
sensors

Article

A Practical Neighbor Discovery Framework for
Wireless Sensor Networks

Zhaoquan Gu 1,* , Yuexuan Wang 2,3,*, Wei Shi 4 , Zhihong Tian 1,* and Kui Ren 5

and Francis C.M. Lau 3

1 Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510006, China
2 College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
3 Department of Computer Science, The University of Hong Kong, Hong Kong, China; fcmlau@csis.hku.hk
4 School of Information Technology, Carleton University, Ottawa, ON K1S5B6, Canada; wei.shi@carleton.ca
5 Institute of Cyberspace Research, Zhejiang University, Hangzhou 310027, China; kuiren@zju.edu.cn
* Correspondence: zqgu@gzhu.edu.cn (Z.G.); amywang@zju.edu.cn (Y.W.); tianzhihong@gzhu.edu.cn (Z.T.)

Received: 3 April 2019; Accepted: 17 April 2019; Published: 20 April 2019
����������
�������

Abstract: Neighbor discovery is a crucial operation frequently executed throughout the life cycle of a
Wireless Sensor Network (WSN). Various protocols have been proposed to minimize the discovery
latency or to prolong the lifetime of sensors. However, none of them have addressed that all the
critical concerns stemming from real WSNs, including communication collisions, latency constraints
and energy consumption limitations. In this paper, we propose Spear, the first practical neighbor
discovery framework to meet all these requirements. Spear offers two new methods to reduce
communication collisions, thus boosting the discovery rate of existing neighbor discovery protocols.
Spear also takes into consideration latency constraints and facilitates timely adjustments in order to
reduce the discovery latency. Spear offers two practical energy management methods that evidently
prolong the lifetime of sensor nodes. Most importantly, Spear automatically improves the discovery
results of existing discovery protocols, on which no modification is required. Beyond reporting details
of different Spear modules, we also present experiment evaluations on several notable neighbor
discovery protocols. Results show that Spear greatly improves the discovery rate from 33.0% to
99.2%, and prolongs the sensor nodes lifetime up to 6.47 times.

Keywords: neighbor discovery; wireless sensor networks; communication collision; latency;
energy consumption

1. Introduction

With the ascent of Internet-of-Things (IoT) [1–7], wireless sensor networks (WSNs) are increasingly
being adopted for tracking and monitoring applications in various areas such as health-caring,
smart buildings, agricultural management and assisted living [8–10]. For example, WSN has been
deployed for agriculture information monitoring [11], and sensors can be attached to inventory items
in a large warehouse for object identification [12].

As a crucial process in constructing a wireless network, neighbor discovery, where sensor nodes
try to find the existence of neighboring nodes within their communication range, has drawn much
attention in the last decade or so [12–27]. Sensor nodes are powered by batteries. To minimize the
overall energy consumption, most existing work focuses on designing discovery schedules that
maintain a low duty cycle. However, despite decades of efforts, designing practical neighbor discovery
protocols for real-life WSNs remains a big challenge, especially when considering all three critical
factors as pointed out by previous works:

Sensors 2019, 19, 1887; doi:10.3390/s19081887 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-7546-852X
https://orcid.org/0000-0002-3071-8350
https://orcid.org/0000-0003-1082-9333
http://dx.doi.org/10.3390/s19081887
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/8/1887?type=check_update&version=2

Sensors 2019, 19, 1887 2 of 18

1. Collisions happen when multiple nodes transmit on the same communication channel simultaneously.
2. Bounded latency is required for time-sensitive applications. For example, object detection

applications require discovering the neighbors for transmitting emergent information with very
low latency.

3. Prolonged lifetime of sensor nodes. In order to reduce the energy consumption and prolong
the lifetime of sensor nodes, affective energy management methods that can dynamically adjust
nodes’ duty cycles during the discovery process are crucial.

Neglecting all these practical concerns, sensor nodes will likely fail to discover all neighbors
before running out of energy.

Unfortunately, no existing work has considered all of the above-mentioned concerns in one
setting. Typically, only one factor is considered at a time. Among all solutions, two major types of
protocols exist: probability-based and deterministic ones. Probability-based protocols turn on the
radio with different probabilities to reduce communication collisions [20,25,27–29], but the discovery
latency often varies significantly. Compared to probability-based protocols, deterministic protocols
are much more popular in practice. This approach is also the main focus of this paper because with a
deterministic discovery schedule the discovery latency is mostly stable [12,13,15,16,18,21,22,26,30,31].
However, existing deterministic protocols mainly target at only two neighbors, where collision often
does not occur. As shown in Figure 1, when these (bare) deterministic protocols (Hedis [15], Hello [22],
Searchlight [13], and U-Connect [18]) are adopted in a network of 1000 nodes, the discovery rates are
only 33.0–65.9% because of collisions.

Hedis Hello Searchlight U-Connect

20

40

60

70

80

100

Di
sc

ov
er

y
Ra

te
 (%

)

Bare Protocol PPR (p1 =0.4) DPR (p2 =0.2)

Figure 1. Spear greatly improves discovery rates for four notable protocols. Discovery rate for each
protocol is defined as the number of discovered neighbors divided by all actual neighbors. Bare
protocols mean they do not run in Spear.

In this paper, we propose Spear (Spear is a general, powerful ancient weapon), a practical
neighbor discovery framework that deals with all the critical factors mentioned above. The advantages
of Spear are:

(a) Spear creates two new methods, Pure Probability Reducing (PPR) and Decreased Probability
Reducing (DPR), to reduce communication collisions among multiple nodes. Running in Spear,
a deterministic protocol targeting at two neighbors can be automatically extended to support
multiple nodes, while still keeping a stable discovery latency;

(b) Spear introduces two methods to manage energy and one unified method to handle latency
constraints; it prolongs the node’s lifetime and enhances the availability for various applications;

(c) Spear enables the quantitative analysis of various neighbor discovery protocols, and generates
the optimal neighbor discovery schedule automatically.

Sensors 2019, 19, 1887 3 of 18

We implemented Spear and evaluated several notable neighbor discovery protocols on 1000 nodes.
As shown in Figure 1, when running PPR or DPR in Spear, the discovery rates for these protocols
greatly increase from 33.0% to 99.2%. By incorporating the energy management methods, nodes’
lifetime can be extended up to 6.47 times than that of running bare protocols.

The main contributions of Spear are automatic reduction of communication collisions,
improvement of discovery rate, and prolonging lifetime for neighbor discovery, which together
make the construction of WSNs much more effective and easier. Furthermore, Spear can be broadly
applied to tackle various problems in WSNs.

The rest of the paper is organized as follows. We introduce relevant neighbor discovery protocols
in Section 2, and the preliminaries in Section 3. We describe Spear in detail in Section 4. Methods that
manage node energy and handle the latency requirements are presented in Section 5, and the methods
to reduce communication collisions for an arbitrary neighbor discovery protocol are introduced
in Section 6. We implemented Spear and evaluated several notable neighbor discovery protocols;
the results are presented and discussed in Section 7. Finally, we conclude the paper in Section 8.

2. Related Works

The neighbor discovery problem in WSNs has been widely studied and the goal is to reduce the
duty cycle or to reduce the latency of discovering the neighboring nodes. Generally speaking, there are
two categories of neighbor discovery algorithms.

One category is probability algorithms, which utilize randomness to discover the neighbors in a short
expected time. Birthday protocol [20] is one of the earliest algorithms that works on the birthday paradox,
i.e., the probability that two people have the same birthday exceeds 1

2 among 23 people. In the birthday
protocol, each node transmits with probability p ∈ [0, 1] and listens on the channel with probability
1− p in each time slot independently; this protocol ensures that the nodes can discover the neighbors
with high probability, but it cannot deduce a bounded discovery time. Aloha-like protocol [28] assumes
each node is awake in each slot with probability pw and an awake node transmits with probability
pt and listens with probability pl ; one can derive the expected time to discover all neighbors with
this protocol, but cannot guarantee successful discovery for the worst case situation. Following that,
more smarter probabilistic algorithms were proposed [25,27,29], but they cannot guarantee an upper
bound on the discovery latency among the nodes.

The other category is deterministic algorithms, which adopt some mathematic tools to ensure
discovery between every two neighbors. The first tool is called quorum system: for any two intersected
quorums, two neighboring nodes could choose any quorum in the system to design the discovery
schedule and the discovery latency can be bounded in a short time. Many algorithms are related
to the quorum system [15,17–19,30], but only a few of them support asymmetric duty cycles of the
nodes, such as Hedis [15]. Another important tool is co-primality where two co-prime numbers are
chosen by the neighbors to design the discovery schedule, and they can discover each other within
a bounded latency by the Chinese Remainder Theorem [32]. Some representative algorithms are
Disco [16], U-Connect [18], and Todis [15].

In short, probabilistic algorithms cannot guarantee two neighboring nodes discover each other in
a finite time, but they assure that the discovery can be successful with a high probability in an expected
discovery time. In contrast, deterministic algorithms can ensure the discovery process between the
nodes, and they can limit the maximum discovery latency to within a bounded time.

Many neighbor discovery protocols assume that time is divided into slots of equal length and the
nodes have aligned slots. Some works also study a general scenario that the slots are aligned between
the users. They use probe, beacon or anchor to design the discovery protocols, and the representative
algorithms are Searchlight [13], Hello [22] and Nihao [21]. There are also some other neighbor discovery
protocols that are based on different techniques, such as combinatorial design [33], BlindDate [26],
and Panda [12], the details of which we omit here. Among these algorithms, some of them only
support symmetric duty cycle (the nodes select the same duty cycle), such as Quorum and Balanced

Sensors 2019, 19, 1887 4 of 18

Nihao [21], while others support asymmetric duty cycles (nodes select different duty cycles), such as
Disco, U-Connect, Searchlight [13], Hello [22], Hedis and Todis [15].

To the best of our knowledge, most deterministic neighbor discovery algorithms are designed
for two neighbors, with symmetric or asymmetric duty cycles. A few of them consider the energy
management of each node and they ignore the communication collisions when they are extended for
multiple nodes. Therefore, we propose a practical framework incorporating these issues and enable
the existing deterministic protocols to be applicable for networks with multiple nodes.

3. Preliminaries

3.1. Sensor Node Model

Each sensor node ui has a distinguishable identifier Ii. Suppose node ui is powered by the battery
it carries, we can denote the maximum power as Pmax and the remaining energy at time t as Pi(t).
The node dies at time t if Pi(t) = 0 (rechargeable battery is a possibility but not considered here).

Driven by different applications, each node can carry out many operations, such as sensing nearby
information, transmitting data, etc. Among these operations, communications through the wireless
channel dominate the energy consumption [12]. Therefore, we assume only two states {ON, OFF} in
this paper; OFF means the node turns its radio off to save energy, while ON means the node turns the
radio on for communication. We focus on the communications during neighbor discovery process.
Before each node tries to communicate with others, it has to identify the neighboring nodes first.
Therefore, we suppose the nodes can communicate only when the discovery is successful.

Suppose time is divided into slots of equal length t0 which is sufficient for the nodes to establish
a communication link on the channel. Denote the consumed energy in each time slot as pn if the
node’s radio is turned on, and p f if the radio is turned off. Notice that a node may send a beacon
message for discovering neighbors, listen on channels, exchange information, etc. Different operations
may consume different energy when the radio is ON; we assume pn is the average energy in a time
slot for simplicity. In practical systems, switching the radio states also consumes energy, such as pn f
(switching the radio from on to off) and p f n (switching the radio from off to on). As shown in Figure
2, a node has two states {ON, OFF} and it switches states in each time slot. When a node switches
from OFF to ON as F → N, the consumed energy is p f n; when it switches from ON to OFF as N → F,
the consumed energy is pn f ; when it keeps state ON as N → N, the (average) consumed energy in the
slot is pn; when it keeps state OFF as F → F, the consumed energy is p f . In this paper, we adopt the
common assumption p f = pn f = p f n = 0, and prolonging the lifetime of the node is equivalent to
reducing its percentage of time slots when the radio is on. The notations are also given in Table 1.

Figure 2. The finite state machine (FSM) of a sensor node’s states.

Sensors 2019, 19, 1887 5 of 18

Table 1. Notations for Neighbor Discovery.

Notation Description

ui Sensor node ui

Ii Identifier of node ui

Pmax The maximum energy of each sensor

Pi(t) The remaining energy of ui at time t

t0 The length of each time slot

pn The consumed energy to turn on the radio in each slot

dc Communication range of each sensor

ts
i Start time of node ui

Si Neighbor discovery schedule of node ui

si(t) The schedule of node ui at time t

L(i, j) Discovery latency between ui, uj

Ni The set of neighbors of node ui

L(i, Ni) The latency for ui to discover all neighbors

θi(T1, T2) Node ui’s duty cycle between time [T1, T2]

te
i The time node ui runs out of energy

L fi Lifetime of node ui

3.2. Communication Model

Considering a WSN that consists of N nodes, {u1, u2, . . . , uN}. Suppose only one wireless channel
is available for communication. When the nodes turn on their radios simultaneously, they can transmit
information through the wireless channel. Denote the communication range of each node as dc,
and two nodes are called neighbors if their distance is no larger than dc (denote the distance of nodes
ui, uj as d(ui, uj)).

In real networks, whether one node can communicate with a neighboring node successfully is
dependent on many factors, such as environment noises, the sending power energy, the path-loss
exponent during transmission, beaconing, and handshaking. The signal-to-interference-plus-noise
ratio (SINR) model is a realistic model that captures the collision among multiple transmissions [34].
It is also shown that the SINR model can be converted to the communication graph model that two
nodes are neighbors if their distance is within the communication range. Therefore, we simplify the
process and assume that two neighboring nodes can communicate if their distance is within dc and
they both have turned on the radio.

In the practical networks, multiple nodes may turn on the radio simultaneously and they could
cause communication collisions on the channel. For example, node u1 has two neighbors u2, u3 and
they all turn on the radio simultaneously. Suppose both u2, u3 send a message to u1; then, u1 cannot
decode the composited message correctly. Therefore, we say communication collision happens and node
u1 cannot find its neighbors.

3.3. Neighbor Discovery

Neighbor discovery is the foundation of constructing WSNs. When the sensor nodes are deployed
in the monitoring area, each node can only know its local information; the nodes have to find their
neighboring nodes, and then the network can be established.

Suppose node ui starts at time ts
i and it tries to discover its neighbors by turning on the radio.

In order to save energy, the node runs some pre-defined algorithms to generate a discovery schedule
Si = {si(t)|t ≥ ts

i }, where:

Sensors 2019, 19, 1887 6 of 18

si(t) =

{
0, i f ui turns the radio OFF,
1, i f ui turns the radio ON.

The neighbor discovery problem between two neighboring nodes is defined as:

Problem 1. For two neighboring nodes ui and uj, design the discovery schedules Si, Sj respectively such that
there exists T satisfying:

si(T) = sj(T) = 1.

Two nodes may start at different times, which is referred to as the asynchronous case in the
literature, and the discovery latency is defined as:

Definition 1. The discovery latency between two neighboring nodes ui and uj is the time cost to turn on the
radio simultaneously after they both have started:

L(i, j) = T −max{ts
i , ts

j}. (1)

Considering the network with multiple nodes, the neighbor discovery problem for node ui is
defined as:

Problem 2. For each node ui, denote the set of neighboring nodes as Ni = {uj|d(ui, uj) ≤ dc}. Design the
discovery schedule for each node, such that there exists Ti,j satisfying:{

si(Ti,j) = sj(Ti,j) = 1,
sk(Ti,j) = 0, ∀uk ∈ Ni, uk 6= uj.

Similarly, the discovery latency for node ui is defined as:

Definition 2. The discovery latency for node ui is the time cost to find all neighbors:

L(i, Ni) = max
uk∈Ni

Ti,k − ts
i . (2)

Most neighbor discovery algorithms generate their discovery schedules with regard to the duty
cycle which is defined as:

Definition 3. The duty cycle of node ui between time T1, T2 (T1 < T2) is the percentage of time slots when ui
turns on the radio:

θi(T1, T2) =
|{si(t) = 1|T1 ≤ t ≤ T2}|

T2 − T1
.

The existing deterministic algorithms try to minimize the discovery latency between two neighbors
for pre-defined duty cycles. Both symmetric and asymmetric duty cycles should be considered.

4. Spear: Neighbor Discovery Framework

4.1. Framework Overview

As shown in Figure 3, Spear consists of four modules: energy module is in charge of the node’s
energy management; application module collects various latency constraints from the applications;
algorithmic module generates a neighbor discovery schedule by invoking the discovery protocols;
and communication module is responsible for the communication with neighbors.

Spear accepts bounded latency constraints and remaining energy as the inputs, and the neighbor
discovery algorithms (such as Hedis, Hello, Searchlight, and U-Connect in the figure) are plugged into

Sensors 2019, 19, 1887 7 of 18

the framework to generate the discovery schedule. Spear outputs the discovered neighbors and the
corresponding discovery latency, which both are needed for constructing the network and achieving
other functions.

Figure 3. Overview of Spear.

4.2. Energy Module

The energy module receives the remaining energy and the latency constraints from the application
module as inputs. The output is the duty cycle which the node is to adopt. Two main functions are
incorporated into the energy module: computing the node’s lifetime and adjusting the duty cycle.

For any node ui which starts at time ts
i , suppose the generated schedule is Si = {si(t)|t ≥ ts

i } and
it runs out of energy at time te

i . We have the following equation:

∫ te
i

ts
i

si(t) · pn = Pmax. (3)

Then, the lifetime of node ui (denoted as L fi) is L fi = te
i − ts

i .
Notice that we assume a sensor node has only two states {ON, OFF} in Section 3.1. The generated

schedule Si = {si(t)} contains a sensor state of each time slot t; specifically, si(t) = 0 if the state of
the node is OFF while si(t) = 1 is the state of the node is ON. We define two identification functions
as fn2 f (t) = 1 if and only if si(t− 1) = 1, si(t) = 0, f f 2n(t) = 1 if and only if si(t− 1) = 0, si(t) = 1.
The first one implies that the node switches its state from ON to OFF, while the other one implies that
the node switches its state from OFF to ON. Combining these, a complete energy formulation should
be ∫ te

i

ts
i

si(t) · pn + (1− si(t)) · p f + fn2 f (t) · pn f + f f 2n(t) · p f n = Pmax.

Since we assume the consumed energy of state OFF and switching states are zero, i.e., p f = pn f =

p f n = 0, we derive the simplified formulation as Equation (3).
If node ui turns the radio on all the time, Equation (3) can be rewritten as:

(te
i − ts

i) · pn = Pmax

Sensors 2019, 19, 1887 8 of 18

and the lifetime is L fi =
Pmax

pn
, which is the minimum value.

To extend the lifetime, node ui turns on the radio for a fraction of the time. If node ui selects the
duty cycle as a fixed value θ̂ ∈ (0, 1), we can rewrite Equation (3) as:

(te
i − ts

i) · θ̂ · pn + (te
i − ts

i) · (1− θ̂) · p f ≈ Pmax.

We use ‘≈’ since the schedule may not be a complete cycle, but it makes very little difference, and we
can just regard it as ‘=’. As we assume p f = 0, the lifetime of node ui is computed as:

L fi =
Pmax

pn · θ̂
. (4)

Suppose that node ui adjusts the duty cycle timely. Denote the time that ui changes the duty cycle
as: T0 < T1 < . . . < Tm, where T0 = ts

i and Tm < te
i . For simplicity, denote Tm+1 = te

i and Equation (3)
is rewritten as:

∑m
k=0(

∫ Tk+1
Tk

si(t) · pn) = Pmax

⇒ ∑m
k=0(Tk+1 − Tk) · θi(Tk, Tk+1) · pn = Pmax.

Since θi(Tk, Tk+1) and Ti, i ∈ [0, m] are known beforehand, te
i = Tm+1 is computed as:

te
i =

Pmax
pn
−∑m−1

k=0 (Tk+1 − Tk) · θi(Tk, Tk+1)

θi(Tm, Tm+1)
+ Tm. (5)

Then, the lifetime can be computed. In Section 5, we analyze the impact of the node’s lifetime by
different strategies that adjust the duty cycles.

4.3. Application Module

WSNs are used in many applications and there could be many different requirements for the
nodes. For example, when a node detects an emergency, such as a very low temperature, a moving
enemy, etc., it needs to inform the whole network quickly. We regard these requirements as latency
constraints. That is, the node has to discover the neighbors within a bounded latency. Therefore,
in order to send out the information quickly, the node has to increase the duty cycle and turn on the
radio more frequently. The application module passes the latency constraints to the energy module
and the algorithmic module. Two main functions are implemented in the module (for node ui):

(1) To collect latency constraints at time t, such that the discovery latency should be bounded
within L̂i(t);

(2) to compute an appropriate duty cycle according to the latency constraint.

4.4. Algorithmic Module

Once the duty cycle is adjusted by the energy module or the application module, the node
has to invoke the algorithmic module to compute the discovery schedule for the coming time slots.
The interface involves duty cycle and latency constraints as inputs, and outputs the discovery schedule.
Notice that Spear is designed for the practical networks and the nodes could adjust the duty cycle
locally. Therefore, the implemented algorithms should be applicable for asymmetric duty cycles.
We summarize the state-of-the-art algorithms by considering the relationship between duty cycles and
discovery latency in Table 2.

Sensors 2019, 19, 1887 9 of 18

Table 2. Algorithms comparison for two neighbors.

Algorithms DC 1 DC 2 Latency Asymmetric?

Quorum [24] θ θ 4
θ2 No

LL-Optimal [33] θ θ 1
θ2 No

Disco [16] θ1 θ2
4

θ1θ2
Yes

U-Connect [18] θ1 θ2
9

4θ1θ2
Yes

Searchlight [13] θ1 θ2
2

θ1θ2
Yes

C-Torus [35] θ1 θ2
9

4θ1θ2
Yes

BlindDate [26] θ1 θ2
9

5θ1θ2
Yes

Hedis [15] θ1 θ2
4

θ1θ2
Yes

Todis [15] θ1 θ2
9

θ1θ2
Yes

Hello [22] θ1 θ2
(c1+1)(c2+1)

c1c2θ1θ2
Yes

Remarks: (1) ‘DC’ is short for duty cycle; we use θ for symmetric duty cycle and θ1, θ2 for asymmetric duty
cycle; (2) Hello is a little different from other algorithms, where there are two parameters to choose; (3) some
results of discovery latency are modified (or simplified) on the basis of symmetric analyses.

4.5. Communication Module

The node carries out the operations according to the generated schedule by the algorithmic
module. The target of the communication module is to discover the neighbors when collisions exist
among multiple nodes. We summarize the two main functions that are implemented:

(1) Discover the neighbors and record the neighbors’ information, such as the identifier, the start
time, and the duty cycle;

(2) compute the corresponding discovery latency of the neighbors.

When we deploy existing algorithms for multiple nodes, communication collisions often occur
and many nodes cannot discover their neighbors. In Section 6, we devise two new methods to reduce
the collisions, and the algorithms modified by the methods can achieve good performances.

4.6. Measurements

In this paper, we utilize three metrics to evaluate the algorithms. Considering each node ui,

(1) Lifetime L fi reveals how long the node can survive;
(2) Discovery latency L(i, Ni) is the number of time slots (t0) to discover all neighbors;
(3) Discovery rate is the percentage of discovered neighbors in Ni for a bounded latency.

Lifetime and discovery latency are commonly adopted in the existing works. Due to
communication collisions, some nodes may not be able to find all neighbors, and so we introduce
discovery rate for evaluation.

5. Methods of Adjusting Duty Cycle

Neighbor discovery is affected by nodes’ duty cycles. Existing works have designed efficient
discovery schedules for fixed duty cycles, but few of them study how to adjust the duty cycle during a
node’s lifetime. In this section, we present several methods to adjust the duty cycle according to the
remaining energy and the latency constraints.

5.1. Energy Management Methods

As shown in Equation (4), node ui’s lifetime is L fi = Pmax
pn ·θ if it sticks to duty cycle θ all the

time. To extend the lifetime, it could reduce the duty cycle when the remaining energy is depleting.
We propose two methods to adjust the duty cycle.

Sensors 2019, 19, 1887 10 of 18

Piece-wise Reducing (PWR) Method: Generate m different energy levels as Pmax = P̂1 > P̂2 >

. . . P̂m > 0 and m corresponding duty cycle levels as θ̂1 > θ̂2 > . . . > θ̂m in advance. When the
remaining energy drops down to P̂j, the node adjusts the duty cycle to θ̂j. For simplicity, denote
P̂m+1 = 0 and node ui selects duty cycle at time t as:

θi(t) = θ̂j, i f Pi(t) ∈ (P̂j+1, P̂j]. (6)

The lifetime of node ui is computed as:

L fi = ∑m
j=1

P̂j−P̂j+1

pn ·θ̂j
. (7)

The PWR method can extend the node’s lifetime as compared to Equation (4), but it has to generate
different levels of energy and duty cycles beforehand. We propose another method which is much
easier to implement.

Periodical Reducing (PDR) Method: Node ui selects an initial duty cycle θ̂0 when it starts
(with energy Pmax). The node adjusts the duty cycle every T̂ time slots according to the remaining
energy, where T̂ is a fixed constant. Supposing that the remaining energy at time t is Pi(t), the duty
cycle is reduced as:

Pi(t)
θi(t)

=
Pmax

θ̂0
. (8)

When the remaining energy is very low (Pi(t) ≤ Pmin where Pmin is a small constant), the node
has to fix the duty cycle as θ̂min = Pmin

Pmax
· θ̂0. In order to compute the lifetime, it is necessary to compute

the number of times that the node adjusts the duty cycle. Suppose after m periods of length T̂,
the remaining energy is no larger than Pmin, and the following equations are derived:

P̂0 = Pmax, θ̂0 = θ̂0,

P̂1 = P̂0 − T̂ · θ̂0 · pn, θ̂1 = P̂1
P̂0
· θ̂0,

...
...

P̂i = P̂i−1 − T̂ · θ̂i−1 p̂n, θ̂i =
P̂i
P̂0
· θ̂0,

...
...

P̂m = P̂m−1 − T̂ · θ̂m−1 · pn, θ̂m = Pmin
P̂0
· θ̂0.

(9)

Combine these to give:

P̂m = P̂0[1− (m
1)

T̂θ̂0 pn
P̂0

+ (m
2)(

T̂θ̂0 pn
P̂0

)2 + · · ·+ (−1)m(m
m)(

T̂θ̂0 pn
P̂0

)m].

= P̂0(1− T̂θ̂0 pn
P̂0

)m.
(10)

When P̂m ≤ Pmin, the number of periods is m ≥ log(Pmin/Pmax)

log(1−T̂θ̂0 pn/Pmax)
and the lifetime of node ui is:

L fi = m · T +
P̂mPmax

Pmin θ̂0 pn
. (11)

Both PWR and PDR methods could prolong the node’s lifetime and we evaluate them in Section 7.

5.2. Latency Constraints

When the applications have latency constraints, such as fast streaming or real time detection
applications, the node has to increase the duty cycle in order to discover the neighbors in bounded

Sensors 2019, 19, 1887 11 of 18

time. However, discovery latency between two neighbors is determined by the chosen algorithm and
the duty cycles of both nodes.

As listed in Table 2, different algorithms lead to different discovery latencies. Take Disco [16] as
an example. Given latency constraint L̂i(t) at time t for node ui, it can check the recorded information
of the discovered neighbors. Suppose one neighbor uj’s duty cycle is θ̂j, node ui has to increase its duty
cycle as: θ̂i ≥ 4

θ̂j L̂i(t)
. In order to discover all neighbors, node ui has to check the smallest duty cycle

(denote it as θ̂m) and it has to increase the duty cycle as θ̂i ≥ 4
θ̂m L̂i(t)

. After satisfying the application
requirements, node ui can then adjust the duty cycle by the remaining energy as described above.
In order to reduce communication collisions, the duty cycle has to be larger.

Combining remaining energy and latency constraints, the duty cycle should be adjusted by both
factors; that is, to design a function of adjusting the duty cycle as:

θi(t) = f (Pi(t), L̂i(t)). (12)

When there is no latency constraint, L̂i(t) = +∞, PWR and PDR are two representative examples.
In Spear, researchers could implement the interface for evaluating more functions which can timely
adjust the duty cycle.

6. Methods of Reducing Collisions

In real communication scenarios, two neighboring nodes can communicate successfully only
when they are not interfered by other nodes. If existing deterministic algorithms are extended to
handle multiple nodes directly, communication collisions happen and most nodes cannot find the
neighbors. In this section, we analyze the discovery probability and propose two methods to reduce
the collisions.

6.1. Discovery Probability under Collision

Considering two neighboring nodes ui, uj, denote the sets of each node’s neighbors as Ni, Nj
respectively (ui ∈ Nj, uj ∈ Ni). Suppose that nodes ui, uj turn on their radio at time t, and denote the
sets of neighbors that also turn on the radio as Ñi ⊆ Ni, Ñj ⊆ Nj. Since uj ∈ Ñi, ui ∈ Ñj, ui and uj can
discover each other only when:

|Ñi| = 1, |Ñj| = 1.

Denote the average duty cycle for node uk as θk. We consider the scenario where node uk turns
on the radio with probability θk independently in each time slot (expected situation). Then, on the
basis of the event that nodes ui, uj turn on the radio at time t, the probability for successful discovery
is derived as:

Pr(|Ñi| = 1, |Ñj| = 1) ≤ min{Pr(|Ñi| = 1), Pr(|Ñj| = 1)}
= min{∏uk∈Ni ,k 6=j(1− θk), ∏uk∈Nj ,k 6=i(1− θk)}.

If θk = 1% and max{|Ni|, |Nj|} ≥ 69 (or θk = 10% and max{|Ni|, |Nj|} ≥ 7), the probability of
successful discovery is less than 1/2. Therefore, the existing algorithms cannot be applied to multiple
nodes directly. We adopt the idea of the probabilistic protocols to reduce the communication collisions;
two efficient methods are proposed.

6.2. Pure Probability Reducing (PPR) Method

The PPR Method works as follows. For any deterministic neighbor discovery algorithm f , denote
the generated discovery schedule for node ui as Si = {si(t)|t ≥ ts

i }. For any time t that si(t) = 1, node

Sensors 2019, 19, 1887 12 of 18

ui turns on the radio with probability p1 (a constant value in (0, 1)); that is, to generate a modified
sequence S̃i = {s̃i(t)|t ≥ ts

i } as:{
I f si(t) = 0, s̃i(t) = 0,
I f si(t) = 1, s̃i(t) = 1 with probability p1.

If two neighbors ui, uj turn on the radio at time t, the expected probabilities of |Ñi| = 1 and
|Ñj| = 1 are:

Pr(|Ñi| = 1) = ∏uk∈Ni ,k 6=j(1− p1 · θk),
Pr(|Ñj| = 1) = ∏uk∈Nj ,k 6=i(1− p1 · θk).

If p1 = 0.5, θk = 1%, the probability of successful discovery is less than 1/2 when
max{|Ni|, |Nj|} ≥ 139. By choosing different values of p1, the performance could be different. We
evaluate the sensitivity of p1 in Section 7.

6.3. Decreased Probability Reducing (DPR) Method

The PPR method can increase the discovery probability, but it is independent of the schedule
itself. We present the DPR method, which tries to coordinate any discovery schedule with the method.
For the generated discovery schedule Si by any algorithm f , node ui should turn on the radio at
time t1 when si(t1) = 1. Denote the next time slot that ui turns on the radio by schedule Si as t2, i.e.,
si(t2) = 1, t2 > t1. Modify the schedule of time slots [t1, t2) as:

• Change si(t) = 0 for t ∈ [t1, t2);
• increase t∗ from t1 to t2− 1, if si(t) = 0 for all t ∈ [t1, t∗), set si(t∗) = 1 with probability p2 · t2−t∗

t2−t1+1
where p2 is a constant value in (0, 1).

Node ui turns on the radio in the initial slot with probability p2 · (1− 1
t2−t1+1), and it could reduce

the probability of collisions. If ui does not turn on the radio at time t1, it decreases the probability and
attempts to turn on the radio in the next slot, t1 + 1. This process does not finish until ui turns on the
radio in any slot within [t1, t2), or it keeps the radio off for all of them.

Overall, both PPR and DPR are designed to support deterministic neighbor discovery protocols.
Unlike probabilistic-based protocols, the neighbor discovery schedules computed by both PPR and
DPR are based on the schedules generated by deterministic protocols. Therefore, a deterministic
protocol running with PPR or DPR can achieve a stable discovery latency (confirmed in Section 7.1).

7. Evaluations

We have implemented Spear in C++, which includes the interfaces between different modules,
important functions for computing in each module, and measurements to evaluate the performances.
We implemented four state-of-the-art algorithms including Hedis [15], Hello [22], Searchlight [13]
and U-Connect [18] (we also implemented Quorum [24], but the result is only presented in Figure 9
since it is inapplicable when the users’ duty cycle are different), and run these algorithms in a cluster
with nine servers, each equipped with an Intel Xeon 2.6 GHz CPU (central processing unit) with
24 hyper-threading cores, 64 GB memory and 1T SSD (solid-state disk). The basic settings in the
simulations are: dc = 50 m, Pmax = 100, 000, pn = 1 and t0 = 20 ms. We choose three scenarios for
comparison:

(1) Discovery in a star network. The central node uc has |Nc| neighbors in the star network.
A neighboring node selects the duty cycle randomly within [0.1, 0.5], while uc’s duty cycle
(θc) is set to different figures.

(2) Discovery among N = 1000 nodes. The area is set as a rectangle of size 1000 × 1000 m2, and the
node’s coordinates are generated randomly. Each node selects the duty cycle randomly within
[0.1, 0.5].

Sensors 2019, 19, 1887 13 of 18

(3) Discovery between two neighbors. Spear enables the evaluation for existing protocols and
generates the best schedule for fixed duty cycles.

We evaluated average discovery latency, lifetime, or percentage of discovery under different
settings, and we describe the detailed parameters for each figure. The start time of any node is
generated randomly within [0, 1000] and the results are based on 1000 separate runs. The detailed
parameters are described in Table 3.

Table 3. Parameters of the evaluations.

Figures Parameters

All figures dc = 50 m Pmax = 100,000 pn = 1 t0 = 20 ms
Figure 4 |Nc| ∈ [1, 100] θc = 0.3 p1 = 0.5 p2 = 0.5
Figure 5 |Nc| = 20 θc = 0.3 p1 ∈ [0.1, 0.9]
Figure 6 |Nc| = 20 θc = 0.3 p2 ∈ [0.1, 0.9]
Figure 7 |Nc| = 20 θ̂0 = 0.3 T̂ = 100,000
Figure 8 |Nc| = 20 θ̂0 = 0.3 T̂ = 100,000
Figure 9 N = 2 θ1 ∈ [0.1, 0.3] θ2 ∈ [0.1, 0.3]

7.1. Increasing Discovery Rate

In the network with multiple nodes, communication collisions could affect the discovery results.
We evaluate the performance of the proposed collision reducing methods (PPR and DPR in Section 6),
and compare them with the bare (not running in Spear) algorithms.

Number of neighbors. In a star network, the central node uc has |Nc| neighbors and it selects
duty cycle θc = 0.3. We select Hedis as the example and set p1 = p2 = 0.5 for PPR and DPR. Figure 4
shows the discovery rate (y-axis) of uc within 100, 000 time slots when |Nc| (x-axis) increases from 1
to 100. From the figure, (bare) Hedis cannot discover all neighbors when |Nc| ≥ 7, and it cannot find
even one neighbor when |Nc| ≥ 18. Modified by PPR and DPR, all neighbors can be discovered when
|Nc| ≤ 43 and |Nc| ≤ 33, respectively. We also evaluate the performance of PPR and DPR at p1 = 0.4
and p2 = 0.2, and they outperform the methods when p1 = p2 = 0.5.

20 40 60 80
Number of Neighbors: |Nc|

0

20

40

60

80

100

Di
sc

ov
er
y
Ra

te
 (%

)

Hedis
Hedis-PPR (p1=0.5)
Hedis-PPR (p1=0.4)
Hedis-DPR (p2=0.5)
Hedis-DPR (p2=0.2)

Figure 4. Spear increases discovery rate by incorporating PPR and DPR.

Sensitivity of p1. In a star network, the central node uc has |Nc| = 20 neighbors (we set |Nc| = 20
since the bare algorithms fail to find any neighbor) and we evaluate PPR’s performance under different
values of p1. As shown in Figure 5a, θc is set to 0.3 and the average discovery latency (y-axis) of
different algorithms is changed by different values of p1 (x-axis). When p1 ∈ [0.3, 0.4], the performance
is better. In Figure 5b, we select U-Connect as the example and set θc as 0.1, 0.2, 0.3, 0.4, 0.5, respectively.
The average discovery latency is changed by different values of p1 (x-axis), and the performance is
also better when p1 approaches [0.3, 0.4]. Overall, our discovery latency is stable when p1 ≤ 0.6.

Sensors 2019, 19, 1887 14 of 18

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p1

10k

20k

30k

40k

50k

60k
Av

er
ag

e
La

te
nc

y Hedis-PPR
Hello-PPR
Searchlight-PPR
U-Connect-PPR

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p1

10k

20k

30k

40k

50k

60k

70k

80k

90k

Av
er

ag
e

La
te

nc
y θc = 0.1

θc = 0.2
θc = 0.3
θc = 0.4
θc = 0.5

(b)

Figure 5. Sensitivity of p1 in the PPR method. (a) θc = 0.3; (b) U-Connect-PPR.

Sensitivity of p2. In a star network, the central node uc has |Nc| = 20 neighbors and the DPR’s
performance is evaluated under different values of p2. As shown in Figure 6a, θc is set to 0.3 and the
average discovery latency (y-axis) of different algorithms are changed by different values of p2 (x-axis).
When p2 is close to 0.2, the performance is better. In Figure 6b, we select U-Connect for different θc

(0.1, 0.2, 0.3, 0.4, 0.5, respectively). The average discovery latency (y-axis) is changed by different values
of p2 (x-axis), and the performance is better when p2 ≈ 0.2. Overall, our discovery latency is stable
when p2 ≤ 0.7.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p2

1k

2k

3k

4k

5k

6k

7k

8k

Av
er
ag

e
La
te
nc
y Hedis-DPR

Hello-DPR
Searchlight-DPR
U-Connect-DPR

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p2

1k

5k

10k

20k

30k

40k

Av
er

ag
e

La
te

nc
y θc = 0.1

θc = 0.2
θc = 0.3
θc = 0.4
θc = 0.5

(b)

Figure 6. Sensitivity of p2 in the DPR method. (a) θc = 0.3; (b) U-Connect-DPR.

1000 nodes. In a randomly generated network with N = 1000 nodes, we evaluate the
performances of different algorithms. As shown in Figure 1, modified by PPR (p1 = 0.4) and DPR
(p2 = 0.2), the discovery rates (y-axis) are much larger than those of the bare algorithms. Especially
for Hello, the discovery rate is only 33.0%, while PPR and DPR could greatly increase the rate to
99.2%, 95.5%, respectively.

7.2. Prolonging Lifetime

The two methods (PWR and PDR) that can extend a node’s lifetime are also implemented in Spear.
We evaluate the performance in a star network where the central node uc has |Nc| = 20 neighbors.
In PWR, m = 30 levels of remaining energy and corresponding duty cycles are generated in advance.
In PDR, θ̂0 is set to 0.3, Pmin = 200, and the node adjusts the duty cycle every T̂ = 100, 000 time slots.

Sensors 2019, 19, 1887 15 of 18

Lifetime. The lifetime of uc is illustrated in Figure 7 for different algorithms, both PWR and PDR
prolong the lifetime significantly. For example, the lifetimes of PWD and PDR are 5.15 and 6.47 times
longer than bare Hedis, respectively.

Hedis Hello Searchlight U-Connect
0

500000

1000000

1500000

2000000
Lif

e
Ti

m
e

Bare Protocol
PWR
PDR

Figure 7. Spear prolongs the lifetime with PWR and PDR.

Percentage of Remaining Energy. We show the percentage of remaining energy (y-axis) after 2T̂
and 3T̂ time slots in Figure 8. After 2T̂ time slots, PWR and PDR are just a little better than the bare
Hedis protocol (see Figure 8a), while the difference becomes much larger after 3T̂ time slots (see Figure
8b). By incorporating PWR and PDR, Spear can save power and extend the lifetime significantly.

Hedis Hello Searchlight U-Connect

10

20

30

40

50

60

Re
m
ai
ni
ng

 E
ne
rg
y
at
 2
T
(%

)

Bare Protocol
PWR
PDR

(a)

Hedis Hello Searchlight U-Connect

5

10

15

20

25

30

35

40

Re
m
ai
ni
ng

 E
ne

rg
y
at
 3
T
(%

)

Bare Protocol
PWR
PDR

(b)

Figure 8. Spear saves more energy by incorporating PWR and PDR compared to bare algorithms.
(a) After 2T̂; (b) After 3T̂.

7.3. Improving Discovery for Two Neighbors

Spear enables the evaluation of neighbor discovery protocols supporting symmetric and
asymmetric duty cycles, which facilitates the generation of the optimal schedule.

Symmetric duty cycle: suppose two neighbors select the same duty cycle θ that increases from
0.1 to 0.3, we evaluate the average discovery latency in Figure 9a. As shown in the figure, the discovery
latency (y-axis) of all algorithms decreases as θ (x-axis) increases, and they have similar performances.
This is because the discovery latency is proportional to 1

θ2 and the trends of these curves match the
analysis. Finally, the optimal schedule can be generated automatically; for example, U-Connect is
selected when θ ∈ [0.1, 0.13], while Hello is selected when θ ∈ [0.13, 0.16].

Asymmetric duty cycle: suppose one node’s duty cycle is fixed as θ1 = 0.2 and the other node’s
duty cycle θ2 increases from 0.1 to 0.3. Since Quorum is inapplicable for asymmetric duty cycles,
we compare the other four algorithms. As shown in Figure 9b, the average discovery latency (y-axis)
decreases as θ2 (x-axis) increases, and the decreasing trends are much more gentle than in Figure 9a.
This is because the discovery latency is proportional to 1

θ2
when θ1 is a constant.

Sensors 2019, 19, 1887 16 of 18

0.10 0.15 0.20 0.25 0.30

θ

0

20

40

60

80

100

120

140

160

A
v
e
ra

g
e
 D

is
co

v
e
ry

 L
a
te

n
cy

Hedis

Hello

Searchlight

U-Connect

Quorum

Optimal

(a)

0.10 0.15 0.20 0.25 0.30

θ2

0

10

20

30

40

50

60

70

80

90

A
v
e
ra
g
e
 D
is
co
v
e
ry
 L
a
te
n
cy

Hedis

Hello

Searchlight

U-Connect

Optimal

(b)

Figure 9. Spear enables the evaluation of the neighbor discovery algorithms for symmetric and
asymmetric duty cycles and generates the optimal schedule automatically. (a) Symmetric duty cycle;
(b) asymmetric duty cycle.

7.4. Effectiveness of Spear Components

In Spear, the communication module evidently increases the discovery rate as compared to the
bare protocols, as demonstrated by the evaluations in Section 7.1. The energy module significantly
extends a node’s lifetime, as described in Section 7.2. Though we did not evaluate the application
module separately, the evaluations targeting at discovery latency and discovery rate imply that Spear
could adjust the related parameters (such as duty cycle, p1 of PPR, and p2 of DPR) to reduce the
discovery latency. The algorithmic module computes an optimal schedule automatically as shown in
Section 7.3.

8. Conclusions

We present Spear, the first practical framework for general neighbor discovery protocols in WSNs.
Extensive evaluations have shown that Spear can greatly increase the discovery rate and extend the
lifetime of sensor nodes. Spear has the potential to be applied to tackling a broad range of problems
in WSNs.

In the future, we would like to explore the connection between some standard MAC (media access
control) protocols for reducing collisions and neighbor discovery protocols, such as the Carrier Sense
multiple Access/Collision Avoidance (CSMA/CA) protocol. We would also compare the performance
of the proposed methods with the standards and bring these intuitive ideas to design efficient neighbor
discovery protocols. Furthermore, we would evaluate the proposed framework with some well known
IoT operation systems such as RiOT and Contiki [7], and conduct experiments on a real deployed WSN.

Author Contributions: Z.G. proposed the framework and the methods, and wrote the paper; Y.W. performed the
evaluations of various protocols; W.S. improved the system model; Z.T. designed the framework and its modules;
K.R. contributed evaluations tools; F.C.M.L. analyzed the latest protocols and polished the paper.

Funding: This work is supported in part by the National Key R&D Program of China 2018YEB1004003, China
grants U1636215.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Atzori, L.; Lera, A.; Morabito, G. The Internet of Things: A Survey. Comput. Netw. 2010, 54, 2787–2805.
[CrossRef]

2. Tan, Q.; Gao, Y.; Shi, J.; Wang, X.; Fang, B.; Tian, Z. Towards a Comprehensive Insight into the Eclipse Attacks
of Tor Hidden Services. IEEE Internet Things J. 2018. [CrossRef]

http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1109/JIOT.2018.2846624

Sensors 2019, 19, 1887 17 of 18

3. Tian, Z.; Cui, Y.; An, L.; Su, S.; Yin, X.; Yin, L.; Cui, X. A Real-Time Correlation of Host-Level Events in Cyber
Range Service for Smart Campus. IEEE Access 2018, 6, 35355–35364. [CrossRef]

4. Tian, Z.; Shi, W.; Wang, Y.; Zhu, C.; Du, X.; Su, S.; Sun, Y.; Guizani, N. Real Time Lateral Movement Detection
based on Evidence Reasoning Network for Edge Computing Environment. IEEE Trans. Ind. Inform. 2019.
[CrossRef]

5. Tian, Z.; Li, M.; Qiu, M.; Sun, Y.; Su, S. Block-DES: A Secure Digital Evidence System using Blockchain.
Inf. Sci. 2019, 491, 151–165. [CrossRef]

6. Zikria, Y.B.; Yu, H.; Afzal, M.K.; Rehmani, M.H.; Hahm, O. Internet of Things (IoT): Operating System,
Applications and Protocols Design, and Validation Techniques. Futuer Gener. Comput. Syst. 2018, 88, 699–706.
[CrossRef]

7. Zikria, Y.B.; Afzal, M.K.; Ishmanov, F.; Kim, S.W.; Yu, H. A Survey on Routing Protocols Supported by the
Contiki Internet of Things Operating System. Futuer Gener. Comput. Syst. 2018, 82, 200–219. [CrossRef]

8. Gu, Z.; Hua, Q.-S.; Wang, Y.; Lau, F.C.M. Reducing Information Gathering Latency through Mobile Aerial
Sensor Network. In Proceedings of the 2013 Proceedings IEEE INFOCOM, Turin, Italy, 14–19 April 2013.

9. Miao, G.; Zander, J.; Sung, K.W.; Slimane, B. Fundamentals of Mobile Data Networks; Combridge University
Press: Combridge, UK, 2016.

10. Xu, X.; Luo, J.; Zhang, Q. Delay Tolerance Event Collections in Sensor Networks with Mobile Sink.
In Proceedings of the 2010 Proceedings IEEE INFOCOM, San Diego, CA, USA, 14–19 March 2010.

11. Wang, Y.; Wang, Y.; Qi, X.; Xu, L.; Chen, J.; Wang, G. L3SN: A Level-Based, Large-Scale, Longevous Sensor
Network System for Agriculture Information Monitoring. Wirel. Sens. Netw. 2010, 2, 655–660. [CrossRef]

12. Margolies, R.; Grebla, G.; Chen, T.; Rubenstein, D.; Zussman, G. Panda: Neighbor Discovery on a Power
Harvesting Budget. IEEE J. Sel. Areas Commun. 2016, 34, 3606–3619. [CrossRef]

13. Bakht, M.; Trower, M.; Kravets, R.H. Searchlight: Won’t you be my neighbor? In Proceedings of
the 18th Annual International Conference on Mobile Computing and Networking, Istanbul, Turkey,
22–26 August 2012.

14. Bian, K.; Park, J.-M.; Chen, R. A Quorum-Based Framework for Establishing Control Channels in Dynamic
Spectrum Access Networks. In Proceedings of the 15th Annual International Conference on Mobile
Computing and Networking, Beijing, China, 20–25 September 2009.

15. Chen, L.; Fan, R.; Bian, K.; Chen, L.; Gerla, M.; Wang, T.; Li, X. On Heterogeneous Neighbor Discovery in
Wireless Sensor Networks. In Proceedings of the 2015 IEEE Conference on Computer Communications
(INFOCOM), Hong Kong, China, 26 April–1 May 2015.

16. Dutta, P.; Culler, D. Practical Asynchronous Neighbor Discovery and Rendezvous for Mobile Sensing
Applications. In Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems, Raleigh,
NC, USA, 5–7 November 2008; pp. 71–84.

17. Jiang, J.-R.; Tseng, Y.-C.; Hsu, C.-S.; Lai, T.-H. Quorum-based Asynchronous Power-Saving Protocols for
IEEE 802.11 Ad Hoc Networks. Mob. Netw. Appl. 2005, 10, 169–181. [CrossRef]

18. Kandhalu, A.; Lakshmanan, K.; Rajkumar, R.R. U-Connect: A Lower Latency Energy-Efficient Asynchronous
Neighbor Discovery Protocol. In Proceedings of the 9th ACM/IEEE International Conference on Information
Processing in Sensor Networks, Stockholm, Sweden, 12–16 April 2010.

19. Lai, S.; Ravindran, B.; Cho, H. Heterogeneous Quorum-based Wake-up Scheduling in Wireless Sensor
Networks. IEEE Trans. Comput. 2010, 59, 1562–1575. [CrossRef]

20. McGlynn, M.J.; Borbash, S.A. Birthday Protocols for Low Energy Deployment and Flexible Neighbor
Discovery in Ad Hoc Wireless Networks. In Proceedings of the 2nd ACM International Symposium on
Mobile Ad Hoc Networking & Computing, Long Beach, CA, USA, 4–5 October 2001.

21. Qiu, Y.; Li, S.; Xu, X.; Li, Z. Talk More Listen Less: Energy-Efficient Neighbor Discovery in Wireless Sensor
Networks. In Proceedings of the IEEE INFOCOM 2016–The 35th Annual IEEE International Conference on
Computer Communications, San Francisco, CA, USA, 10–14 April 2016.

22. Sun, W.; Yang, Z.; Zhang, X.; Liu, Y. Hello: A Generic Flexible Protocol for Neighbor Discovery.
In Proceedings of the IEEE INFOCOM 2014—IEEE Conference on Computer Communications, Toronto, ON,
Canada, 27 April–2 May 2014.

23. Tian, Z.; Su, S.; Shi, W.; Du, X.; Guizani, M.; Yu, X. A Data-driven Model for Future Internet Route Decision
Modeling. Future Gener. Comput. Syst. 2019, 95, 212–220. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2018.2846590
http://dx.doi.org/10.1109/TII.2019.2907754
http://dx.doi.org/10.1016/j.ins.2019.04.011
http://dx.doi.org/10.1016/j.future.2018.07.058
http://dx.doi.org/10.1016/j.future.2017.12.045
http://dx.doi.org/10.4236/wsn.2010.29078
http://dx.doi.org/10.1109/JSAC.2016.2611984
http://dx.doi.org/10.1023/B:MONE.0000048553.45798.5e
http://dx.doi.org/10.1109/TC.2010.20
http://dx.doi.org/10.1016/j.future.2018.12.054

Sensors 2019, 19, 1887 18 of 18

24. Tseng, Y.-C.; Hsu, C.-S.; Hsieh, T.-Y. Power-Saving Protocols for IEEE 802.11-based Multi-Hop Ad Hoc
Networks. Comput. Netw. 2003, 43, 317–337. [CrossRef]

25. Vasudevan, S.; Towsley, D.; Goeckel, D.; Khalili, R. Neighbor Discovery in Wireless Networks and the
Coupon Collector’s Problem. In Proceedings of the 15th Annual International Conference on Mobile
Computing and Networking, Beijing, China, 20–25 September 2009.

26. Wang, K.; Mao, X.; Liu, Y. BlindDate: A Neighbor Discovery Protocol. TPDS 2015, 26, 949–959. [CrossRef]
27. Zeng, W.; Vasudevan, S.; Chen, X.; Wang, B.; Russel, A.; Wei, W. Neighbor Discovery in Wireless Networks

with Multipacket Reception. In Proceedings of the Twelfth ACM International Symposium on Mobile Ad
Hoc Networking and Computing, Paris, France, 17–19 May 2011.

28. Sun, G.; Wu, F.; Chen, G. Neighbor Discovery in Low Duty Cycle Wireless Sensor Networks with Mutipacket
Reception. In Proceedings of the IEEE International Conference on Parallel and Distributed Systems,
Singapore, 17–19 December 2012.

29. Zanella, A.; Bazzi, A.; Pasolini, G.; Masini, B.M. On the Impact of Routing Strategies on the Interference of
Ad hoc Wireless Networks. IEEE Trans. Commun. 2013, 61, 4322–4333. [CrossRef]

30. Chen, P.; Chen, Y.; Gao, S.; Niu, Q.; Gu, J. Efficient group-based discovery for wireless sensor networks. Int. J.
Distrib. Sens. Netw. 2017. [CrossRef]

31. Montero, S.; Gozalvez, J.; Sepulcre, M. Neighbor Discovery for Industrial Wireless Sensor Networks with
Mobile Nodes. Comput. Commun. 2017, 111, 41–55. [CrossRef]

32. Nathanson, M.B. Elementary Methods in Number Theory; Springer: Berlin/Heidelberg, Germany, 2000;
Volume 195.

33. Zheng, R.; Hou, J.C.; Sha, L. Asynchronous Wakeup for Ad Hoc Networks. In Proceedings of the 4th ACM
International Symposium on Mobile Ad Hoc Networking & Computing, Annapolis, MD, USA, 1–3 June 2003.

34. Halldorsson, M.M.; Wang, Y.; Yu, D. Leveraging Multiple Channels in Ad Hoc Networks. In Proceedings of
the 2015 ACM Symposium on Principles of Distributed Computing, San Sebastián, Spain, 21–23 July 2015.

35. Chen, L.; Yan, B.; Zhang, J. Neighbor Discovery Algorithm in Mobile Low Duty Cycle WSNs. J. Softw. 2014,
25, 1352–1368.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S1389-1286(03)00284-6
http://dx.doi.org/10.1109/TPDS.2014.2316159
http://dx.doi.org/10.1109/TCOMM.2013.090613.130026
http://dx.doi.org/10.1177/1550147717719056
http://dx.doi.org/10.1016/j.comcom.2017.07.004
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Preliminaries
	Sensor Node Model
	Communication Model
	Neighbor Discovery

	Spear: Neighbor Discovery Framework
	Framework Overview
	Energy Module
	Application Module
	Algorithmic Module
	Communication Module
	Measurements

	Methods of Adjusting Duty Cycle
	Energy Management Methods
	Latency Constraints

	Methods of Reducing Collisions
	Discovery Probability under Collision
	Pure Probability Reducing (PPR) Method
	Decreased Probability Reducing (DPR) Method

	Evaluations
	Increasing Discovery Rate
	Prolonging Lifetime
	Improving Discovery for Two Neighbors
	Effectiveness of Spear Components

	Conclusions
	References

