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Abstract: In this paper, a miniature Fabry-Perot temperature probe was designed by using
polydimethylsiloxane (PDMS) to encapsulate a microfiber in one cut of hollow core fiber (HCF). The
microfiber tip and a common single mode fiber (SMF) end were used as the two reflectors of the
Fabry-Perot interferometer. The temperature sensing performance was experimentally demonstrated
with a sensitivity of 11.86 nm/◦C and an excellent linear fitting in the range of 43–50 ◦C. This high
sensitivity depends on the large thermal-expansion coefficient of PDMS. This temperature sensor can
operate no higher than 200 ◦C limiting by the physicochemical properties of PDMS. The low cost,
fast fabrication process, compact structure and outstanding resolution of less than 10−4 ◦C enable it
being as a promising candidate for exploring the temperature monitor or controller with ultra-high
sensitivity and precision.

Keywords: fiber sensors; temperature sensors; Fabry-Perot interferometer; microfiber; PDMS;
integrated optics

1. Introduction

As a typical physical parameter, the temperature must be carefully controlled and monitored in
many fields, such as clinical medicine, biochemical reactions, industrial production, aviation safety and
so on [1–3]. In recent years, optical fiber temperature sensors have aroused widespread research interest,
because of their unique advantages compared with electrical ones, such as remote monitoring capability,
high sensitivity, anti-electromagnetic interference properties, and intrinsic safety [4,5]. By combining
the resonance enhancement effect of the optical coupling technique, multi-modes interference, optical
evanescent field, optical time domain reflecting and optical ring-down technology produced by
different special optical fiber structures, various optical fiber temperature sensors were realized [6–9].
Multi-modes interference is carried out by splicing together different kinds of fibers to excite the modes’
interference. The splicing joints are fragile and the length for each section must be carefully controlled
during the fabrication process; Optical evanescent fields can be obtained around micro/nanofibers
with diameters comparable to the wavelength of the incident light. Although micro/nanofibers offer
excellent performance, the sensor probes based on them are difficult to fabricate because of their thin
diameter and environmentally sensitive properties. The optical time domain reflection technique was
used to sense temperature and strain based on Raman or Brillouin scattering [10]. The sensitivity of
the temperature sensor based on optical ring-down technology only can be increased by extending the
fiber length.
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In addition to the basic sensing mechanism, the sensing performance was further improved by
means of temperature sensitive materials [11]. Many materials, such as polymers and metal oxides,
have been reported to be elaborated by surface or inner coating, and used to encapsulate the whole
fiber structure [12–14]. In addition to the temperature dependence, the effect of humidity, strain and
other related parameters on the sensing performance must be determined and eliminated. At present,
the most common commercial optical fiber temperature sensor is the fiber Bragg grating (FBG) having
good repeatability and stable sensing characteristics [15]. It can be prepared by ultraviolet exposure
or nano-etching technology to meet the working requirements of different temperature ranges [16].
However, high sensitivity or precision is difficult to obtain for FBG temperature sensors, which seriously
hinders their commercial application [17].

The optical fiber temperature sensors based on multi-wavelength interference mainly include
Mach–Zehnder and Fabry-Perot interferometers. The former typically perform as transmission
structures, which separate and transmit an independent signal light and reference light by using
different special optical fibers or structures, such as micro/nano fibers, photonic crystal fibers (PCFs),
dislocation fusion fibers and multi-core fibers. A corresponding sensitivity of up to 6.5 nm/◦C was
observed [18]. However, the structures of the Mach-Zehnder interferometers are complex due to
their dual-optical-paths system [19–22]. To simplify the structures, the two optical paths can be
revealed in single fiber, named the in-line Mach-Zehnder interferometer, such as C-typed PCFs [23],
side-hole PCFs [24], D-shaped-hole fibers [25] and muti-core fibers [26]. These compact structures
were precisely machined using femtosecond lasers, focused ion beams and chemical vapor deposition,
and display excellent stability and sensing performance. However, these are hard to manufacture in
batches due to the high cost and technical requirements. In addition to the above complex optical fiber
structures, single polymer optical fibers have been demonstrated with a temperature sensitivity of
~10−3 ◦C [27], where the temperature performance were revealed by the transmission power and the
effect of relative and twist have been experimentally obtained [28,29]. Furthermore, their packaging
size is hard to reduce further depending on the bending loss of the optical fiber [30], which will
seriously limit their application in a narrow space; the latter ones are carried out as reflective structures,
where the temperature sensitive cavity was constructed at the end of the optical fiber by laser or ion
beam processing, chemical etching or film forming and special fiber splicing technologies [31–37].
Among them, femtosecond laser processing can machine a refractive index turning point with good
repeatability in the optical fiber, which was used as a Fabry-Perot cavity and can work at high
temperatures up to 1000 ◦C [31]; focused ion beams can etch an air cavity at the tip of an optical fiber,
based which a Fabry-Perot temperature sensor with a sensitivity of−654 pm/◦C has been experimentally
demonstrated [32]. However, the expensive and complex preparation processing, as well as the high
technique requirements for engineers have become huge obstacles for commercial production [33]. The
Fabry-Perot interferometer probe can be obtained conveniently and quickly by chemical etching or film
forming technology [34], however, the fabrication repeatability is low, and the structural parameters are
difficult to control accurately [35]. By using the special hollow-core photonic bandgap fiber (HC-PBF)
or PCF, the temperature working range and sensitivity of cascaded splicing fiber based Fabry-Perot
interferometer has been experimentally verified as high as 1200 ◦C and 17 nm/◦C, respectively, but
their structures are relatively fragile [36,37].

Compared with conventional temperature sensors, the proposed Fabry-Perot interferometer
temperature sensor costs less and is easier and faster to prepare. This compact Fabry-Perot temperature
probe was proposed by encapsulating a microfiber and a single mode fiber (SMF) tip in a hollow
core fiber (HCF), between which temperature sensitive polydimethylsiloxane (PDMS) was filled and
cured. The microfiber was prepared by the one-step heating-stretching technique from a normal
SMF. The microfiber and SMF can be easily aligned due to the comparable inner diameter of HCFs.
The high transparency and low refractive index of PDMS causes little impact on the incident light.
Furthermore, a sensitivity of higher than 11 nm/◦C has been experimentally demonstrated due to
its high thermal expansion coefficient. This temperature sensor will be a promising candidate for
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monitoring temperature fluctuations in small spaces due to its high sensitivity and tiny scale (200 µm
in diameter and <5 mm in length).

2. Materials and Methods

To fabricate the Fabry-Perot interferometer, a cut of transparent HCF was prepared firstly, as
shown in Figure 1. The coating layer of a HCF (TSP150200, inner diameter: ~150 µm, outer diameter:
~200 µm, coating layer: polyimide, Polymicro Technologies, Inc., Phoenix, AZ, USA) was removed by
a Bunsen burner (Dragon 200, fuel: butane, max-temperature 1300 ◦C, Rocker Scientific Co., Ltd., New
Taipei, Taiwan), as shown in inset (a) of Figure 1. The cavity length of Fabry-Perot interferometer can
be observed through its transparent wall. Both the microfiber and SMF can be inserted and aligned
easily due to their small diameter difference. The microfiber was obtained from the SMF (Coating
removed diameter: 125 µm, SMF-28, Corning Inc., Corning, NY, USA) using the scanning flame
heating-stretching technique (inset (b) of Figure 1). Where, the diameter and length of microfiber
were precisely controlled by optimizing the fabrication process of a fiber melting-drawing system
(IPCS-5000-ST, Idealphotonics Inc., Hong Kong, China). This system uses the high-purity hydrogen
and oxygen as the fuel to obtain a high heating temperature of up to 2500–3000 ◦C. When SMF reaches a
melting state at high temperature, its two ends were fixed onto two motorized displacement platforms
and stretched in opposite directions. By carefully adjusting the speed and scanning region of the flame,
the microfiber with uniform diameter can be obtained in the heating zone. Different diameters were
easily achieved by controlling the stretching velocity. Fabry-Perot interferometer was finally fabricated
by assistance of a homemade micromanipulation system (inset (c) of Figure 1). A cut of transparent
HCF was fixed on a slide glass substrate with UV glue. One end of SMF and microfiber were cut
with a flat-face and acted as two reflecting surfaces of Fabry-Perot interferometer. The other tail-ends
of SMF and microfiber were clamped by two fiber claps and fixed onto two three-dimensional (3-D)
optical fiber adjusting frames (APFP-XYZ, adjusting precision <2 µm, Zolix Instruments Co., Ltd.,
Beijing, China).
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Figure 1. Fabrication process of the microfiber and PDMS based Fabry-Perot temperature probe.
I: Coating layer of HCF was removed to prepare the transparent HCF (inset (a)); II: MF taper was
prepared by scanning flame stretching technique (inset (b)); III: Fabry-Perot temperature probe was
fabricated by assistance of the micromanipulation method under a microscope (insets (c) & (d)).
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In this case, the Fabry-Perot structure can be timely observed and measured by a microscope
system (DMM-300C, Shanghai Caikon Optical Instrument Co., Ltd., Shanghai, China) on a computer
and its cavity length was also timely precisely manipulated according to the reflected spectrum. The
basic component and curing agent were mixed with a weight ratio of 10:1 to obtain the PDMS sol,
which was filled into the HCF using a syringe (inset (d) of Figure 1) and cured in ~20 min. The
experimental schematic was illustrated in Figure 2.Sensors 2019, 19, x FOR PEER REVIEW 4 of 11 
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Figure 2. Experimental schematic of the microfiber and PDMS-based Fabry-Perot interferometer for
sensing temperature. The light source, temperature sensor and spectrometer were contacted by a
1 × 2 coupler. The enlarged schematic and microscope picture of the temperature probe were illustrated.

An amplified stimulated emission (ASE, ASE-C light source, 1520–1610 nm, Shenzhen Golight
Technology Co., Ltd., Shenzhen, China) was used as the light source. The light was launched into
the Fabry-Perot interferometer temperature probe through a 1 × 2 coupler (with the splitter ratio of
50:50). The reflection optical signal was collected by an optical spectrum analyzer (OSA, AQ6370,
600–1700 nm, resolution 20 pm, Yokogawa Electric Corp., Tokyo, Japan). In this work, the optical
polarization direction does not affect the sensing performance due to the circularly polarized light
output of ASE source and the cylindrical structure of microfiber. The temperature probe was placed
in a thermostat (25–250 ◦C, resolution 0.1 ◦C, Shanghai Boxun Medical Biological Instruments Co.,
Ltd., Shanghai, China). The inset is a micrograph of the proposed temperature probe. The microfiber
has a uniform diameter of ~63 µm and a length of ~2 cm. This length should be carefully controlled
depending on the cone angle of the microfiber taper. Too long and thin microfiber will be easily
adsorbed on the inner surface of HCF because of van der Waals force. In this case, it will be difficult to
parallel its end-face with the reflecting surface of SMF to construct the two reflectors of Fabry-Perot
interferometer. The cavity length was finally determined as ~34 µm.

3. Results

In the experiment, the Fabry-Perot interferometer temperature probe was placed in a thermostat.
The temperature was increased from room temperature to 100 ◦C with steps of 1 ◦C. The reflection
spectra of the Fabry-Perot temperature probe were recorded by a spectrometer. The printed pictures
of the spectrometer screen at different temperature (40 ◦C and 41 ◦C) are illustrated in Figure 3.
The spectrum curve refers to the original spectrum reflected from the microfiber. The free spectral
range (FSR) is ~21 nm, during which the wavelength values of the resonance dips were determined
with demodulation equipment with the resolution of 1 pm. When temperature changed from 40 ◦C
(Figure 3a) to 41 ◦C (Figure 3b), the resonance dip moved with a wavelength location shift of
~10.5 nm, indicating a resolution of lower than 10−4 ◦C. Due to the limitation of one period of FSR, the
ultra-sensitive temperature fluctuation monitoring can be achieved in the maximum range of 0 ◦C
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to ~2 ◦C (fluctuation level: ±1 ◦C). In order to achieve a commercial low-cost device, a photodiode
can be used to monitor the change in intensity of a single wavelength to determine the direction and
magnitude of temperature fluctuations.
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The sensitivity of Fabry-Perot interferometer is dependent on the resonance shift as a function of
temperature [38]:

s =
∆λT
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= λmαFP = λm
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where, αFP refers to the relative change for the cavity length of the Fabry-Perot interferometer. In this
work, it is depended on both the thermal expansion of PDMS and silica fibers. The FSR can be
expressed as:

FSR =
λ2

2nPDMSLPDMS
(2)

In addition to the incident wavelength, FSR is inversely proportional to the change in refractive
index and length of PDMS, which are determined by its thermo-optic coefficient and thermal expansion
coefficient, respectively. Here, the thermal expansion coefficient plays a dominant role in the
temperature change process, since the bulk expansion of PDMS is limited by the HCF wall and
transferred into a change in cavity length to improve the sensitivity of the sensor. For the proposed
Fabry-Perot interferometer, FSR is inversely proportional to the spacing between the microfiber and
SMF tips, which was demonstrated experimentally when we continuously moved the microfiber
towards the SMF in the HCF.

To demonstrate the temperature sensing performance in a wider range, the wavelength movement
of one resonance dip was marked and traced in the whole spectrum range of the light source from
1520 nm to 1610 nm, as shown in Figure 4. When the temperature increased from 43 ◦C to 50 ◦C with
steps of 1 ◦C, a resonance dip was marked to trace its shift amount. The inset of Figure 4 illustrates eight
reflection spectra recorded at the different temperature values, where the resonance dip is red-shifted
for almost a half cycle of the FSR. This resonance dip was independently selected to clearly display the
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temperature sensing characteristics from 43 ◦C to 50 ◦C. The resonance dip red-shifted continuously
from 1534.8 nm (43 ◦C) to 1607.3 nm (50 ◦C).Sensors 2019, 19, x FOR PEER REVIEW 6 of 11 
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Figure 5. Location of resonance dip changed as a function of temperature with an excellent linear
fitting during the increasing and decreasing process of 43–50 ◦C. The corresponding sensitivities were
determined to be 10.37 nm/◦C and 10.67 nm/◦C, respectively.

During the heating process, a sensitivity of up to 10.37 nm/◦C for the temperature sensing was
experimentally demonstrated with a linearity of 0.99965. To verify the recovery characteristics of the
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temperature sensor, the movement of resonance dip was recorded through the cooling process in the
same temperature range (from 50 ◦C to 43 ◦C in steps of 1 ◦C). By linearly fitting the experimental data
points, a sensitivity of up to 10.67 nm/◦C was obtained with a linearity of 0.99535. The performance
curve illustrates the relationship between resonance dip and temperature, which will be stable for a
temperature probe with fixed structure parameters. When a new sensor is used, the temperature can
be determined by referring to calibration curve.

To reveal the repeatability and stability of the proposed temperature sensor, three-cycle experiments
for a sensing probe with the cavity length of 31µm and the microfiber diameter of 61µm were performed,
where the corresponding wavelength shift values depending on the temperature increasing/decreasing
were recorded and illustrated in Figure 6. The highest sensitivity of 11.86 nm/◦C was experimentally
demonstrated for the temperature increase process in the first round, which was higher than the probe
in Figure 5 mainly due to the shorter cavity, which matches well with the theoretical analysis. Equation
(1) indicates that the sensitivity is proportional to the relative change in cavity length. A shorter cavity
will result in a more significant change than that of the longer one. Furthermore, its larger FSR enables
high-precise temperature fluctuation monitoring in a wider range (see the analysis of Equation (2) and
Figure 3).
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the wavelength locations for the temperature changing between 45 ◦C and 46 ◦C.

The maximum wavelength backlash was determined as ~1.3 nm during the three-cycle
measurement process. On the one hand, this is related to the thermal expansion relaxation time of
PDMS; on the other hand, it is also limited by the temperature control accuracy of the oven, which
is also indicated in the stability measurement of the proposed temperature probe (inset of Figure 6).
When the temperature fluctuates between 45 ◦C and 46 ◦C, the positional fluctuation of the resonance
wavelength was less than ~0.2 nm, and the corresponding response time (stabilization time) was ~3 min.
The above fluctuations fall within the performance range of the thermostatic oven. In order to calibrate
the sensing characteristics of this temperature probe in a larger working range, the specific resonance
dips should be dynamically selected in different temperature ranges. Thereafter, the temperature
sensing characteristic curve can be obtained by using the relative shift of the labeled resonance dips.
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In addition to the microfiber and SMF, the final working range of this temperature probe will be
limited by the sensitive materials. PDMS in solid status has the stable physicochemical property in the
temperature range of −55–200 ◦C. Therefore, this temperature probe can work in a wider range, not
limited to the results reported in this work.

4. Discussion

The optical fiber temperature sensor proposed in this work is compact and easily prepared.
Its sensitivity is significantly higher than most of other fiber temperature sensors reported in recent
years, as compared in Table 1.

Table 1. Sensing performance comparison for typical temperature probes based on optical fibers.

Mechanism Structure Sensitivity Range Reference

Grating
interference

Copper tube/FBG 27.6 pm/◦C 0–35 ◦C [16]
FBG 18.8 pm/◦C 20–90 ◦C [17]

Mach-Zehnder
interference

SMS/Microfiber 6.5 nm/◦C 51–65 ◦C [18]
Micro-bend fiber 1.92 × 10−3/◦C 29–52 ◦C [19]

SMS/Liquid −1.88 nm/◦C 0–80 ◦C [21]
Liquid cored PCF −2.15 nm/◦C 20–80 ◦C [6]
Liquid-filled PCF −1.83 nm/◦C 23–58 ◦C [20]

C-typed PCF −7.609 nm/◦C 15–30 ◦C [23]
NOA 73/PMMA −431 pm/◦C 25–75 ◦C [22]

PMMA 1.04 × 10−3/◦C 25–120 ◦C [27]
Abrupt tapered fiber 0.0833 dBm/◦C 30–50 ◦C [30]

Fabry-Perot
interference

Single RI turning dot 13.9 pm/◦C
18.6 pm/◦C

100–500 ◦C
500–1000 ◦C [31]

Open microcavity −654 pm/◦C 30–120 ◦C [32]
HC-PBF/HCF splicing 17 nm/◦C 100–800 ◦C [36]

SMF/PCF splicing 15.61 pm/◦C 300–1200 ◦C [37]
LOCTITE 3493 film ~5.2 nm/◦C 15–22 ◦C [35]

Microfiber taper 1.97 pm/◦C 50–150 ◦C [38]
Nafion film 2.71 nm/◦C −15–65 ◦C [39]

Microfiber/SMF/PDMS 10.67 nm/◦C 43–50 ◦C This work

SMS: Single-muti-single mode fiber; NOA 73: Norland optical adhesive 73; RI: Refractive index; PMMA: poly(methyl
methacrylate; LOCTITE 3493: Light cure adhesive 3493.

As can be seen from Table 1, the temperature sensitivity of FBGs is low, and the encapsulation
technology and demodulation optical path are complex [16]. The dual-arms system of Mach-Zehnder
interferometers are commonly built using special optical fibers (for example PCF [6,20] or
microfibers [18,19,30]) or by splicing different optical fibers [18,21], where the sensitive liquid or
polymer were introduced to create a temperature-sensitive probe [6,20,21]. In contrast, the Fabry-Perot
fiber interferometer can be easily fabricated on a single fiber. It has a more compact structure for
developing high-performance temperature microprobes. Femtosecond laser [31] or ion beam etching
technology [32], as well as high-precision fiber-splicing technology [36,37], can improve its temperature
detection limit to as high as 1200 ◦C, making it suitable for extreme high temperature environments;
furthermore, sol coating [35] or temperature-sensitive polymer encapsulation technology [39] can
be used for enhance normal temperature microprobes, which will be a promising candidate for
implantable microsensors for health or environmental monitoring under 200 ◦C.

Compared with the polymer film reflector, in this work, the smooth end-faces of SMF and
microfiber were used as the two reflectors of the Fabry-Perot interferometer. PDMS is used to fix
the two reflectors and realize a highly sensitive response to temperature changing. The temperature
response properties can be revealed by the contribution of the negative thermal-optics coefficient
(αto: −450 × 10−6/◦C) and the thermal-expansion coefficient (αte: 960 × 10−6/◦C) effects of PDMS.
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When the temperature increases, a smaller effective refractive index and a longer cavity length will
be obtained, respectively. In view of their contributions to the effective optical path between the two
reflectors of the Fabry-Perot interferometer, they have the opposite impact on the cavity length when
the temperature changes.

5. Conclusions

In this paper, a compact and miniature Fabry-Perot interferometer based on a microfiber and SMF
in a cut of HCF was proposed and experimentally demonstrated. The morphology parameters, such as
microfiber diameter and cavity length, can be precisely controlled by the microfiber fabrication (scanning
flame stretching technique) and micromanipulation processes (microscope- assised micromanipulation
method), respectively. By filling PDMS into this Fabry-Perot interferometer with the microfiber
diameter of ~63 µm and cavity length of ~34 µm, a temperature sensitivity of higher than 10 nm/◦C
was experimentally obtained. When the cavity length was reduced to ~31 µm, a highest sensitivity
of 11.86 nm/◦C has been experimentally demonstrated with an excellent repeatability and stability.
Due to its high sensitivity and easily adjustable morphology, this Fabry-Perot temperature sensor
has promising applications for precisely monitoring temperature fluctuations in biochemical reaction
processes, industrial production and food storage.
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