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Abstract: Accurate and sufficient node location information is crucial for Wireless Sensor Networks
(WSNs) applications. However, the existing range-based localization methods often suffer from
incomplete and detorted range measurements. To address this issue, some methods based on low-rank
matrix recovery have been proposed, which usually assume noises follow single Gaussian distribution
or/and single Laplacian distribution, and thus cannot handle the case with wider noise distributions
beyond Gaussian and Laplacian ones. In this paper, a novel Anomaly-aware Node Localization
(ANLoC) method is proposed to simultaneously impute missing range measurements and detect
node anomaly in complex environments. Specifically, by utilizing inherent low-rank property of
Euclidean Distance Matrix (EDM), we formulate range measurements imputation problem as a
Robust `2,1-norm Regularized Matrix Decomposition (RRMD) model, where complex noise is fitted
by Mixture of Gaussian (MoG) distribution, and node anomaly is sifted by `2,1-norm regularization.
Meanwhile, an efficient optimization algorithm is designed to solve proposed RRMD model based
on Expectation Maximization (EM) method. Furthermore, with the imputed EDM, all unknown
nodes can be easily positioned by using Multi-Dimensional Scaling (MDS) method. Finally, some
experiments are designed to evaluate performance of the proposed method, and experimental results
demonstrate that our method outperforms three state-of-the-art node localization methods.

Keywords: wireless sensor networks; anomaly-aware node localization; low-rank matrix decomposition;
mixture of Gaussians

1. Introduction

Wireless Sensor Networks (WSNs) have made great progress and have been widely used in
various fields, such as environmental monitoring, intelligent transportation, target tracking, etc. [1–3].
The premise that these applications work well is accurate location information acquisition [4,5]. Up to
now, many localization methods have been proposed, which could be divided into two categories [6].
One is called range-based localization method that could achieve more accurate positioning, but the
computation and communication overhead is large while some hardware support is also required.
The other is named range-free localization method that is generally suitable for low power and cost
applications, yet their positioning accuracy is low.

In this paper, we mainly focus on the range-based localization methods, which could be described
as follows: in WSNs applications, some sensor nodes are randomly disposed, and a few of them
called anchors could get actual location information by GPS device or other equipment. Then, with
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the pair-wise range measurements between nodes and actual location of anchors, the location of all
unknown nodes could be easily estimated. In general, range-based localization methods often depend
on a large amount of accurate inter-node distance information. However, in practical situations, limited
by the energy of sensors or the distribution of nodes in application scenario, only a small amount of
inter-node distance information could be obtained [7]. Additionally, due to complex environments and
uncertain hardware abnormality, the range measurements inevitably suffer from some errors, which
lead to lower positioning accuracy. Usually, these errors can be regarded as a mixture of complex
noise and anomaly. In reference [6], the complex noise is considered to be caused by environmental
interference, malicious attacks, or other unpredictable factors, and is assumed to be a mixture of
Gaussian noise with single distribution and outlier noise with single distribution. Correspondingly,
Xiao et al. [6] proposed a method based on low-rank matrix completion to sift the complex noise
by adopting both Frobenius-norm regularization and `1-norm regularization. However, presetting
the complex noise into two known noise types was too arbitrary. Actually, the noise distribution in
practical applications was often unknown and showed a wider noise distribution beyond Gaussian
and Laplacian ones. On the other hand, reference [8] handled one more general application scenario
with the co-existence of complex noise and anomaly nodes, where anomaly nodes were defined as ones
with abnormal transmission module or unpredictable hardware defects. In reference [8], a `2,1-norm
regularization term was employed to detect the anomaly from the corrupted range measurements.
However, similar to reference [6], the so-called complex noise is still limited to be modeled as two
known noise types, i.e., the mixture of outlier noise and Gaussian noise.

To address this limitation, we propose a novel Anomaly-aware Node Localization (ANLoC)
method to simultaneously position the unknown nodes and probe the abnormal nodes in complex
environments. Specifically, a Robust `2,1-norm Regularized Matrix Decomposition (RRMD) model
is constructed by introducing Mixture of Gaussian distribution and `2,1-norm into the conventional
low-rank Matrix Decomposition (MD) model, which can not only well fit the intrinsic low-rank
property of Euclidean distance matrix, but also is robust against the node anomaly and a wider range
of complex noise distributions beyond Gaussian and Laplacian noises. Our basic idea is to encode the
node anomaly and the complex noise as a structural row/column sparsity matrix and a noise matrix,
respectively, with entries that satisfy Mixture of Gaussian (MoG) distribution. Here, we prefer to
employ MoG distribution as the general noise model due to its universal approximation property to
any continuous distribution [9]. Such idea is inspired by some recent noise modeling works including
Low-Rank Matrix Factorization (LRMF) [10] and Low-Rank Representation (LRR) [11], and has been
verified to be effective in the complex noise scenarios. Note that although anomaly can also be seen as
a continuous distribution that is approximated by MoG in theory, we still explicitly model it by using
`2,1-norm. The reason is to explicitly detect the location of anomaly node, and thus provide a basis for
troubleshooting. Furthermore, based on the popular Expectation Maximization (EM) method [12], an
efficient optimization algorithm for solving the proposed RRMD model is designed to obtain the true
underlying Euclidean Distance Matrix (EDM). Finally, the actual coordinates of unknown nodes could
be easily estimated by employing Multi-Dimensional Scaling (MDS) method [13], and the abnormal
nodes can also be detected.

The primary contributions of our work can be summarized as follows.

1. A Robust `2,1-norm Regularized Matrix Decomposition (RRMD) model is proposed to jointly
estimate the missing range measurements and detect the node anomaly, which takes advantage
of the potential relationship between two tasks which could help each other to achieve more
accurate performance.

2. The MoG distribution is employed to fit the unknown complex noise, which allows the proposed
RRMD model to adaptively handle a wider range of noise beyond the existing methods.
Meanwhile, an efficient optimization algorithm is designed to solve the proposed RRMD
model by adopting the popular EM method.
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3. A novel Anomaly-aware Node Localization (ANLoC) method is proposed based on the RRMD
model, and extensive experiments verify the superior positioning performance of the ANLoC
method in the coexistence of node anomaly and complex noise.

The rest of this paper is organized as follows. In Section 2, we introduce the current research
advances about the range-based node localization methods and low-rank matrix decomposition
methods, respectively. Section 3 describes the notations used in this paper and some related
mathematical foundations. In Section 4, the RRMD model is constructed and an optimization
algorithm based on the EM method is designed to solve this model. This section also presents the
Anomaly-aware Node Localization (ANLoC) method based on the proposed RRMD and the classic
MDS. In Section 5, a series of simulation experiments are conducted to evaluate the performance of our
proposed method. Finally, the conclusions are drawn in Section 6.

2. Related Work

2.1. Range-Based Node Localization

At present, the typical range-based localization methods include two steps: (1) using certain
ranging methods to measure the distance between nodes, such as Time of Arrival (ToA), Time Difference
of Arrival (TDoA) and Received Signal Strength Indicator (RSSI); (2) using the range measurements
combined with the location of anchor nodes to calculate the position information of unknown nodes.
The popular localization method called Maximum Likelihood (ML) is asymptotically efficient [14]
with enough data records. Tomic et al. [15] built a new convex estimator that approximated the ML
by applying efficient convex relaxations, which reduced the estimation errors. In references [16,17],
WSNs localization problem is treated as a variant of EDM recovery problem or graph implementation
problem. By using the range measurements between nodes and introducing the slack variable to
convert non-convex quadratic distance constraints into linear constraints, the authors formulated the
WSNs localization problem as a Semi-Definite Programming (SDP) problem, and designed an efficient
optimization method to solve the proposed problem. References [18,19] employed the classical MDS
method to map the distance relationship between wireless sensor nodes to low-dimensional space, and
generated a relative coordinate map which fitted well the distance relationship between nodes. Then, a
few anchor nodes were used to convert the relative position to the global position. However, the above
methods did not work well in real application scenarios. In general, these methods required complete
and accurate EDM. Unfortunately, due to the requirement of energy-saving and the effects of potential
node anomaly and complex noise, the existing range-based node localization methods often suffer
from incomplete and detorted range measurements. In addition, the ML method and SDP method
could be only used to solve a small-scale problem because of its high computational complexity.

To address the above issues, some matrix completion based node localization methods have been
proposed in recent years. Specifically, by taking advantage of the low-rank characteristics of EDM,
Feng et al. [20] firstly formulated the range measurement imputation problem as a low-rank EDM
Matrix Completion (MC) model, and designed an efficient optimization method to solve the proposed
MC model. However, their work is limited to assume the errors contained in the range measurements
are Gaussian noise, ignoring the existence of some complex errors caused by node hardware failure,
multipath transmission, etc. In reference [6], another kind of errors called outliers was assumed to obey
Laplacian distribution. Then, `1-norm regularization was introduced to deal with it, which effectively
improved the positioning accuracy. However, it was also too simple to preset the complex noise to
these two known types, and the actual noises should be more complicated in practical applications.
Recently, Liu et al. [21] proposed a Linear Bregman Iteration based matrix completion method to
localize node position for WSNs. However, this method did not consider the actual scenario under
the co-existence of complex noise and anomaly. More importantly, all these matrix completion based
node localization methods inevitably involved Singular Value Decomposition (SVD) operation with
heavy computation cost. To address these issues, an ANLoC method is proposed in this paper, which
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formulate the range measurements imputation problem as low-rank matrix decomposition instead of
low-rank matrix completion model. Therefore, in the next section, we will introduce the related work
on low-rank matrix decomposition.

2.2. Low-Rank Matrix Decomposition

Low-Rank Matrix Decomposition (LRMD) is an important technique in data science, which
can uncover the latent manifold structures of data, and thus obtain a low dimensional compression
representation. Recently, by decomposing the target matrix into the product of two low-rank matrices,
LRMD has been widely used in various fields such as dimensionality reduction, clustering, and
matrix recovery.

The original LRMD [22] model can be formulated as

min
U,V
||M−UVT

||`p (1)

where M ∈ Rm×n is the target matrix to be approximated, U ∈ Rm×r and V ∈ Rn×r are two
low-dimensional matrix variables (r < min(m, n)), ||·||`p denotes the `p-norm, and `1-norm and `2-norm
are commonly used to make this model robust to Gaussian noise and outlier noise, respectively. When
some elements of M are missing, the original LRMD could be changed into a matrix recovery model by
adding an orthogonal projection operator [23], which could be formulated as:

min
U,V
||PΩ

(
M−UVT

)
||
`p

(2)

where PΩ(·) is an orthogonal projection operator defined as

[PΩ(M)]i j =

{
Mi j, (i, j) ∈ Ω,
0, otherwise,

(3)

where Ω ⊆ [m]× [n]([m] = {1, 2, . . . , m}, [n] = {1, 2, . . . , n}) represents the index set of sampled elements.
This model could be applied to various matrix recovery problems such as recommender system [24] and
image representation [25], and has lower computational complexity than low-rank matrix completion
model with nuclear norm minimization. However, `1-norm and `2-norm regularizations are only
optimal when the noise follows a Gaussian or Laplacian distribution, which is not in line with the
actual situation. To address this limitation, Meng et al. [10] proposed a noise-tolerant LRMD model
based on Mixture of Gaussian distribution, which could be described as:

min
U,V
||PΩ

(
M−UVT

)
||

MoG
(4)

where ||·||MoG represents that each element of this matrix is modeled by Mixture of Gaussian distribution.
Reference [10] has demonstrated the robustness of the MoG model to unknown noise. However, since
this model does not explicitly consider the row/column-wise structural anomaly that the sampled
matrix may suffer from, it cannot be directly applied to the node localization of WSNs in this paper.

3. Preliminaries

3.1. Notations

We first introduce the important notations used in this paper. All italic letters denote variables
and non-italic letters denote constants. Bold uppercase letters denote matrices and bold lowercase
letters denote vectors. Specifically, Xi j denotes the scalar in the i-th row and j-th column of X. xi and x j
represent the i-th row and j-th column of the matrix X respectively. Additionally, we denote the `p-norm,
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Frobenius-norm, and `2,1-norm of matrix X ∈ Rm×n as

 m∑
i=1

n∑
j=1
|Xi j|

p

1/p

, ||X||F =

 m∑
i=1

n∑
j=1

Xi j
2

1/2

, and

||X||2,1 =
m∑

i=1

 n∑
j=1

Xi j
2

1/2

, respectively. XT denotes the transpose of matrix X. N
(
0, σ2

)
denotes a

Gaussian distribution with mean 0 and variance σ2. Finally, � represents the Hadamard product of
two matrices.

3.2. Mathematical Foundation

Definition 1 [26]: (Proximal Operator) Let F(X) be a real convex function defined on X ∈ Rm×n, for any
τ, µ > 0 and constant matrix M ∈ Rm×n, the proximal operator could be defined as:

proxτF(X)(M) = argmin
X
τF(X) +

µ

2
||X−M||2F (5)

Definition 2 [27]: (Structural Thresholding Operator) For any τ > 0, M ∈ Rm×n, the proximal operator
of `2,1-norm, i.e., structural thresholding operator, is defined as:

proxτ||X||2,1(M) = Jτ/µ(M) (6)

where (
Jτ/µ(M)

)i
= max

{
||Mi
||2 − τ/µ, 0

}
·Mi/||Mi

||2, i = 1, 2, . . . , m (7)

Definition 3 [28]: (Lipschitz Continuous Gradient) A differentiable convex function F(X) defined on
Rm×n is said to have a Lipschitz continuous gradient ξ, i.e., for ∀X1, X2 ∈ Rm×n, there exists a constant ξ > 0,
such that (

Jτ/µ(M)
)i
= max

{
||Mi
||2 − τ/µ, 0

}
·Mi/||Mi

||2, i = 1, 2, . . . , m (8)

Theorem 1 [29]: Let F1 and F2 be two lower semi-continuous convex functions on X ∈ Rm×n, and F2 is also a
differentiable function with Lipschitz continuous gradient ξ. Then, for a convex optimization problem defined as

min
X

F1(X) + F2(X) (9)

if F1 + F2 is mandatory and strictly convex, then for any initial value X0 and 0 < δ < 1/ξ, the iterative
sequence Xk+1 generated by the following Equation (10) is the unique solution of problem (9)

Xk+1 = argmin
X
δF1(X) +

1
2
||X− (Xk − δ∇F2(Xk))||

2
F (10)

4. Anomaly-Aware Node Localization for WSNs

In this section, we first establish a RRMD model and employ EM method to optimize it, and then
a novel ANLoC method is proposed based on the RRMD model.

4.1. Euclidean Distance Matrix Completion

4.1.1. Problem Description and RRMD Model Construction

In a typical application scenario, n sensor nodes are randomly deployed in a specific area,
whose coordinates can be formulated as X = [x1, x2, . . . , xn] ∈ Rd×n (d usually be 2 or 3, indicating
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the dimension of the coordinate space). Then, the corresponding EDM matrix D ∈ Rn×n could be
calculated by

Di j = ||xi − x j||
2 = xi

Txi + x j
Tx j − 2xi

Tx j, i, j ∈ {1, 2, . . . , n} (11)

where Di j represents the squared Euclidean distance between the i-th sensor node and the j-th sensor
node. Reference [8] has proofed that the rank of matrix D is at most d + 2, which indicates the EDM
matrix has an inherently strict low-rank property. Usually, in practical applications, only a few sensor
nodes could obtain their accurate coordinates by loading GPS, and the position information of other
unknown nodes need be indirectly calculated by employing some localization methods. Due to
irregular node distribution and energy consumption limitation, only the partial range measurements
could be collected. Based on the collected incomplete distance measurements, we can only establish
a sampled EDM matrix with missing elements. Our goal is to estimate the coordinates of unknown
nodes based on the sampled range measurements and the known coordinates of anchor nodes. Figure 1
illustrates the pipeline of node localization for WSNs in complex environments. As shown in Figure 1,
the node localization process involves two main steps: EDM recovery and node positioning. At the
first step of EDM recovery, by using our proposed RRMD algorithm, we can impute the missing range
measurements and obtain the estimated complete EDM matrix, which is also called the true underlying
EDM matrix, and then at the second step of node positioning, based on the estimated true underlying
EDM matrix, we can further employ MDS method to position each unknown node. Compared to
the second step of node positioning, the first step of EDM recovery is more critical and challenging.
Specifically, in practical applications, limited by the complex environmental interference, malicious
attacks, hardware malfunction, etc., the existence of errors in range measurements is unavoidable,
which leads to the destruction of sampled EDM and reduction in localization accuracy. In this paper,
we assume that the sampled EDM matrix M ∈ Rn×n consists of the true underlying EDM component
D̂ ∈ Rn×n, the row structural anomaly matrix component R ∈ Rn×n, the column structural anomaly
matrix component C ∈ Rn×n, and the noise matrix component N ∈ Rn×n, which is illustrated in Figure 2.
The noise is considered to be caused by environmental interference, malicious attacks, etc., which
usually follows continuous complex distributions. Moreover, the existence of the anomaly is caused
by abnormal transmission module or other unpredictable hardware defects. Specifically, when the
receiving module of the nodes fails, it will cause row structural anomaly in the corresponding row in
EDM, and when the sending module of nodes fails, the corresponding column in the EDM will have the
column structural anomaly [8]. To address the above problems, we need to design an efficient method
to obtain a true underlying EDM. Finally, based on this EDM, the actual coordinates of unknown nodes
could be easily estimated by employing the classic MDS method.

Therefore, our primary goal is to design an effective EDM reconstruction method to impute the
missing range measurements and de-noise the inaccurate ones. Intuitively, based on the low-rank
characteristics of EDM, we can classify the EDM reconstruction problem into a standard matrix
decomposition model, which is formulated as

min
U,V
||PΩ

(
M−UVT

)
||

F
. (12)

However, this model can only be applied to the case of single Gaussian noise, and its reconstruction
performance will decline dramatically when the sampled EDM is under co-existence of complex noise
and anomaly. To this end, we employ MoG distribution and `2,1-norm to improve the model, and then
establish a Robust `2,1-norm Regularized Matrix Decomposition (RRMD) model as follows:

min
D̂,R,C,N,U,V,Π,Σ

λ1||R||2,1 + λ2||CT
||2,1 − logL(PΩ(N)|Π, Σ),

s. t. PΩ(M) = PΩ(D̂ + N + R + C), D̂ = UVT,
nc∑

k=1
πk = 1,πk ≥ 0, k = 1, 2, · · · , nc,

(13)
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where M ∈ Rn×n denotes the sampled matrix, R ∈ Rn×n and C ∈ Rn×n represent row structural anomaly
and column structural anomaly, respectively, U, V ∈ Rn×(d+2) are two low-rank components of the true
underlying EDM matrix D̂, logL(PΩ(N)|Π, Σ) is the log-likelihood function, Π =

{
π1,π2,...,πnc

}
,Σ ={

σ2
1, σ2

2, . . . , σ2
nc

}
and nc are the parameters of MoG, and λ1 and λ2 are the tunable parameters. The key

of this model is that we use MoG distribution to smooth any unknown noises and `2,1-norm to detect
node anomaly, respectively. The main motivations for this model are as follows. (1) First of all, in
response to the complex noise, we introduce a Mixture of Gaussians distribution, which is treated as a
universal approximator to any continuous density function. Therefore, the RRMD model is robust
against a wider range of complex noise distributions beyond Gaussian and Laplacian noises. (2) Then,
as the optimal measure of row sparsity matrix, `2,1-norm could be used to smooth row-wise anomaly
and the transpose of column-wise anomaly, thus the abnormal nodes can be detected. (3) Finally, in
order to deal with the challenge of data missing, we choose the classic low-rank MD method, which
can impute the missing elements with lower computational costs than the low-rank MC method.
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In this paragraph, we introduce how to apply MoG distribution to the RRMD model. Without
loss of generality, each element Ni j(i, j = 1, 2, . . . , n) in the noise matrix N is considered to be from a
Mixture of Gaussians distribution, which is defined as

P
(
Ni j

)
∼

nc∑
k=1

πkN
(
Ni j|0, σ2

k

)
(14)

whereN
(
Ni j|0, σ2

k

)
denotes the Gaussian distribution with mean 0 and variance σ2. nc is the number

of Gaussian components and πk ≥ 0 represents the mixing proportion where
nc∑

k=1
πk = 1. Then, the

likelihood function can be written as

L(PΩ(N)|Π, Σ) =
∏

i, j∈Ω

∑nc

k=1
πkN

(
Ni j, 0, σ2

k

)
(15)

where Π =
{
π1,π2,...,πnc

}
, Σ =

{
σ2

1, σ2
2, . . . , σ2

nc

}
. Usually, we use the log-likelihood function instead of

this likelihood function for convenient calculation. Then, our aim is to maximize the log-likelihood
function to obtain the MoG parameters. Obviously, we can construct the final objective function
expressed as Equation (13) by combining the negative log-likelihood function with the `2,1-norm, and
then minimize it to get all unknown variables in RRMD model.

4.1.2. Optimizing RRMD via Expectation Maximization Method

In this section, we employ the popular EM method to solve the proposed RRMD model. Firstly,
we explain the motivation for using this method. Obviously, in order to gain the estimated values of
parameters Π, Σ, the log-likelihood function logL(PΩ(N)|Π, Σ) should be maximized. However, for
many specific problems, parameters Π, Σ cannot be directly calculated due to complex expressions of
log-likelihood functions. Fortunately, the EM method can be employed to solve such problems, which
has been proven to be effective by many researches. Specifically, let Zi jk ∈ {0, 1} be a set of hidden
variables with

∑nc
k=1 Zi jk = 1(i, j = 1, 2, . . . , n), and Zi jk = 1 implies the noise Ni j comes from the k-th

Gaussian component. Therefore, the log-likelihood function can be re-written in a form that is easy to
optimize as

logL(PΩ(N)|Π, Σ) =
∑

i, j∈Ω

∑nc

k=1
Zi jk

logπk − log
√

2πσk −
1

2σ2
k

(
Mi j − ui

Tv j −Ri j −Ci j
)2

 (16)

Next, we will introduce the specific optimization process of estimating the parameters
(D̂, R, C, N, U, V, Π, Σ) in Equation (13) by alternately conducting the E and M steps.

• E step:

In the E step, we calculate the conditional expectation Υi jk of Zi jk. The specific calculation formula
can be given as follows.

Υi jk = E
(
Zi jk

)
=

πkN
(
Mi j − ui

Tv j −Ri j −Ci j, 0, σ2
k

)
∑nc

k=1 πkN
(
Mi j − uiTv j −Ri j −Ci j, 0, σ2

k

) (17)

• M step:

In the M step, we need to optimize the following optimization model as

min
U,V,R,C,Π,Σ

λ1||R||2,1 + λ2||CT
||2,1

−
∑

i, j∈Ω
∑nc

k=1 Υi jk

(
logπk − log

√
2πσk −

1
2σ2

k

(
Mi j − ui

Tv j −Ri j −Ci j
)2

)
s. t.

∑nc
k=1 πk = 1,πk ≥ 0

(18)
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A natural idea is to use alternate iteration methods to solve MoG parameters Π, Σ and matrix
variables U, V, R, C, i.e.,

Update Π, Σ:
πk = Bk/

∑nc

k=1
Bk, where Bk =

∑
i, j∈Ω

Υi jk (19)

σ2
k =

1
Bk

∑
i, j∈Ω

Υi jk
(
Mi j − ui

Tv j −Ri j −Ci j
)2

(20)

Update U, V, R, C:
In order to update U, V, R, C, we need to solve the following sub-problem:

min
U,V,R,C

λ1||R||2,1 + λ2||CT
||2,1 +

∑
i, j∈Ω

∑nc

k=1
Υi jk

(
Mi j − ui

Tv j −Ri j −Ci j
)2

2σ2
k

(21)

If we let

Wi j =


√∑nc

k=1 Υi jk/σ2
k , (i, j) ∈ Ω,

0 , otherwise.
(22)

Then Equation (21) can be reformulated as follows:

min
U,V,R,C

λ1||R||2,1 + λ2||CT
||2,1 +

1
2
||W�

(
M−UVT

−R−C
)
||

2

F
(23)

Furthermore, we can optimize Equation (23) by solving the following three sub-problems.

1) Update U, V by solve the following sub-problem:

min
U,V

1
2
||W�

(
M−UVT

−R−C
)
||

2

F
(24)

Obviously, as a typical weighted matrix decomposition problem, it could be solved by various
methods, such as ALS [30], WLRA [31] and DN [32].

2) Update R by conducting the following iteration:

Rt = Jλ1τR

(
Rt−1 − τRW�W�

(
Rt−1+C + UVT

−M
))

(25)

where t represents the t-th iteration and τR is the step size of the proximal gradient.

3) Update C by conducting the following iteration:(
CT

)
t
= Jλ2τC

((
Ct−1 − τcW�W�

(
R + Ct−1 + UVT

−M
))T

)
(26)

where t represents the t-th iteration and τC is the step size of the proximal gradient.

Based on the aforementioned analysis, we summarize the whole procedure in Algorithm 1.
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Algorithm 1. Proposed Robust `2,1-norm Regularized Matrix Decomposition (RRMD) Algorithm

Input: The sampled EDM matrix M, the index set Ω, the parameters λ1, λ2 and threshold θ, the initial number
of Gaussian components nc.
Output: The true underlying EDM matrix D̂, the row structural anomaly R, and the column structural
anomaly C.
1. Randomly initialize U0, V0, Π0, Σ0; initialize R0, C0 to zero matrix;
2. t = 1;
3. While not convergence do
4. (E-step): update Υ according to Equation (17);
5. (M-step): update Π, Σ according to Equation (19) and Equation (20);
6. (M-step): update U, V according to optimize Equation (24);
7. (M-step): update R according to Equation (25);
8. (M-step): update C according to Equation (26);
9. (Tuning nc): Let gi and gi represent the number of i-th and j-th Gaussian component respectively. if
|σi

2
− σ j

2
|/

(
σi

2 + σ j
2
)
< θ, then let πi = πi + π j, σi

2 =
(
giσi

2 + g jσ j
2)/(gi + g j

)
, K = K − 1. Lastly, remove π j

and σ2
j from Π, Σ, respectively.

10. t = t + 1;
11. End while
12. R, C and D̂ = UVT.

4.2. Anomaly-Aware Node Localization

Based on the proposed RRMD model, all pair-wise range measurements between nodes can be
easily obtained. However, it is only the first step of this range-based localization method. The second
step of this method is to calculate the location information of the unknown nodes based on the complete
distance information and the actual coordinates of anchor nodes, and which can be implemented by
using the classical MDS method [6,8,21].

MDS is a typical low-dimensional embedding method, which is originally proposed to solve
the curse of dimensionality in the field of machine learning. The MDS method ensures that the
distance between samples in the original high-dimensional space can be preserved in low-dimensional
space. The input of this method can be high-dimensional features of samples (the pair-wise distance
information can be easily obtained from high-dimensional features) or the distance information between
samples, while the output is the low-dimensional features of samples in the specified d-dimensional
space. Therefore, in the sensor networks localization application, we can employ the MDS method
to calculate the relative coordinates of each node in the d-dimensional space. Then, based on the
actual/absolute coordinates of at least d + 1 anchor nodes and the relative coordinates obtained, the
coordinate transformation matrix between the actual coordinates and the relative coordinates can be
calculated (with the details provided in Theorem 2). Finally, the relative coordinates can be mapped to
the actual ones by using the coordinate transformation matrix.

Next, we introduce the specific steps to implement the above MDS method. Firstly, we let the
relative coordinates and actual coordinates of n nodes be represented as T = [t1, t2, . . . , tn] ∈ Rd×n,
A = [a1, a2, . . . , an] ∈ Rd×n, respectively, and assume that nodes 1, 2, . . . na(na ≥ d + 1) are anchor nodes.
Secondly, the classic MDS method is employed to calculate the relative coordinates of all nodes. Thirdly,
with the actual coordinates of anchor nodes, we have coordinate transformation matrix:

Q =
[a2 − a1, a3 − a1, . . . , ana − a1]

[t2 − t1, t3 − t1, . . . , tna − t1]
(27)

Finally, the coordinate of all unknown nodes can be obtained by

(ai = Q·(ti − t1) + a1, i = na + 1, na + 2, . . . n (28)
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Based on the aforementioned analysis, the proposed Anomaly-aware Node Localization (ANLoC)
algorithm can be summarized as in Algorithm 2.

Algorithm 2. Anomaly-aware Node Localization (ANLoC) Algorithm

Input: The sampled EDM matrix M, the index set Ω, the parameters λ1, λ2 and threshold θ, the initial number
of Gaussian components nc. The coordinates of anchor nodes

{
a1, a2, . . . , ana

}
(na ≥ d + 1), where na denotes

the number of anchor nodes.
Output: Coordinates of all unknown nodes {ai|i = na + 1, na + 2, . . . n}.
1. Calculate the true underlying EDM matrix D̂ by using Algorithm 1;
2. Double centering the matrix D̂:

S = −0.5× JD̂J, where J = I− 1·1T/n and I is identity matrix;
3. Perform SVD decomposition on matrix S:

[H, Λ, K] = svd(S);
4. Calculate relative coordinates:

T = [t1, t2, . . . , tn] =
√

Λd·HT
d

where ti ∈ Rd×1, Λd = Λ(1 : d, 1 : d), Hd = H(:, 1 : d);
5. Calculate the coordinate transformation matrix Q:

Q = [a2 − a1, a3 − a1, . . . , ana − a1]/[t2 − t1, t3 − t1, . . . , tna − t1];
6. Calculate and output coordinates of all unknown nodes:

ai = Q·(ti − t1) + a1, i = na + 1, na + 2, . . . n.

Theorem 2: For sensor nodes localization in d-dimensional space, given the absolute positions
{
a1, a2, · · · , ana

}
of the na anchor nodes and the relative coordinates {t1, t2, · · · , tn} of all the n (n� na) sensor nodes, if
na ≥ d + 1, then the relative coordinates

{
tna+1, tna+2, · · · , tn

}
can be transformed to the corresponding absolute

positions
{
ana+1, ana+2, · · · , an

}
.

Proof: According to reference [13], the absolute positions ai (i ≥ na + 1) can be computed according to

ai = Q·(ti − t1) + a1, i = na + 1, na + 2, · · · , n (29)

where Q ∈ Rd×d is the unknown coordinate-transform matrix, which should be determined by the
following matrix equation:

Q·[t2 − t1, t3 − t1, · · · , tna − t1] = [a2 − a1, a3 − a1, · · · , ana − a1] (30)

Without loss of generality, let T̂ = [t2 − t1, t3 − t1, · · · , tna − t1] and Â =

[a2 − a1, a3 − a1, · · · , ana − a1], then we can see that T̂ ∈ Rd×(na−1) and Â ∈ Rd×(na−1). Therefore, the
above matrix Equation can be regarded as the following equivalent equations:∑d

l=1
Qil·T̂l j = Âi j, i = 1, 2, · · · , d, and j = 1, 2, · · · , na − 1 (31)

Obviously, if na ≤ d, then the number of unknown entries (i.e., d2) is greater than the number of
Equations (i.e., d× (na − 1)), so we cannot obtain the determined coordinate-transform matrix Q. On
the contrary, if na ≥ d + 1, we only need to arbitrarily select d + 1 anchor nodes, then we can obtain the
unique solution of Q. �

5. Performance Evaluation

In this section, we first describe the experimental setting and evaluation metrics, and then report
some extensive experimental results under the different scenarios.
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5.1. Experimental Setting

In order to investigate the performance of our proposed ANLoC, some simulation experiments
were conducted. All these experiments were designed based on MATLAB 2017a and run on PC with
Intel i5-8400 CPU and 16G RAM. Firstly, we randomly disposed 100 sensor nodes in a square area
with 100 × 100 unit (where the unit can be determined according to actual communication condition,
such as meter, decimeter, foot, and inch, etc.), and 6 of them were anchor nodes while others were
unknown nodes. Let X ∈ R2×100 be the actual coordinate matrix of all nodes and D ∈ R100×100 denote
the ground truth EDM matrix between nodes. Secondly, we artificially added some error matrices into
matrix D to simulate the complex noises and the structural anomaly, and thus obtained a corrupted
matrix Derror. Specifically, the complex noise was set to the mixture of the following components: (1)
Gaussian noise with mean 0 and variance 100; (2) Gaussian noise with mean 0 and variance 50; and (3)
sparse noise with a pollution ratio 1% randomly generated within the range of [0, 10000]. Moreover,
the structural anomalies were set to be randomly generated within the range of [0, 500] and with a
row-wise pollution ratio 3% and a column-wise pollution ratio 3%. Thirdly, sampled matrix M could be
obtained by randomly sampling some elements from Derror. Finally, the true underlying EDM matrix
can be reconstructed from M via Algorithm 1, and then the actual coordinates of all nodes could be
calculated using Algorithm 2. Moreover, we summarized all the simulation parameters in Table 1.

Table 1. Simulation parameters.

Name Value Name Value

Size of experimental scenario 100 × 100 Gaussian noise 1 Mean 0, variance 100
Number of sensor nodes 100 Gaussian noise 2 Mean 0, variance 50
Number of anchors 6 Range of sparse noise [0, 10000]
Range of row anomaly [0, 500] Range of column anomaly [0, 500]

The proposed ANLoC method involves three hyper-parameters λ1, λ2 and nc. It is important
to adjust these parameters to proper values. In order to determine the optimal value of these
parameters, we employed a 10-fold cross validation procedure and conduct the grid search method.
In particular, firstly, let nc = 5, we searched for the optimal solution of λ1 and λ2 within the
range of {0.001, 0.01, 0.1, 1, 10, 100, 1000} by minimizing the matrix recovery error of EDM. Then,
based on the selected optimal parameter λ1 and λ2, nc was determined within the range of
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Last but not least, we compared our method with three different competing
methods, including NLIRM method [6], SVT-based method [20], and OptSpace-based method [33].
All the involved parameters in these competing methods were optimized by using the same nested
10-fold cross-validation procedure as in our ANLoC method.

5.2. Evaluation Metrics

We selected the following four evaluation metrics to evaluate the node localization performance:

• EDM recovery error:
er = ||D̂−D||F/||D||F (32)

where D̂ denotes the reconstructed matrix and D is the ground truth matrix.
• Localization error:

el = ||X̂−X||F/n (33)

where X̂ denotes the coordinates calculated by Algorithm 2.
• Anomaly recognition accuracy:

pave = (prow + pcol)/2 (34)
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where prow and pcol represent the row anomaly recognition accuracy and column anomaly
recognition accuracy, respectively. Specifically, the prow is calculated by

prow = 2×
rpre·rrec

rpre + rrec
, rpre =

rtru

rall
, rrec =

rtru

ract
(35)

where rall represents the number of abnormal rows identified by the method proposed in this
paper, rtru indicates the number of correctly recognized rows in rall and ract represents the number
of actual abnormal rows; the prow is calculated by

pcol = 2×
cpre·rrec

cpre + rrec
, cpre =

ctru

call
, crec =

ctru

cact
(36)

where call represents the number of abnormal columns identified by the method proposed in this
paper, ctru indicates the number of correctly recognized columns in call, and cact represents the
number of actual abnormal columns.

• Cumulative distribution of localization errors [21]:

eCD = P(∆li ≤ σ) (37)

where ∆li =
√
(x̂i − xi)

2 + (ŷi − yi)
2 defines the localization error of i-th node, (xi, yi) and (x̂i, ŷi)

denote the actual coordinates and the estimated coordinates, respectively.

5.3. Experimental Results

In order to investigate the performance of proposed method in complex environments, we
conducted the following four experiments under the different application scenarios.

• Scenario 1: Localization without the noise and anomaly

This experiment assumed that all observed range measurements were accurate. Figure 3 shows
that the variation of the EDM recovery error and average localization error of WSNs nodes when the
EDM is sampled at different proportions. The horizontal axis of the two subgraphs represents the
sampling ratio, while the vertical axis in Figure 3a represents the EDM recovery error, and the vertical
axis in Figure 3b represents the localization error of WSNs nodes. Comparing Figure 3a with Figure 3b,
it is obvious to find that the EDM recovery error and localization error are consistent with the trend
of the sampling rate. Under this scenario, when sampling rate reaches 0.3, the EDM recovery error
and the localization error of these four methods reach a very low level. This shows that the existing
methods and the method proposed in this paper can achieve good positioning accuracy under the
ideal condition.
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Figure 3. Performance comparison under scenario 1 without the noise and anomaly. (a) EDM recovery
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• Scenario 2: Localization with only complex noise

This experiment aims to examine the performance of four methods with only complex noise.
Therefore, we only add complex noise into EDM. After sampling the EDM in different proportions,
the experimental results are shown in Figure 4. Under this scenario, the SVT-based method and the
OptSpace-based method have large EDM recovery error and localization error even if the sampling
rate is high, which indicates that the two methods do not handle the complex noise well. When the
sampling ratio reaches 0.3, the EDM recovery error of NLIRM could be stabilized at around 0.01,
and the localization error of nodes could be less than 0.03. However, the EDM recovery error and
localization error of ANLoC could reach 0.001 and 0.01, respectively. Comparing with Figure 3, we
find that both the SVT-based method and the OptSpace-based method could not deal with complex
noise at all. The NLIRM has a certain ability to resist noise, but it is slightly worse than our ANLoC.
Therefore, our ANLoC could perform best under complex noise than others.
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• Scenario 3: Localization with only anomaly

The purpose of this experiment is to examine the performance of detecting anomalous nodes
in the environment without any noise. In this case, only anomaly is added into EDM. As shown
in Figure 5, compared with Figure 3, the EDM recovery error and the localization error of the four
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methods are all increased when the EDM is destroyed by the anomaly. However, compared with other
three methods, ANLoC could have better performance at a lower sampling rate (0.2). In addition, the
ANLoC could also detect abnormal nodes. Specifically, Figure 5c shows that when the sampling rate
reaches 0.2, the recognition accuracy of abnormal nodes can reach 100%. In comparison with Figure 3,
we find that the performance of all methods has been degraded in varying degrees, but our ANLoC
still has the best performance. Therefore, when some sensor nodes have abnormities, the ANLoC has
good performance for precisely locating unknown nodes and detecting abnormal nodes.
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Figure 5. Performance comparison under scenario 3 with only anomaly. (a) EDM recovery error;
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• Scenario 4: Localization with both complex noise and anomaly

This experiment is designed to evaluate the performance of the ANLoC in a complex environment
where complex noise and anomaly coexist. The complex noise and the anomaly are both added to the
EDM to simulate the impact of the complex real application scenarios. Experimental results are shown
in Figure 6. Obviously, compared with the other three methods, our ANLoC method proposed in this
paper not only has the lowest EDM recovery error and localization error, but also has high recognition
accuracy of abnormal nodes when the sampling rate reaches 0.3. Comparing with Figure 3, we can find
that the performance of the SVT-based method and the OptSpace-based method are much worser in
complex environment. The NLIRM has less performance degradation, but its EDM recovery accuracy
and localization accuracy are still not as high as our ANLoC. In short, our proposed ANLoC has good
robustness to complex application scenarios and could detect faulty nodes well. In addition, Figure 7a
shows the cumulative distribution of the localization error for the four methods when the sampling
rate is 0.5 under this scenario. The probability of the localization error of the ANLoC being less than
0.5 is 98% and the probability of being less than 1 is 100% while the other three methods are all below
30%. In addition, Figure 7b shows the intuitionistic localization results of all nodes in this case when
the sampling rate is 0.5.
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5.4. Effects of the Proposed Strategies

To analyze the effects of our proposed strategies, experiments are designed to compare the
proposed method with three partial deleted methods. Actually, our RRMD can be treated as LRMD
+ MoG + `2,1-norm. Then, the remaining three types of partial deleted methods are as follows. (1)
Pure LRMD: do not consider any noise or anomaly; (2) LRMD + MoG: only consider complex noise;
(3) LRMD + `2,1-norm: only consider the anomaly. What’s more, these experiments are set under
the scenario with both complex noise and anomaly. Finally, all experimental results are shown in
Figure 8a–c. Obviously, our ANLoC considers both complex noise and anomaly, which leads to its low
EDM recovery error and localization error. Moreover, when the sampling rate reaches 0.3, it could
accurately detect abnormal nodes. Due to too ideal assumptions, pure LRMD is the worst performer,
which means that it cannot be applied in actual situation. Although LRMD + MoG could handle
the error of EDM well, it does not have the ability to detect abnormal nodes. Specially, LRMD +

`2,1-norm could hardly detect abnormal nodes in this case. Naturally, we speculate the noise that is
not unprocessed may have a negative effect on the performance for detecting abnormal nodes in this
method. Therefore, another experiment is designed with LRMD + `2,1-norm when the EDM is only
destroyed by anomaly, and the result of anomaly recognition is drawn in Figure 8d. The pleasure
is that this supplementary experiment validates our conjecture. In conclusion, these experiments
demonstrate the effectiveness of the MoG and `2,1-norm strategies.
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Figure 8. Effects illustration of the proposed strategies. (a) EDM recovery error under the scenario 4
with both complex noise and anomaly; (b) localization error under the scenario 4 with complex noise
and anomaly; (c) anomaly recognition accuracy under condition with complex noise and anomaly; and
(d) anomaly recognition accuracy under the scenario 3 with only anomaly.

5.5. Localization for Large-Scale Scenario

In a practical application scenario, there is a case that when the size of the localization scenario is
much larger than ranging length of the sensor nodes and only a few range measurements between
inter-nodes could be obtained. As a result of that, the sampled EDM based on range measurements will
be very sparse, which leads to poor performance of our method. To solve this problem, a large-scale
localization method is proposed in this paper. For the convenience of discussion, we simplify the
application scenario as shown in Figure 9. Suppose there is a 180× 100 unit area divided into three
parts I, II, and III from left to right, and among them, there are 80, 20, 80 nodes, respectively. Of the
180 nodes, there are 6 anchor nodes and 6 relay nodes. Then, regions I and II are combined into a
localization sub-regionM while regions II and III are combined into a localization sub-regionN . The
large-scale process is as follows. (1) Calculate the actual coordinates of all nodes within sub-regionM
by ANLoC. (2) Based on step one, the actual coordinates of relay nodes are gained. Taking them as
anchor nodes, we employ ANLoC again to get the coordinates of the remaining unknown nodes in
regionN .
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Further, in order to verify the feasibility of the above-mentioned large-scale scenario localization
method, we designed an experiment with complex noise and anomaly. Moreover, the EDM sampling
rates of regionM andN are both set 0.5. As Figure 10 shows, the experimental results confirm that
our large-scale localization method can be well applied to large-scale scenarios.
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6. Conclusions

In this paper, we aim to estimate node position of WSNs in complex environments. Considering
that the coexistence of potential node anomaly and complex noise in practical applications, we propose
a novel Anomaly-aware Node Localization (ANLoC) method to address this task. Specifically, the
proposed ANLoC method is divided into two steps. First, a Robust `2,1-norm Regularized Matrix
Decomposition (RRMD) model is designed to simultaneously detect node anomaly and impute the
missing range measurements. Second, based on the imputed EDM matrix, all unknown nodes can
be easily estimated by using the classic MDS method. The extensive experiments demonstrated our
proposed ANLoC method consistently outperforms three state-of-the-art localization methods in
terms of EDM recovery error, localization error, and anomaly recognition accuracy. Additionally, our
proposed ANLoC method also can extend to a large-scale localization scenario. Future work will focus
on extending our ANLoC approach to an incremental version, making it suitable for handling dynamic
positioning of mobile sensor nodes.
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