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Abstract: Semantic segmentation and depth estimation are two important tasks in computer vision,
and many methods have been developed to tackle them. Commonly these two tasks are addressed
independently, but recently the idea of merging these two problems into a sole framework has been
studied under the assumption that integrating two highly correlated tasks may benefit each other
to improve the estimation accuracy. In this paper, depth estimation and semantic segmentation are
jointly addressed using a single RGB input image under a unified convolutional neural network.
We analyze two different architectures to evaluate which features are more relevant when shared
by the two tasks and which features should be kept separated to achieve a mutual improvement.
Likewise, our approaches are evaluated under two different scenarios designed to review our results
versus single-task and multi-task methods. Qualitative and quantitative experiments demonstrate
that the performance of our methodology outperforms the state of the art on single-task approaches,
while obtaining competitive results compared with other multi-task methods.

Keywords: depth estimation; semantic segmentation; convolutional neural networks;
hybrid architecture

1. Introduction

Semantic segmentation and depth information are intrinsically related, and both pieces of
information need to be considered in an integrated manner to succeed in challenging applications,
such as robotics [1] or autonomous navigation [2]. In robotics, performing tasks in interactive
environments requires identification of objects as well as their distance from the camera. Likewise,
autonomous navigation applications need a 3D reconstruction of the scene as well as semantic
information to ensure that the agent device has enough information available to carry out the
navigation in a safe and independent manner. Although RGB-D sensors are currently being used
in many applications, most systems only provide RGB information. Therefore, addressing depth
estimation and semantic segmentation under a unified framework is of special interest.

On the other hand, deep learning techniques have shown extraordinary success in both tasks [3] in
recent years. In this context, the feature-extraction process for a specific task is modeled as a parameter
estimation problem in Convolutional Neural Networks (CNNs) which is based on a set of training
data. In other words, the feature extractors are created by learning from the prior knowledge that we
have. This provides a possibility of combining different tasks (different sources of prior knowledge)
when training the feature extractors, in particular for highly correlated tasks such as depth estimation
and semantic segmentation. Specifically, the idea of integrating the depth estimation and semantic
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segmentation into a sole structure is motivated by the fact that both segmentation information and
depth maps represent geometrical information of a scene. In this manner, the feature extractors can be
better trained due to the enriched prior knowledge.

In this paper, we introduce a hybrid convolutional network that integrates depth estimation
and semantic segmentation into a unified framework. We propose to build a model where the
features extracted are suitable for both tasks, thus leading to an improved accuracy in the estimated
information. One of the main advantages of the proposed approach is the straightforward manner
semantic segmentation and depth map are estimated from a single image, providing a feasible solution
to these problems.

2. Related Work

Depth estimation and semantic segmentation are two widely studied problems in the image
processing community and recently have been tackled through deep learning techniques due to its
successful results in terms of accuracy and efficiency. This section makes a review of the state of the art
introducing, first, single-task approaches, and, afterwards, methods focused on solving multiple tasks.

2.1. Single-Task Approaches

2.1.1. Semantic Segmentation

Semantic segmentation is a methodology which approaches the image segmentation problem by
performing pixel-level classifications. Compared to the traditional image segmentation approaches,
such as superpixel segmentation methods [4,5], active contour methods [6,7] and watershed
segmentation methods [8,9], it introduces semantics in an image segmentation process by employing
a classifier trained on the annotated data. Although semantic segmentation methods generally have
limited genericity due to the predefined semantics in the annotations, the advantage of semantic
segmentation is obvious. The introduced semantics provide higher level knowledge which helps obtain
more meaningful segments in comparison to homogeneous regions.

Before CNN-based techniques were applied to semantic segmentation; handcrafted features
were usually employed to represent pixels when training the classifier [10]. The emergence of
CNN-based techniques provide an approach that trains neural networks to extract features with
higher discriminative power. One of the first well known works that applies CNNs to semantic
segmentation is Fully Convolutional Networks (FCN) [11]. It popularizes CNN architectures for dense
predictions without any fully connected layers. This allowed segmentation maps to be generated for
images of any size and it also reduces the number of parameters in the architecture since no fully
connected layers are involved. Almost all the subsequent state-of-the-art approaches on semantic
segmentation adopted this paradigm.

Apart from fully connected layers, one of the main problems of using CNNs for segmentation are
the pooling layers. Pooling layers increase the field of view and are able to aggregate the context while
discarding the ‘where’ information. However, semantic segmentation requires the exact alignment
of class maps and thus, needs the ‘where’ information to be preserved. Two different classes of
architectures evolved in the literature to tackle this issue.

The first one is the encoder-decoder architecture. The encoder gradually reduces the spatial
dimension with pooling layers and the decoder gradually recovers the object details and spatial
dimension. There are usually shortcut connections from the encoder to the decoder to help the decoder
recover the object details better. U-Net [12] is a popular architecture from this class. It consists of
a contracting path to capture context in the encoder and a symmetric expanding path from the encoder
layers to the decoder layers that enables precise localization. Seg-Net [13] is proposed based on
FCN. It introduces more shortcut connections between the encoder and the decoder. Furthermore,
it copies the indices from the max-pooling layers in the encoder to the decoder instead of copying
the encoder features as in FCN, which makes easier for SegNet to recover the spatial information and
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provides more memory efficiency than FCN. Ghiasi et al. [14] present a Laplacian pyramid for semantic
segmentation refinement incorporating, into the decoding step, the spatial information contained in
the high-resolution feature maps to keep the spatial information destroyed after pooling. Thus, a better
dense pixel-accurate labeling is obtained.

Architectures in the second class use what are known as dilated/atrous convolutions [15–17].
Pooling layers help in classification networks because they increase the receptive field of a network.
However, as mentioned, this is not suitable for a semantic segmentation task since pooling drops the
spatial information and decreases the resolution. Dilated/Atrous convolutions can compute responses
at all image positions with an n times larger receptive field if the full resolution image is convolved
with a filter ‘with holes’, in which the original filter is upsampled by a factor n, and zeros are introduced
in between filter values. Although the effective filter size increases, it is only necessary to take into
account the non-zero filter values, hence both the number of filter parameters and the number of
operations per position stay constant.

2.1.2. Depth Estimation

One of the first works to tackle the depth estimation problem using CNNs is the one presented
in [18]. They used a novel network architecture made of two main components. First, a coarse-scale
network estimates a low-resolution depth map from a single image. Then, this depth estimation along
with the original image becomes the input of the fine-scale network. In this way, the local network can
incorporate finer-scale details in the global prediction. Additionally, they also apply a scale-invariant
error to help measure depth relations instead of scale.

Likewise, a similar work based on [18] is presented in [19]. In this approach the authors included
an extra part to the model presented by [18] that estimates gradient information. The idea behind
this additional part is to improve the fine-tuning part by adding gradient information along with the
global depth estimation and the input image. Additionally, a normalized loss function was applied
resulting in a better depth estimation.

2.2. Multi-Task Approaches

Approaches addressing depth estimation and semantic segmentation with multi-task learning
schemes are receiving large attention due to its potential of improving the performance of multiple
tasks. The idea of merging tasks in one architecture is motivated by the fact that different correlated
tasks commonly share some basic attributes in the parsing process. Approaching them together
may be mutually beneficial. In practice, multi-task approaches in the state of the art seek to extract
features suitable to perform diverse tasks at a time, which lead to an improvement in both estimated
information and simplification of systems where multiple modalities are required, such as autonomous
navigation [2], robotics [1] or augmented reality [20].

In [21], the authors provide a common network which can be used for different tasks, including
the estimation of depth map, surface normals, and semantic segmentation. Although these tasks are
not all addressed jointly, it proves that a network for a specific task can be obtained by fine-tuning
a network with the same architecture trained for another correlated task. The results obtained by [21]
outperformed the ones presented in [18] proving how the strategy of tackling multiple tasks with
a common network may lead to a better performance.

In [22] a unified framework was proposed, which incorporates global and local prediction where
the consistency between depth and semantic segmentation is learned through a joint training process.
From an input image, they first used a CNN to jointly predict a global depth map and semantic labels.
Then, they decompose the image into local regions to train another CNN which predicts the depth
map and the semantic labels for each region. With global and local predictions, they re-formulate
the problem into a two-layer hierarchical conditional random field to produce the final depth and
semantic map.
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A more recent multi-task approach is introduced in [23]. The methodology proposed in this work
makes initial estimations for depth and semantic label at a pixel level through a joint network. Later,
depth estimation is used to solve possible confusions between similar semantic categories and thus to
obtain the final semantic segmentation.

Another multi-task approach by Teichmann et al. [24] presents a network architecture named
MultiNet that can perform classification, semantic segmentation, and detection simultaneously.
They incorporate these three tasks into a unified encoder-decoder network where the encoder
stage is shared among all tasks and specific decoders for each task produce outputs in real time.
These work efforts were focused on improving the computational efficiency for real-time applications
as autonomous driving.

A similar approach is Pixel-Level Encoding and Depth Layering (PLEDL) [25], this work extended
a FCN [11] with three output channels jointly trained to estimate semantic labeling, direction to the
instance center and depth at pixel level.

Table 1 presents a brief comparison on the pros and cons between different types of
methods. Traditional image segmentation approaches [4–9] usually perform low-level segmentation,
which obtain the segments with more general assumptions, such as local homogeneity. On the other
hand, semantic segmentation methods [10,11,13,16,26] improve image segmentation by introducing
semantic annotations, which provide higher level meaning (semantics at object level) rather than
low-level features exploited in traditional methods. Approaches under multi-task learning schemes,
such as the proposed approach and [21,25] exploit the correlation between semantic segmentation
and depth estimation to benefit each of the tasks, which generate both image segmentation and depth
estimation taking as input a single-color image. Unlike the multi-task methods in the state of the
art [21,25], the proposed approach focuses on separating the commons and distinctions between the
two tasks, which obtains promising results shown in our experiments.

Table 1. A comparison of different types approaches.

Unsupervised Object Level Segm. Depth Estimation Joint Estimation

Ours ×
Eigen [21] × ×

PLEDL [25] ×
Superpixel [4,5] × × -

Active Contour [6,7] × × -
Watershed [8,9] × × -

Semantic Segm. [10,11,13,16,26] × × -
Depth Prediction [19] × × -

2.3. Our Proposal

Multi-task approaches aim to directly estimate the segmentation and depth maps from an input
color image by unifying CNNs working for a single task into a sole hybrid convolutional neural
network. Most of the state-of-the-art works unify tasks under a feature-extraction block whose output
becomes the input of a group of decoders designed to carry out each task.

In our preliminary work [27], we presented a hybrid network for a multi-task learning scheme
that benefits both semantic segmentation and depth estimation, and its application to autonomous
driving scenes. This hybrid network employs a global depth estimation network to estimate separately
the global layout of a scene from the input image additionally to the common feature extraction.

In this paper, we focus on comparing different hybrid network unifying strategies and
investigating how those two tasks help each other. More specifically, we employ two unifying
strategies, one from the hybrid architecture proposed in our previous work [27] and the other from
the state-of-the-art works [21,23,24]. In the experiments, we compare the performances obtained from
different hybrid architectures, named HybridNet A1 and A2 (see Figures 1 and 2), by applying different
unifying strategies to the same single-task architectures, in order to clarify how the two tasks help
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each other in a hybrid system. We also apply them to the more challenging indoor scenes to verify the
validity of the unifying strategy.

Refining Network

Upsampling Network

Color Image Features Network

Semantic Segmetnation Network Depth Estimation Network

Depth Map

Segmentation Mask

Input/Output Semantic Segmentation Network

Figure 1. Architecture 1.

Figure 2. Architecture 2.

The rest of the paper is organized as follows: in Section 3 we introduce the proposed methodology;
the detailed explanation of the proposed architectures is presented in Section 4, as well as the training
details. In Section 5, we present the experiment results of our approach in different datasets and
compare our approach with state-of-the-art approaches. Finally, conclusions are drawn in Section 6.

3. Hybrid Convolutional Framework

In this section, a general explanation of our hybrid convolutional neural network and its
application to depth estimation and semantic segmentation is presented. To this end, a description
about the two single-task architectures [16,19] employed in our approach is first presented. Then,
we describe the proposed hybrid architecture along with a discussion to approach the problem of how
to unify two tasks under one sole framework.

The depth estimation architecture [19], denoted as DepthNet in this paper, is made of three
components: global depth network, gradient network, and refining network, as shown in Figure 3.
These three components all follow AlexNet structure. DepthNet first estimates a depth map of the scene
at a global level from the single input RGB image via a global depth network. Meanwhile, it predicts
two depth gradient maps from the input RGB image via a gradient network. Finally, a refining network
uses the input image along with depth gradient maps to locally refine the global depth map and thus
produce a better detailed depth map. As explained in [19], the three components in DepthNet are
trained separately. For training the global depth network, the downsampled depth maps are used
as the ground truth. Beside the global depth network, the gradient network is trained based on the
magnitude of depth gradient on x and y direction computed from the depth map. Along with the
global depth network and gradient network, the refining network is again trained on the downsampled
depth maps in the training data.

There are two main reasons to consider employing DepthNet as the depth estimation component
in our approach: (1) DepthNet follows the state-of-the-art framework for depth estimation which is
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representative for a bunch of methods. (2) DepthNet has a modularized architecture, which allows us
to analyze each of the components in it and better integrate DepthNet into a hybrid architecture.

Figure 3. Depth estimation network.

The semantic segmentation architecture [16] shown in Figure 4, is divided into two main parts:
feature network and atrous upsampling network. For the feature network, it follows the VGGNet
architecture proposed in [28]. It is in charge of extracting robust features from the input image,
which benefits from the deep structure of the network. On the other hand, the atrous upsampling
network is a group of atrous spatial pyramid pooling layers [16] which outputs a class score map with
the number of channels equal to the number of labels. Atrous upsampling layers allows us to explicitly
control the resolution at which feature responses are computed within the architecture, while enlarging
the field of view of filters to incorporate larger context in the semantic segmentation task. The semantic
segmentation architecture is denoted as DeepLab-Atrous Spatial Pyramid Pooling (DeepLab-ASPP) in
this paper. In DeepLab-ASPP, all parts are trained together.

Figure 4. Semantic segmentation network.

DeepLab-ASPP is employed as the semantic segmentation component in our approach due to its
outstanding performance in this task.

Unifying Single-Task Architectures for Multi-Tasks

Considering the functionality of each component in DepthNet and DeepLab-ASPP, we propose
and compare two different hybrid architectures for the joint depth estimation and semantic
segmentation task.

Architecture 1: An intuitive way to unify two tasks in a sole architecture is to totally share the
feature-extraction process for both tasks. It follows the idea from the most representative architectures
in the state of the art [21,23,24], in which a common convolutional network is shared for extracting
features. Following the feature-extraction block, customized layers are used for each task, to decode the
commonly extracted features and apply them in different tasks. Sharing the feature-extraction process
for different tasks with a common convolutional network links the two tasks, since the parameters
of the shared network are optimized with respect to the losses defined on both tasks in the training
phase. The advantage of this architecture is obvious. Since most of the layers are shared for both tasks,
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less parameters are involved in the training process, which makes it easy to be trained. In practice,
we exploit the VGG structure [28] as the feature-extraction network for both tasks. Based on the
extracted features, the atrous upsampling network in DeepLab-ASPP is employed for the semantic
segmentation task, while the refining network in DepthNet is leveraged as the decoder for the depth
estimation task. We denote the architecture 1 as HybridNet A1 in the rest of this paper.

Architecture 2: The motivation of building this architecture is to further clarify the common and
specific attributes in the two tasks. Thus, we build the hybrid network by substituting the gradient
network in DepthNet by a common feature-extraction network for the two tasks, while keeping the
global depth estimation network only for the depth task. The advantages of this hybrid architecture
are two-fold. On one hand, the strong power of extracting object information from a color image
learned in the semantic segmentation task can also benefit depth layering when predicting a depth
map, while the strong power of extracting rich depth boundaries from a color image learned in the
depth estimation task is shared in the semantic segmentation task to improve segmentation accuracy
on object boundaries. On the other hand, the global layout of the scene which is more relevant in depth
estimation than in semantic segmentation is estimated independently by a global network in the depth
estimation task. This avoids interfering the common feature extraction for both tasks. In practice,
we keep the global network and refining network in DepthNet without changes, while replacing the
structure of the gradient network with the VGG structure, in order to keep the structure consistent
with the feature network in DeepLab-ASPP. We denote the architecture 2 as HybridNet A2 in the rest
of this paper.

4. Architecture Details

Since the proposed architectures are assembled with basic components in the two single-task
architectures, we explain the detail of the proposed architectures by describing the two single-task
architectures in this section.

4.1. Depth Estimation Network

As described in Section 3, the depth estimation network is modularized to calculate a refined
depth map from a single input image through a three stages convolutional network. As shown in
Figure 3, the global depth network is formed by 5 convolutional layers and two fully connected layers,
which corresponds to the architecture of AlexNet [29]. Following each convolutional layer, a Rectified
Learner Unit (ReLU) is introduced as an activation function to provide non-linearity to the system.
Local normalization is also performed after each convolutional layer in a Local Response Normalization
layer (LRN), which helps the generalization of the system. Max-pooling layers are placed after the first
and the last convolutional layer to provide basic translation invariance to the internal representation
and reduce the number of parameters of the system. In this network max-pooling is performed over
a 3 × 3 window with a stride of 2. Since the global depth network aims at describing the global layout
of the scene, we introduce two fully connected layers following the last convolutional layer, to capture
the information contained in the intermediate representation with the full receptive field. In practice,
1024 neurons are included in the first fully connected layer while 1681 neurons are included in the
second fully connected layer. We reshape the 1681 neurons to a 41 by 41 matrix which is treated as the
output of the global depth network. In this manner, we predict a global depth map with 1

8 resolution
for an input image with size 321 by 321.

The gradient network aims at estimating depth gradient from an input color image. In practice,
we employ the same architecture used in global depth estimation except for the fully connected layers.

Finally, the refining network takes the concatenation of the output from the global depth network,
the gradient network, and the color image as input and computes a refined depth map. The refining
network improves the rough estimate from the global depth network, using gradients estimated by
the gradient network and an input color image. In practice, the first convolutional layer processes the
input color image, followed by a ReLU layer, an LRN layer, and a max-pooling layer, which produces
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the feature maps extracted from the color image. These feature maps are concatenated with outputs of
the global depth network and the gradient network, then are fed to the remaining four convolutional
layers. Each of them is followed by a ReLU layer. The output from the 5th convolutional layer in the
refining network is treated as the output (a refined depth map with size 81 by 81).

4.2. Semantic Segmentation Network

Figure 4 presents an overview of semantic segmentation network. This figure shows in a detailed
manner how the input image is processed by first going through a group of convolutional layers for
feature extraction (feature network) and then through an upsampling procedure which finally provides
the segmentation map (upsampling network). Dividing this architecture into two parts helps us to
understand it as a single-task network but also how it can be integrated into a hybrid model.

The feature network contains 5 groups of convolutional layers, forming a deep architecture.
All these convolutional layers have the same kernel size 3 × 3. For simplicity, we only plot
the convolutional kernel in the first convolutional layer in the feature network. Following each
convolutional layer, a ReLU layer is provided as the activation function. Pooling layers are placed after
each group of convolutional layers to reduce the computational cost by downsampling the internal
representation, as well as to provide basic translation invariance to the internal representation.

On the other hand, the atrous upsampling network contains 4 parallel groups of three
convolutional layers, to perform upsampling operation at different scales. Each branch upsamples the
output from the feature network at the first convolutional layer with an atrous convolution. An atrous
convolution employs a dilated convolution template, in which a convolution template is enlarged by
filling zeros with respect to a defined rate. In this manner, we can explicitly control the resolution
of the upsampling operation and enlarge the field of view of filters to incorporate larger context in
the semantic segmentation task without introducing more parameters. In practice, we employ atrous
convolutions with rates 6, 12, 18, 24 respectively for each branch. The other 2 convolutional layers in
each branch perform 1 × 1 convolutions, which increases the non-linearity of the decision function
without affecting the receptive fields of the convolutional layers. Taking the output of the 4 branches
of upsampling layers as input, a soft-max layer produces the final semantic segmentation mask.

4.3. Training Details

As explained in the Section 3, the two proposed architectures (HybridNet A1 and A2) are based on
DeepLab-ASPP [16] and DepthNet [19]. Although HybridNet A1 and A2 are constructed by merging
single-task architectures, the training process for the hybrid architectures are not always performed as
in those single-task architectures.

In HybridNet A1, we initialize the feature network and the atrous upsampling network with
the model provided by DeepLab [16] which was pre-trained for classification purpose on ImageNet.
The other parts in HybridNet A1 are initialized using a Random Number Generator (RNG). The RNG
is set to be a Gaussian distribution with zero mean and 0.1 variance.

In HybridNet A2, we initialize the feature network and upsampling network before the training
process using again the model provided by DeepLab [16]. Additionally, we initialize the global depth
network using the model provided in [19]. The other parts in HybridNet A2 are randomly initialized
using the same RNG.

Once we have the initialization for our hybrid architecture, all of its components are trained
simultaneously. Both hybrid architectures are trained for 100 K iterations with a learning rate 2.5× 10−6,
polynomial learning rate decay policy. The momentum is set to 0.9 and weight decay 0.005. The input
image is randomly cropped with a size 320 × 320. We set batch size to 7, regarding the maximum
allowance of memory.

The loss function used in both architectures is the same. For the semantic segmentation task, LS is
the sum of the cross-entropy terms for each spatial position in the output class score map, being our
targets the ground truth labels. All positions and labels of the output class score map are equally
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weighted in the overall loss function except for those unlabeled pixels which are ignored. The loss
function used for the depth estimation task is made by two Euclidean loss layers LDabs and LDmvn .
LDabs computes the Euclidean distance between absolute values of a depth map in the ground truth
and the estimated depth map, while the LDmvn computes the Euclidean distance between estimation
and ground truth after performing a mean variance normalization on both of them. LDabs stands
for a pixel-level metric which evaluates locally how well the estimated depth value matches the
ground truth regardless of the geometry of the scene. On the other hand, LDmvn introduces a global
regularization in the depth estimation by aligning depth values in both the estimation and the ground
truth to zero mean and unit variance.

The hybrid loss function LH is therefore defined as the linear combination of them:

LH = αLS + (LDabs + LDmvn) (1)

where α is the term used to balance the loss functions of the depth estimation and semantic
segmentation tasks. In our experiments, α is set to 1000, given an analysis on the values of LDabs + LDmvn

and LS respectively, when training them separately in the single-task architectures.

5. Experiments

We quantify the performance of the proposed architectures on both semantic segmentation and
depth estimation in different scenes using our Caffe implementation. We first evaluate the proposed
architectures in road scenes which is of current practical interest for various autonomous driving
related problems. Secondly, the proposed architectures are evaluated in indoor scenes which is of
immediate interest to possible augmented reality (AR) applications.

5.1. Road Scene

In this section, we present the evaluation of the proposed architectures in road scenes. Several
road scene datasets are available for semantic parsing [30–32]. Since we evaluate the proposed
architecture from both semantic segmentation and depth estimation perspective, we employ Cityscapes
dataset [32] in our experiment, which provides not only the ground truth of semantic labels but the
depth information of each frame. Cityscapes contains 5000 RGB images manually selected from
27 different cities for dense pixel-level annotation to ensure high diversity of foreground objects,
background, and overall scene layout. Along with each of the 5000 RGB images, Cityscapes dataset
provides the depth map obtained from a stereo vision system. The 5000 images in the dataset are split
into 2975 training RGB images of size 1024 × 2048 along with their corresponding 2D ground truth
object labels for 19 outdoor scenes classes and depth information, 500 RGB images for test validation
with their corresponding annotations and, for benchmarking purposes, 1525 test RGB images.

In practice, the training process of our approach was performed using the 2975 images of
Cityscapes training set that provides a depth map and object labels of 19 classes for each RGB
image. To evaluate the performance of the proposed architectures, we group the 500 images of
the validation set and the 1525 images of the test set in the Cityscapes dataset into a single evaluation
set of 2025 images. In the training phase, images in the training set are shuffled and randomly cropped
to fit the input image size of the hybrid architecture. Training data augmentation is done by flipping
and mirroring the original images, to enlarge the training set. In the testing phase, we crop the test
image with the original size of 1024 × 2048 into a group of images with the size of 321 by 321 which
cover the whole test image while having the minimum overlapped area. These images are tested
one by one and grouped to obtain the final prediction of the segmentation mask and depth map.
Please note that a score map is obtained for each image, which shows the degree that a pixel belongs to
a label. For the overlapped area, we compare the normalized score maps and take the label with higher
score as predicted labels on the segmentation mask. Likewise, for the overlapped area, the predicted
depth values on the depth map are computed as the mean values.
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Our first aim is to determine if the features obtained in the shared part of the proposed
architectures solving the two tasks simultaneously provide better results than the ones that we would
obtain using two identical networks trained separately. This is why, in addition to the results of the
proposed architectures, we present the results obtained by the models that solve these two tasks
separately for comparison. The models used to train semantic segmentation and depth estimation
independently are denoted as DeepLab-ASPP [16] and DepthNet [19], respectively. We trained these
two models using the code provided by the authors with the same training data in Cityscapes dataset
and the same training configuration than the proposed architectures. Apart from that, we also compare
different ways of unifying single-task architectures proposed in Section 3, to justify whether the
unifying strategy is better. Besides, the comparison between the proposed architectures and a hybrid
method in the state of the art [25] is also made in Cityscapes dataset. The hybrid approach proposed
in [25] is similar to HybridNet A1, in which the encoder network in FCN [11] is employed as the
feature network shared by three different tasks and the decoder network in FCN is then employed for
each task to decode the commonly extracted features. The three tasks that [25] tackles are semantic
segmentation, depth layering, boundary detection, which is similar to our target. However, in the
depth layering task, ref. [25] focuses on estimating a depth label for each object, instead of estimating
the real depth value of the whole scene at pixel level. This is also the reason that we only compare the
performance between our approach and [25] in semantic segmentation. We present the results in our
experiments in the following two subsections specifying the evaluation in semantic segmentation and
depth estimation, respectively.

5.1.1. Semantic Segmentation

Figure 5 provides four examples from the evaluation set for visual comparison between the
results obtained by our hybrid model and ground truth as well as those obtained by DeepLab-ASPP.
The purpose of this figure is to depict the differences between a single-task and a multi-task approach.
In Figure 5 the input image is displayed in the first column, second and third columns show the results
obtained by DeepLab-ASPP and our hybrid model, respectively. Finally, in the fourth column the
ground truth is presented for reference. This figure shows how the segmentation performed by the
proposed HybridNet A2 retains with a greater detail the geometrical characteristics of the objects
contained in the scene. For instance, in the 3rd row where the shapes of a pedestrian and a car can be
better distinguished in the estimation obtained by Hybrid A2 than the one obtained by DeepLab-ASPP.

In addition to qualitative results, we employ three commonly used metrics, to measure
quantitatively the segmentation performance: the global accuracy (G), the class average accuracy
(C) and mean intersection over union (mIoU). The global accuracy counts the percentage of pixels
which are correctly labeled with respect to the ground truth labeling. The class average accuracy is
the mean of the pixel accuracy in each class. The mean intersection over union measures the average
Jaccard scores over all classes. Table 2 presents the quantitative results and confirms that the proposed
HybridNet outperforms the results obtained by DeepLab-ASPP. Please note that the global accuracy
and the class average accuracy evaluation of PLEDL are not provided due to the unavailability of the
source code, whereas the evaluation of mIoU is reported in [25].

The improvements obtained by our method against DeepLab-ASPP confirm the hypothesis that
sharing the feature-extraction network between tasks leads to an improvement in terms of segmentation
accuracy. The strategy of unifying two single-task architectures affects the segmentation performance
of hybrid methods. HybridNet A2 where common and specific attributes between two different tasks
are better clarified outperforms HybridNet A1 in which the feature-extraction process is totally shared
for the two tasks. The improvement that HybridNet A1 obtains against DeepLab-ASPP is very limited
(HybridNet A1 58.1% mIoU against DeepLab-ASPP 58.02% mIoU); however, Hybrid A2 improves the
mIoU by around 8%. We also compare our architectures against a state-of-the-art hybrid method [25]
in Table 2. HybridNet A2 has a better segmentation performance in all three metrics, than the work
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in [25]. For additional evaluation, comparisons between our approach against other well adopted
single-task methods [11,13,16,33] are presented in Table 2.

Input Image HybridNet A2 Ground TruthDeeplab-ASPP

Figure 5. Semantic segmentation qualitative results. A comparison between semantic segmentation
estimation against ground truth is presented. From left to right, input image is depicted in the first
column. In column 2 the segmentation map estimated by DeepLab-ASPP semantic segmentation
network [28] is presented, in column 3 the estimated segmentation map by our hybrid method are
presented and finally the ground truth is depicted in column 4.

Table 2. Evaluation of HybridNet against Multi-task and single-task approaches (best results in bold).

G C mIoU

HybridNet A2 93.26 79.47 66.61
HybridNet A1 89.31 77.22 58.1

PLEDL [25] - - 64.3
DeepLab-ASPP [16] 90.99 74.88 58.02

FCN [11] - - 65.3
SegNet [13] - - 57.0

GoogLeNetFCN [26] - - 63.0

5.1.2. Depth Estimation

For depth estimation evaluation, Figure 6 presents a visual comparison of the results obtained by
Hybrid A2 as well as those obtained by the single-task approach presented in [19] against the ground
truth. The figure displays, row-wise the same four examples depicted in Figure 5. Figure 6 depicts
the input image in the first column, the depth map obtained by DepthNet in the second column,
while third and fourth columns show the depth map obtained by HybridNet A2 and ground truth,
respectively. Note how the results obtained by Hybrid A2 are more consistent with the ground truth
than those obtained by DepthNet in terms of the depth layering.

Additionally to qualitative analysis, we evaluate the performance of our methodology for depth
estimation employing 6 commonly used metrics: Percentage of Pixel (PP), Mean Variance Normalized
Percentage of Pixel (PP-MVN), Absolute Relative Difference (ARD), Square Relative Difference
(SRD), Linear Root Mean Square Error (RMSE-linear), Log Root Mean Square Error (RMSE-log)
and Scale-Invariant Error (SIE).

Table 3 shows the definition for these metrics employed in the evaluation process. d and d∗

represent the estimated depth and ground truth, respectively. N stands for the number of pixels with
valid depth value in the ground truth depth map.
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Table 3. Definition of the evaluation metrics: for depth estimation: Percentage of Pixel (PP), PP-MVN
Absolute Relative Difference (ARD), Square Relative Difference (SRD), RMSE-linear, RMSE-log and
Scale-Invariant Error (SIE).

Metrics Definition

PP max
(

di
d∗i

, d∗i
di

)
= γ < threshold

PP-MVN max
(

MVN(di)

MVN(d∗i )
, MVN(d∗i )

MVN(di)

)
= γ < threshold

ARD 1
N ∑

∣∣di − d∗i
∣∣ /d∗i

SRD 1
N ∑

∣∣di − d∗i
∣∣2 /d∗i

RMSE-linear
√

1
N ∑

∥∥di − d∗i
∥∥2

RMSE-log
√

1
N ∑

∥∥log (di)− log
(
d∗i
)∥∥2

SIE 1
N ∑i

(
log (di)− log

(
d∗i
)
+ 1

N ∑j

(
log
(

dj

)
− log

(
d∗j
)))2

Input Image HybridNet A2 Ground TruthDepthNet

Figure 6. Depth estimation qualitative results. A visual comparison between the estimated depth maps
against the ground truth is presented. In the first column the input image is presented, columns 2 and 3
depict the estimated depth maps obtained by DepthNet in [19] and our hybrid model A2, respectively.
Finally, ground truth is presented in column 4.

In the quantitative experiment, we compare the proposed hybrid architectures and DepthNet.
Table 4 shows the quantitative results of the proposed hybrid architectures and DepthNet under
the different evaluation metrics introduced above. HybridNet A2 outperforms in 6 out of 9 metrics,
which proves that training the feature-extraction network for the simultaneous tasks of semantic
segmentation and depth estimation also improves the depth estimation results. The better performance
of HybridNet A2 in comparison to DepthNet illustrates that the shared features obtained with
the semantic segmentation task in HybridNet A2 have richer information and are more relevant
in the depth estimation task than the information extracted from the depth gradient in DepthNet.
The comparison between Hybrid A2 and Hybrid A1 shows the necessity of clarifying the common
and specific attributes of different tasks. Sharing only the common attributes of tasks in the
feature-extraction process leads to a better performance in-depth estimation. We also verify the
standard deviation of the performance of these methods among all testing samples to ensure the
statistical significance of the results. Since very similar results are observed, we do not present them in
Table 4 for conciseness.
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Table 4. Depth estimation. Quantitative evaluation: PP, PP-MVN, ARD, SRD, RMSE-linear, RMSE-log,
and SIE (best results in bold).

HybridNet A2 HybridNet A1 DepthNet [19]

γ < 1.25 (MVN) 0.7483 0.6834 0.7248

higher is betterγ < 1.25 0.5968 0.5037 0.6048
γ < 1.252 0.8221 0.8172 0.8187
γ < 1.253 0.9292 0.9194 0.9152

ARD 0.24 0.2879 0.23

lower is better
SRD 4.27 4.35 4.43

RMSE-linear 12.09 12.67 12.35
RMSE-log 0.4343 0.3407 0.4340

SIE 0.19 0.2 0.25

5.2. Indoor Scene

Road scene images have relatively limited variation in terms of the involved semantics and their
spatial arrangements. They are usually captured by a camera fixed on a moving vehicle where the view
direction of the camera is always parallel to the ground. This limits the variability of road scene images
and makes it easier for the convolutional networks to learn to segment them robustly. In comparison,
images of indoor scenes are more complex due to the free view point, the larger number of semantics
in the scene, widely varying sizes of objects and their various spatial arrangements. On the other hand,
although indoor scenes have smaller depth range than road scenes, they usually have more complex
spatial layout, which provides challenges for depth estimation.

In this section, we evaluate the proposed architectures on indoor scene data for both semantic
segmentation and depth estimation. We employ RGB-D Scene Understanding Benchmark dataset [34]
(SUN-RGBD) for the experiments. SUN-RGBD contains over 10k RGB-D images of indoor scenes
captured by 4 types of depth sensors, including also RGB-D images from NYU depth v2 [35], Berkeley
B3DO [36], and SUN3D [37]. It provides 2D ground truth object labels for 37 indoor scene classes,
such as wall, floor, ceiling, table, chair etc. and depth maps of different resolutions. Our task is to
segment the objects within these 37 classes in each image while estimating its depth. In practice,
we split the dataset into 5285 training and 5050 testing images, following the experiment configuration
introduced in [13].

Similarly to the experiments in Cityscapes dataset, we perform training data augmentation by
random cropping, flipping, and mirroring the original training images. However, in the testing phase,
instead of cropping the test image as we did in the Cityscapes dataset, we downsample the test image
to fit the input size of the hybrid architecture. Since the difference between the size of the test image
and input size is not large in SUNR-GBD dataset, directly downsampling the test image to fit the input
size strongly improves the efficiency in the testing phase, while not losing the important information
in the test data.

5.2.1. Semantic Segmentation

SUN-RGBD is a very challenging indoor scene dataset for semantic segmentation, in which object
classes come in various shapes, sizes, and different poses. There are also frequent partial occlusions
between objects, which is typical in indoor scenes, due to the fact that many object classes are presented
in each of the test images. Figure 7 provides a visual comparison for the estimated segmentation mask
against ground truth. The figure presents, row-wise, 7 out-of-training examples where the first row
shows the input images, the 2nd and 3rd row show the estimated segmentation mask from HybridNet
A2 and DeepLab-ASPP respectively, and the last row shows the ground truth. HybridNet A2 exhibits
stronger performance in distinguishing different objects in indoor scenes compared to DeepLab-ASPP.
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Figure 7. Semantic segmentation qualitative results. A comparison between semantic segmentation
estimations against ground truth is presented. Input image is depicted in the first row. In the 2nd
and 3rd row, the estimated segmentation mask obtained from HybridNet A2 and the ground truth are
presented, respectively.

Additionally, to qualitative results, we follow the three metrics introduced in Section 5.1.1:
the global accuracy (G), the class average accuracy (C) and mean intersection over union (mIoU) to
evaluate the segmentation performance quantitatively. We also benchmark the proposed architectures
against several other well adopted architectures for semantic segmentation, such as FCN [11],
SegNet [13], DeepLab [16] and DeconvNet [38]. For FCN, the parameters for the deconvolutional layers
are learned from the training process instead of using fixed parameters to perform bilinear upsampling.
For DeepLab, three architectures are employed, which are DeepLab-ASPP, DeepLab-LargeFOV,
and DeepLab-LargeFOV-denseCRF. They use the same VGGNet architecture for feature map
extraction, which is similar to the proposed architectures. DeepLab-LargeFOV performs single
scale upsampling on the feature map, while DeepLab-ASPP performs multi-scale upsampling.
DeepLab-LargeFOV-denseCRF introduces a dense conditional random field as a post-processing
step for DeepLab-LargeFOV. Table 5 shows the quantitative results of the proposed architectures
(HybridNet A1 and A2) compared with other methods. HybridNet A2 achieves the best results in
C and mIoU over all the 7 methods while also obtaining a (71.63%) in G close to the best (73.87%)
obtained in DeepLab-ASPP. The higher global accuracy and lower per-class accuracy obtained in
DeepLab-ASPP in comparison to HybridNet A2 illustrates that DeepLab-ASPP prefers to better cover
large objects in the scene such as floor and wall, which provides good results in global evaluation.
However, this affects its performance in smaller objects, which results in its lower per-class accuracy,
as well as mIoU. The improvement against DeepLab-ASPP verifies again the idea of the multi-task
learning, that estimating depth in addition to semantic segmentation helps the segmentation task
(6.1% and 5.1% improvement in C and mIoU respectively). The performance of HybridNet A1 is
even worse than the single-task method DeepLab-ASPP, which indicates that the idea of benefiting
from unifying two single tasks in a hybrid architecture can hardly be achieved by simply sharing
the feature-extraction process in more complex indoor scenes. The best segmentation performance
obtained by HybridNet A2 compared with HybridNet A1 shows the importance of selecting a suitable
unifying strategy in a multi-task learning problem and verifies the efficiency of the strategy employed
in HybridNet A2.

5.2.2. Depth Estimation

For depth estimation evaluation Figure 8 depicts a qualitative analysis of results. The figure
presents, column-wise, the same 7 out-of-training examples presented in Figure 7, where the first row
shows the input images, the 2nd and 3rd row show the estimated depth map from HybridNet A2 and
DeepLab-ASPP respectively, and the last row shows the ground truth. The depth maps estimated by
HybridNet A2 are more consistent with the ground truth than those obtained by DepthNet in terms of
the depth layering.
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Table 5. Semantic segmentation. Quantitative evaluation (best results in bold).

G C mIoU

HybridNet A2 71.63 46.20 34.30
HybridNet A1 69.34 38.64 28.68

DeepLab-ASPP [16] 73.87 40.09 29.22
SegNet [13] 72.63 44.76 31.84

DeepLab-LargeFOV [16] 71.90 42.21 32.08
DeepLab-LargeFOV-denseCRF [16] 66.96 33.06 24.13

FCN(learned deconv) [11] 68.18 38.41 27.39
DeconvNet [38] 66.13 32.28 22.57

Color Image
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Figure 8. Depth estimation qualitative results. A comparison between depth estimations against
ground truth is presented. Input image is depicted in the first row. The 2nd, 3rd and 4th rows present
the estimated depth map of our method, DepthNet and the ground truth, respectively.

Additionally, to qualitative analysis, we evaluate the performance following the metrics
introduced in Section 5.1.2: PP, Mean Variance Normalized Pixel of Percentage (PP-MVN), ARD,
SRD, Linear Root Mean Square Error (RMSE-linear), Log Root Mean Square Error (RMSE-log) and
SIE. Table 6 shows the quantitative results of the proposed architectures (HybridNet A1 and A2) and
DepthNet under different metrics. HybridNet A2 outperforms over all the metrics which proves that
performing semantic segmentation in addition to depth estimation helps the depth estimation task.
The better performance of HybridNet A2 in comparison to A1 confirms the efficiency of the unifying
strategy proposed in HybridNet A2 in more complex indoor scenes.

Table 6. Depth estimation. Quantitative evaluation: PP, PP-MVN, ARD, SRD, RMSE-linear, RMSE-log,
and SIE (best results in bold).

HybridNet A2 HybridNet A1 DepthNet

γ < 1.25 (MVN) 89.63 62.81 83.59

higher is betterγ < 1.25 61.33 38.63 57.73
γ < 1.252 89.17 69.38 87.42
γ < 1.253 97.43 86.28 97.08

ARD 0.202 0.301 0.218

lower is better
SRD 0.186 3.02 0.204

RMSE-linear 0.682 8.35 0.715
RMSE-log 0.25 0.432 0.27

SIE 0.122 0.316 0.126

5.2.3. Comparison with Other Hybrid Architectures

To compare HybridNet A2 with other hybrid architectures in the state of the art, the method
proposed in [21] is chosen. This method addresses three different tasks including semantic
segmentation, depth estimation, and surface normal estimation. The architecture is designed as
a stacking of three VGG structures [28] representing different scales of feature extraction (shown in
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Figure 9). Each of the VGG structures takes the output of the previous one along with the input color
image as its input. Among the three tasks, depth estimation, and surface normal estimation are two
tasks tackled jointly, which means that these two tasks share the network in scale 1 while the networks
in scale 2-3 are separately assembled for each task. For the semantic segmentation task, the architecture
shown in Figure 9 is used again. However, different from the other two tasks, the architecture of
semantic segmentation allows two additional input channels which are depth and normal channels.
This architecture is only fine-tuned from the model previously trained on depth and normal estimation
to generate semantic segmentation masks.

Figure 9. The hybrid architecture proposed in Eigen [21].

Although the source code of this method was not available, the performance evaluation is
reported in a public dataset (NYU Depth V2 dataset [35]). To make the comparison with this approach,
we trained and evaluated our approach on NYU Depth V2 dataset. This data set includes RGB images
and their corresponding 2D ground truth object labels for 40 indoor scene classes and depth map.
NYU depth V2 dataset is divided into 795 images for training and 654 for testing. Due to the small
number of images available for training, we augment the training set by random cropping, flipping,
and mirroring.

Tables 7 and 8 show the quantitative results of HybridNet A2 for both tasks and provides
a comparison with the approach proposed in [21], denoted as Eigen. Semantic segmentation results in
Table 7 show that HybridNet A2 outperforms Eigen in class average accuracy (C) and mean intersection
over union (mIoU) while keeping similar results than Eigen in Global accuracy (G). It also illustrates
that addressing RGB-D-based semantic segmentation task under a multi-task learning scheme better
uses the depth information than directly feeding the depth information to the network as an extra input
channel. On the other hand, depth estimation results in Table 8 show that HybridNet A2 has a better
performance in the relative measure SIE, while in the absolute measures Eigen outperforms HybridNet
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A2. The better performance of HybridNet A2 in the relative measure shows that HybridNet A2 has
a better depth layering capability than Eigen, which is more relevant in real applications. For absolute
measures, we believe that the worse performance of HybridNet A2 is due to the weaker ability in
describing the global layout of the scene. HybridNet A2 employs a much simpler architecture (AlexNet
structure) for global depth network compared with the network of scale 1 (VGG structure) in Eigen.

Table 7. Quantitative segmentation results on NYU V2: G, C and mIoU (best results in bold).

G C mIoU

HybridNet A2 64.7 48.4 36.5
Eigen [21] 65.6 45.1 34.1

Table 8. Depth estimation results on NYU V2 Quantitative evaluation: PP, PP-MVN, ARD, SRD,
RMSE-linear, RMSE-log, and SIE (best results in bold).

HybridNet A2 Eigen [21]

γ < 1.25 (MVN) 0.7293 -
SIE 0.1571 0.171

γ < 1.25 0.5006 0.769
γ < 1.252 0.8013 0.95
γ < 1.253 0.9422 0.98

ARD 0.2787 0.158
SRD 0.3236 0.121

RMSE-linear 0.9423 0.64
RMSE-log 0.3219 0.214

6. Conclusions and Future Work

In this paper, we have introduced a methodology for depth estimation and semantic segmentation
from a single image using a unified convolutional network. The main goal of the proposed method
is to seek for a better hybrid architecture of CNNs that modularizes the feature-extraction process
by separating it into distinct feature extraction for a specific task and common feature extraction for
both tasks. In this manner, both tasks can benefit from the extracted common features without being
affected by those features only relevant to one task, which leads to a better performance. We also
prove that solving correlated tasks such as semantic segmentation and depth estimation together can
improve the performance of methods tackling the tasks separately.

The qualitative and quantitative results shown in Section 5 demonstrate that the unifying strategy
employed in HybridNet A2 produces a better hybrid architecture for semantic segmentation and
depth estimation compared to Hybrid A1. Hybrid A2 outperforms the results obtained by single-task
approaches, which proves that sharing underlying feature extraction helps to improve the final
performance in both tasks. Likewise, it is also proved that our methodology obtains comparable results
to benchmarking hybrid approaches.

On the other hand, there are also some interesting problems pending for a future study:

• Designing better loss functions for a multi-task learning scheme. The loss function employed in
the state-of-the-art approaches is normally a balanced linear combination of losses for single
tasks. However, these losses may have totally different physical meaning regarding the tasks
(e.g., cross entropy and Euclidean loss), which makes it hard to combine them. Finding higher
level evaluation metrics helps define the loss function for a multi-task learning system. For
instance, evaluating on the prediction of the 3D oriented bounding box of objects requires using
both semantic segmentation and depth estimation result, which naturally combines the loss
function for both tasks.
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• Applying to higher level tasks requiring 3D analysis. Since the proposed approach produces an
object level segmentation and a depth map of an input image, applying the estimated result to
applications requiring 3D analysis (such as traffic violation detection) will be of great interest.
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