Proposed Active Power Control Technique 13.51 11.17

The aim of the proposed APC technique is not only reducing ICI to MUE in close proximity
of the femtocell and maintaining necessary QoS of FUE, but also reduces the unnecessary power
losses. Moreover, the APC techniques activate only when the femtocells receive an IM from the victim
MUE. The IM originates on the basis of IDF when the interference from the femtocell to victim MUE
is higher than that of threshold interference. Before tuning its downlink transmission, HeNB seeks
for the RSRP feedback report from the femto user. On the basis of IM and feedback report, HeNB
actively tunes it downlink transmission power, whereas in proactive technique, the HeNB does not
take care of the existence of nearby victim MUE and it tunes its downlink transmission power based
on RSRP (Reference Signal Received Power), therefore, the proposed APC reduces unnecessary power
consumption. Although femtocells are low-powered base stations, these power savings are crucial for
the green deployment of femtocells, especially for dense deployment of femtocells that would result in
increasing the total network consumption as millions of femtocells are expected to be deployed in the
next few years.

7. Conclusions

In this paper, we proposed an APC technique to scale down the ICI level in the macro user while
maintaining the necessary QoS of the femto user. This type of interference is caused by the downlink
transmission of inadequately deployed femtocell. The proposed APC technique activates when the
macro user sends an IM based on IDF to HeNB through the backhaul link. The HeNB then seeks for
the RSRP feedback report from the FUE. Based on the IM and the feedback report, HeNB actively tunes
its downlink power using different power levels and time levels, therefore, it reduces unnecessary
consumption of power by saving 13.51% with respect to the baseline. The analysis of the green impact
and CO2 emission show that the proposed APC technique saved 11.17 kg/year of CO2 emission for
one full load HeNB, which is higher than the existing power control techniques. The simulation results
have demonstrated that the proposed APC technique effectively reduces the inter-cell interference (ICI)
and optimizes the throughput performance of MUE. Compared with the power control techniques
based on the objective Signal-to-Interference-plus-Noise-Ratio (SINR) of FUE, MUE-assisted power
control technique and range based approach, the APC technique provides a balanced trade-off in
attaining necessary Quality-of-Service (QoS) for FUE and mitigation of ICI to the nearby macro user.
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