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Abstract: Automatic detection of left ventricle myocardium is essential to subsequent cardiac image
registration and tissue segmentation. However, it is considered challenging mainly because of the
complex and varying shape of the myocardium and surrounding tissues across slices and phases.
In this study, a hybrid model is proposed to detect myocardium in cardiac magnetic resonance (MR)
images combining region proposal and deep feature classification and regression. The model firstly
generates candidate regions using new structural similarity-enhanced supervoxel over-segmentation
plus hierarchical clustering. Then it adopts a deep stacked sparse autoencoder (SSAE) network to
learn the discriminative deep feature to represent the regions. Finally, the features are fed to train a
novel nonlinear within-class neighborhood preserved soft margin support vector (C-SVC) classifier
and multiple-output support vector (e-SVR) regressor for refining the location of myocardium.
To improve the stability and generalization, the model also takes hard negative sample mining
strategy to fine-tune the SSAE and the classifier. The proposed model with impacts of different
components were extensively evaluated and compared to related methods on public cardiac data set.
Experimental results verified the effectiveness of proposed integrated components, and demonstrated
that it was robust in myocardium localization and outperformed the state-of-the-art methods in
terms of typical metrics. This study would be beneficial in some cardiac image processing such as
region-of-interest cropping and left ventricle volume measurement.

Keywords: myocardium detection; cardiac magnetic resonance; region proposal; support vector
classifier and regressor; stacked sparse autoencoder (SSAE)

1. Introduction

Cardiovascular diseases (CVDs) remain the leading cause of death and disability globally.
For years, a great effort has been dedicated to the prevention, diagnosis, treatment and research
of CVDs. The hardware and software developments have been helping the increasing use of
cardiovascular magnetic resonance imaging (MRI) in this effort. It is essential to detect the important
structures of a left ventricle myocardium from MRI scans in a clinical-decision support system
dedicated to improving the early diagnosis of critical CVD diseases. For example, accurate myocardium
location will be very helpful for subsequent processing such as cardiac image registration and tissue
segmentation, also for understanding cardiac anatomy how to adapts to disease [1]. Computer-aided
automatic detection provides great potential to solve this problem instead of tedious, time-consuming,
and poorly reproducible manual detection. However, this has been a challenging task due to the
complex structure of cardiac anatomy, and low image quality such as presence of noise, low contrast
and intensity non-uniformity [2-4].
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1.1. Related Works

Myocardium detection is a task that has benefited from the object detection in the computer
vision field. Traditionally, hand crafted features, such as HOG (histogram of oriented gradients),
SIFT (scale-invariant feature transform), Haar-like feature, etc, are widely used to train various
classifiers [5]. The enhanced cascade detector [6] that was originally developed for face detection, and
the decision forest detector that combines a wide range of contextual characteristics and random forest
classifier to locate nine different organizations on human body images [7].

However, along with recent breakthrough works in deep learning field, many CNN (Convolutional
Neural Network) architectures have been studied for object detection [8-12] and achieved more
satisfactory performance in nature or optical images. Typically, these works can be roughly divided into
two categories: region proposal based methods and region proposal free methods. The former mainly
includes RCNN (Regional Convolutional Neural Network) [8], SPP-Net (Spatial Pyramid Pooling
Net) [13], Fast-RCNN [14], Faster-RCNN [9], R-FCN (Region-based Fully Convolutional Network) [15]
and its multi-scale version [16] and cascaded improvement [17]. Furthermore, the relation among the
detected objects is modeled by a CNN network with two full connected layers [18], and the iterative
localization refinement is designed to facilitate object localization by undertaking at a mid-layer of a
CNN to progressively refines a subset of region proposals[19]. The second category is not using the
region proposal, such as three versions of YOLO (You Only Look Once) [10,20,21] and SSD (Single
Shot MultiBox Detector) [22] and its improvement [23].

In this work, we focus on region proposal-based methods since they are applied by most of
the top-performing object detection methods. In this two-stage method, a sparse set of candidate
regions is first generated, and then they are further classified and regressed. The representative RCNN
built the relationship between image classification and object detection by three steps: First, selective
search [24] is applied to generate around 2000 category-independent region proposals in stead of the
traditional sliding window approach. Second, the features of each region proposal are extracted by
a pretrained CNN model. Third, the top-level features are classified by linear SVM (Support Vector
Machines). RCNN has a solid pipeline but its computation speed is slow because it performs a CNN
forward pass for each object proposal, without sharing computation. Fast RCNN [14] combines the
region proposal classification and bounding box regression tasks into one single stage to speed up
the detection. Moreover, the region of interest pooling strategy based on the top-level features is
more efficient than the RCNN feature extracting method. In other words, multi-task training avoids
managing a pipeline of sequentially-trained tasks. Nevertheless, because selective search is applied
to generate region proposals in Fast RCNN, thereafter the detection speed of Fast RCNN is affected.
Faster RCNN [9] solves the proposal computation bottleneck of Fast RCNN by using a region proposal
network that is a kind of fully convolutional network and can be trained end-to-end to generate
detection proposals.

Generally, these works mainly aim to improve the object detection accuracies in two ways:
(1) optimizing the architecture of the CNN, take full advantages of the distinguished ability of the
deep feature learned by CNN; (2) exploring how to share computation among different proposed
regions, which will speed up the whole detection process. Along with these strategies, some deep
learning techniques have been applied for medical object detection, for example, Yan et al. [25] uses a
system containing two convolutions depth convolution neural network, with 7000 two-dimensional
axis of the slice image training, and ultimately to the body of 12 different organizations. Vos et al. [26]
trained three independent CNN5s based ROI detectors, where each classified 2D image slices from
one of three orthogonal image planes (axial, sagittal, or coronal), then all of them were combined to
determine a rectangular 3D bounding of anatomical ROI. This method achieved good detection results,
but because of the need to train multiple networks, the algorithm itself was less efficient. Roth et al. [27]
trained a 5-layer convolution neural network by using 4300 two-dimensional axial-shaped slices on
the human body of five different regions (legs, pelvic, liver, lung, and neck). In the application to
cardiac tissue detection, Luo et al. [28] employed a 8-layer fully convolutional networks to locate the
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ROI (Region Of Interest) that contains the bi-ventricular regions for right ventricle segmentation.
Poudel et al. [29] proposed a recurrent fully-convolutional network that combines left ventricle
detection and segmentation into a single architecture that is trained end-to-end thus simplifying
the segmentation pipeline. Tan et al. [30] proposed a CNN network with fully connected layer to
regress the location of left ventricle center point in cardiac images. Vigneault et al. [4] built a small
localization network from the layer immediately following the final max pooling of U-Net to predict the
transformation parameters in locating the left ventricle in cardiac images. This method can output the
directed localization but contains much more surrounding tissues. Overall speaking, the investigation
on myocardium detection is very limited in comparison to the advances in natural object detection and
most existing approaches usually take it as a module in the pipeline of cardiac segmentation, where
they strengthen the completeness of myocardium more remarkably than the accuracy.

1.2. Motivation and Contribution

In above methods, Faster RCNN obtains both high detection efficiency and detection accuracy
without changing the pipeline of region proposal and region classification. Unfortunately, four
problems are not solved in the studies. Firstly, the network training requires huge amount of labeled
training data, which makes it hard for medical image applications to utilize this technology, due to
the fact that it is extremely hard to collect such a large data with correctly diagnosed labels. Secondly,
contextual information is not integrated with the top-level features. Thus, the quality of generated
region proposals is relatively poor. Thirdly, the design for the selected scales and aspect ratios of anchor
boxes is not optimal for medical objects because in our task there is some anatomical constraints that
cannot be described as the limited scales and aspect ratios. Therefore, the ability of regional proposal
network object localization is weak for myocardium detection. Fourthly, the classifier is not optimal
for solving binary classification problem since it does not consider the structure information of the
top-level features. As a result, the performance is affected in detection of specific medical tissues.

The objective we consider is to localize myocardium and left ventricle tissue (or, left ventricle ROI)
in cardiac MRI images, where the object is single and the anatomical information is more remarkable
in comparison to multiple objects in natural images. However, the localization remains a challenging
problem due both to intrinsic and extrinsic difficulties. Intrinsic difficulties refer to the essential
properties of the MR imaging systems that result in imaging noise and the complexity of cardiac
tissues. The major source of noise that degrades image quality is mainly caused by radiation scattering
and source leakage. The complexity of cardiac tissues lies on that in typical short-axis steady-state
free precession cine MR images, the contrast between the blood pool within the left ventricle and the
endocardial wall is varying, the interference of endocardial trabeculation and papillary muscles is
relative strong, and the contrast between the epicardial wall and surrounding structures is extremely
weak and varying, particularly against low-signal lung tissue. Extrinsic difficulties are closely related
to the patients with biological variability in heart size, orientation in the thorax, and morphology
across subjects. Also there is variability in contrast and image appearance with different scanners,
protocols, and clinical planes. In some images, the borders between the ventricles and the atria,
and the separation between the chambers and the vasculature are hard to define. In this context, it
is admirable to generate candidate regions according to the texture and structure information of the
cardiac image, instead of the convolution network-based region proposal network. Also a stronger
classifier is necessarily investigated to distinguish the proper proposal regions from large mount
of candidates.

Motivated by these observations, in this paper, we propose a hybrid model to detect myocardium
by integrating region proposal and deep feature classification and regression. Our model firstly
generates candidate regions on cardiac images using new structural similarity-enhanced supervoxel
over-segmentation plus hierarchical clustering. Compared with the typical sliding window extraction
methods, the algorithm is more efficient and generates less redundant regions. Then it adopts a deep
SSAE (Stacked Sparse Auto-Encoder) network to learn the deep feature to represent the candidate
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regions. Compared with the traditional manual feature, the difference between the myocardium region
and background is strengthened by the supervised SSAE deep learning, which also improves the
robustness of our model. Finally, the obtained deep feature represented candidate regions are fed to
train a nonlinear within-class neighborhood preserved soft margin support vector classifier (C-SVC)
and multiple output support vector regressor (e-SVR), and finally output the myocardium region.
To improve the stability and generalization, the proposed model also takes the hard negative sample
mining strategy to fine-tune the SSAE and the classifier. Experimental results show that the accurate
myocardium detection results can be achieved by fine-tuning a pre-trained deep learning network.

Briefly speaking, the contributions and advantages of our method are highlighted as follows:

(1) The region proposal is generated using new structural similarity-enhanced supervoxel
over-segmentation plus hierarchical clustering. Instead of the color and spatial similarity computation
in the widely adopted SLIC (Simple Linear Iterative Clustering) method, the proposed supervoxel
introduced a sequence of measure, including image phase congruency, intensity, contrast, structure,
and coordinates to enhance the structural similarity, which can easily take into account the context of
similar anatomical tissues while limiting the capacity of redundant proposals.

(2) The SSAE network is introduced to learn the deep features related to region proposals.
SSAE enjoys all the benefits of any deep network of greater expressive power by capturing a useful
“hierarchical grouping” or “part-whole decomposition” of the candidate regions. For supervised SSAE,
the gradients from the softmax classification error will then be back-propagated into the encoding
layers and which can enhance the difference of feature representation for positive and negative regions.
Furthermore, SSAE outputs less feature by dimensionality reduction to help training more robust
classifier and regressor in the successive steps.

(3) The nonlinear within-class neighborhood preserved C-SVC classifier and e-SVR regressor
are proposed to classify the SSAE-learned features and regress the locations of features to refined
positions, respectively. Since there are common components in many features due to their intensity
representation of limited anatomical types of cardiac images, these components will be encoded as
more similar parts after SSAE learning. According to this, we propose a nonlinear regularization
to preserve the within-class neighborhood structure and incorporate it to C-SVM and e-SVR. It can
alleviate the limitations that standard C-SVM and e-SVR suffer from the noisy data that heavily
affect the hyperplane, since they obtain larger non-zero coefficients after training. In addition, our
multiple-input multiple-output e-SVR can produce more robust nonlinear regression than the linear
regression in many region-based detectors.

We intensively investigated the performance of the proposed method with impacts of different
components and compared it with related methods on public available cardiac data set. Although
Faster RCNN has become one of the most outstanding detection methods for natural images, we show
that the proposed method can achieve competitive results more efficiently and has potential as well
when incorporating the integration of enhanced supervoxel-based region proposal, deep learned SSAE
feature, and nonlinear within-class neighborhood preserved C-SVC classifier and e-SVR regressor.
In this context, the proposed model is valuable as a reference for segmenting other similar medical
objects in limited image sets.

The rest of the paper is organized as follows. Section 2 describes the flowchart of proposed
model and the details of major modules. Section 3 presents the data set and our evaluation metrics.
Experimental results and discussion are reported in Section 4 and we summarize our work in Section 5.

2. Proposed Method

2.1. Overview of Our Detection Model

We formulate the myocardium detection as a classification and regression problem and the training
flowchart of our model is shown in Figure 1. This model consists of four modules: (1) candidate
region extraction module that combines structural similarity-enhanced supervoxel algorithm and
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hierarchical clustering to generate target candidate regions; (2) feature learning module that extracts
the deep SSAE characteristics of the candidate regions; (3) region location module that trains a
within-class neighborhood preserved C-SVC classifier to determine and locate the myocardium region;
(4) refinement module that collects hard-to-be-classified samples and use them to fine tune the model,
also eliminates redundant (cross-repeated) candidate regions and find the best target detection position
by using the NMS (Non-Maximum Suppression) and e-SVR bounding box regression strategies. In the
following subsections, we will present the details of each module.

Training label of input image T
Within-class

neighborhood
preserved C-SVC
+
MIMO ¢-SVR

||]|::> BoundingBox
regression

A 4

Structural similarity-
enhanced supervoxel
over-segmentation and
merging

A 4

Input image

Top-level region proposal | SSAE deep
feature
learning

Hard negative
N mining

Figure 1. Training flowchart of proposed myocardium detection model.
2.2. Candidate Region Proposal

In two-stage object detection methods, it is usual to generate the candidates in possible sizes,
scales, locations to handle the strong randomness of target located on the image. The first early
region candidate generation algorithm adopted sliding window [6] to traverse the entire images,
the image needs to be set as different scales and sliding window aspect ratio. This exhaustive search
certainly could find the target, meanwhile it generated more redundant proposals with the much high
time complexity, furthermore, the huge negative proposals makes the classifier less sensitive to the
positive proposals. To overcome the limitation, selective search [24], edge boxes [31], region proposal
network [9], superpixel proposal [32-34] were introduced to generate candidate regions quickly and
efficiently. For our detection task, there are many similar anatomical structures in the limited cardiac
images, so we consider the supervoxel-based over-segmentation to generate the initial regions.

2.2.1. Structural Similarity-Enhanced Supervoxel Over-Segmentation

The distance or similarity measure plays an essential role in supervoxel framwork. For typical
SLIC, the feature for distance measure is built as LAB-color space-based intensities balanced with the
pixel location distance [33,35]. No structural information is incorporated. For cardiac image, this may
be less appropriate since the intensity is single channel and objects are usually with coarse boundaries.
So we introduce five parts to enhance the structural similarity as follows.

(1) Phase congruency measure

Image phase congruency (PhaseCong) model assumes the visual feature should be high in
information (or entropy), and low in redundancy. Instead of searching for points where there are
sharp changes in intensity, this model searches for patterns of order in the phase component of the
Fourier transform. Based on the physiological and psychophysical evidences, the PhaseCong theory
provides a simple but biologically plausible model of how mammalian visual systems detect and
identify features in an image. Rather than define features directly at points with sharp changes in
intensity, the PhaseCong model postulates that features are perceived at points where the Fourier
components are maximal in phase. PhaseCong can be considered as a dimensionless measure for the
significance of a local structure [36].

To compute the PhaseCong of cardiac images, we can apply the two-dimensional log-Gabor filters
that uses the Gaussian spreading function across the filter perpendicular to its orientation. In this way,
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the phase of any function would stay unaffected after being smoothed with Gaussian. Thus, the phase
congruency would be preserved. This function has the following transfer formulation

G(w,0) = exp (lqg(w/woy) exp <(69])2> , 1

202 207

where wy is the filter’s center frequency and o, controls the filter’s bandwidth; 6; is the orientation
angle of the angle filter and 0y determines the filter’s angular bandwidth. By modulating wy and 6;
and convolving G with the image, a set of responses at each point u as [enrgj (u), On6; (u)]. The local

amplitude on scale 7 and orientation 6; is Ay, (1) = \/ (en,6;(14))* + (01,0;(1))* and the local energy

along orientation 6 is Ey, g, (u) = \/ (X, enp; )2+ (X, On6; (1))?, therefore, the phase congruency at
the point u is obtained as

. Z] Egj(u)
B Zn Z] An,ej (u) '

and the phase congruency measure of two points are defined as

PhaseCong(u) 2)

S (11, 0) = 2PhaseCong(u) PhaseCong(v) + ¢1 o
P2 PhaseCong(u)? + PhaseCong(v)2 +c;

(2) Intensity measure

For two patches Pat(u) and Pat(v) centered at position u and v, with d = p x p patch

size in cardiac image (p = 7or9 is better in our study), we define the intensity measure as
Spum (1, v) = %, where y, = 1/dY%, Pat;(u) and p, = 1/dY%, Pat;(v) are the mean

intensities of the compared patches, and constant c; is included to avoid instability when the intensities
of two patches are near to zero. If the mean intensities of two patches are close, Sy (1, v) will approach
to 1 and vice versa.

(3) Contrast measure

Once the mean intensity is removed from each patch, the resulting signal can be seen as
the inner contrast of the patches, so we use the standard deviation to estimate the similarity

of these contrast, i.e., Sgp(u,v) = %, where 02 = 1/(d — 1) L% (Pat;(u) — py)? and

02 =1/(d — 1) %, (Pat;(v) — u»)?, c3 plays the same role as c,. If the mean contrast of two patches are
close, Scim (1, v) will approach to 1 and vice versa. Furthermore, this measure is less sensitive to the
case of high base contrast than low base contrast and consistent with the contrast-masking feature of
the human visual system.

(4) Structure measure

For two patches Pat(u), Pat(v) centered at u and v, correlation (inner product) between
them is a simple but effective measure to quantify their structural similarity. Since it equals
to the correlation coefficient of the normalized patches with voxels (Pat;(u)— u,)/0y and
(Pat;(v) — py)/0y, so we define the structure measure as Sgy(4,v) = %, where
Oup = 1/(n — 1) Y9 (Pat;(u) — ) (Pat;(v) — piy)- Geometrically, the correlation coefficient
corresponds to the cosine of the angle between the vectors with elements (Pat;(u) — p,) and

(Pat;(v) — uy), so we take the absolute operation to constrain it into the range of 0 and 1.
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(5) Coordinate measure

The coordinate measure is defined as Sy, (1, v) = exp(—al|lu — v||?), where a is related to the
supervoxel number K and image voxel number N. Typically, « = 24/K/N. Different from the distance
measure in SLIC method, this definition explicitly constrains the similarity into [0, 1].

Then, these measurements are combined to get the hybrid similarity of patches centered at the
position 1 and v on the image. We define S(u, v) as

S (1, 0) =[Spm (1, 0) 1P [Sipn (11, 0)] P>

4
(S (14, 0)1P% [Ssm (11, 0)1P4[S g (11, 0) 1%, @

where B;(i = 1,- - - ,5) are weights for the corresponding part, in our experiments, we let them as 1
for simplicity. This comprehensive distance measure explicitly integrates the different measures of
two patches into a unified measure space, and it can be separately calculated and then incorporated to
form the final results for speeding up the computation.

2.2.2. Supervoxel Region Merging by Hierarchical Clustering

The initial over-segmentation regions by the supervoxel algorithm usually divide the objects
into many adjoint parts. These regions should be adjusted to represent the object more accurately
and efficiently. We introduce hierarchical clustering algorithm to merge the generated regions in a
bottom-up way. Each of the two merged regions satisfies two conditions: (1) the regions should be
adjacent; (2) the two regions have the highest similarity. The similarity is computed using Equation (4),
but in a supervoxel region instead of patch, and the coordinate measure are computed in the center of
the supervoxel instead of locations of voxels. Theoretically, the final result of clustering is that all the
initial regions are merged into the same region (that is, the whole image). So, it is necessary to set the
desired number of final regions, so that a candidate target area for detection can be finally obtained.

The complete candidate region generation algorithm is described as follows:

Step 1: Generating initial over-segmentation regions by supervoxels framework with the similarity
measure in Equation (4) in a patch-wise way;

Step 2: Calculating similarity between all adjacent regions by using the similarity measure in
Equation (4) in a supervoxel-wise way;

Step 3: Sorting the similarities, and then merging the two regions with the highest similarity to
form new over-segmentation regions;

Step 4: Repeat Steps 2 and 3 until the number of remaining areas reaches to the predefined value.

Figure 2 illustrates the procedure of our region proposal generation on three typical images
located in the base, middle, and apex parts of myocardium tissue, respectively. It is seen that the
targets both include in-homogeneous blood pools and myocardium and show much variability in
complex background. The endocardium is not always closed circle while the epicardium exhibits
obscure boundaries to surrounding tissues. Our initial over-segmentation extract the anatomical
structures in most cases, but still separate the targets into different adjacent parts. After hierarchical
clustering this disjoint limitation is greatly decreased, and the final region proposals covers the true
objects through some restrictions, e.g., the ratio of height and width in bounding box, the number of
voxels in supervoxels, the location near to the image border. It is also noticeable that our approach
generates much less proposal than selective search-based methods.
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Figure 2. Procedure of our region proposal generation. From left to right: initial structural
similarity-enhanced supervoxels; merged supervoxels by hierarchical clustering; corresponding
bounding boxes; final top-level region proposals where yellow rectangles denote ground truth.

2.3. Deep SSAE Feature Learning

It is difficult to design a hand-crafted feature to capture the characteristics of left ventricle and
myocardium tissue in different cardiac images because the gray scales of left ventricle target in heart
MRI images are varying in complex morphological changes and image background. For learning-based
detection model, an effective feature representation can relieve this burden. In view of the excellent
ability and robustness of the deep learning characteristics, this paper propose to extract deep feature
representation of the proposal regions using deep SSAE model.

To be specific, the region proposal generation algorithm outputs candidates with different scales
and different sizes according to supervoxel and regional hierarchical clustering. For each candidate,
the minimum bounding rectangle is built and the corresponding region from the original image is
cut down to form a training sample. Since the dimensions of bounding rectangles are different across
the images, they should be scaled to a fixed size (i.e., T X T ). For SSAE, the number of neurons in
the input layer is the dimension of the training sample, so the value of 72 is directly determined by
the number of neurons in the SSAE input layer, which is one of the important parameters of SSAE
structure. In our experiments, the value of 7 is settled via cross-validation.

SSAE is a deep neural network composed of multiple stacked sparse auto-encoders (SAEs) [37],
and it has been applied in tissue segmentation in late gadolinium-enhanced cardiac MRI images (such
as atrial scarring segmentation [38], atrial fibrosis segmentation [39], left atrium segmentation [40]),
nuclei patch classification on breast cancer histopathology images [41], brain tissue segmentation in
visible human images [42], or other applications (such as hyperspectral imagery classification [43]
and building extraction from LiDAR and optical images [44]). Figure 3 shows a SSAE network with
three hidden layers, where a SAE aims to learn features that form a good sparse representation of
its input. The first layer of a SSAE tends to learn first-order features in the raw input (such as edges
in a proposal). The second layer tends to learn second-order features corresponding to patterns in
the appearance of first-order features (e.g., in terms of what edges tend to occur together). Higher
layers of the SSAE tend to learn the sparse but even higher-order features, which can be admirable for
classifying myocardium regions.
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Figure 3. SSAE structure with three hidden layers in this work.

SSAE includes encoding and decoding phases and each phase contains more layers (here, three,
which can be set according to specific tasks). Given an input sample x, the first SAE maps it to the
activation vector 1)) (x;) = f(Wix; + by), where f(z) = 1/(1 4 exp(—z)) is the sigmoid function to
make non-linear activation, W; € R"*M represents the coding weight matrix in the first layer of the
sparse self-encoder, b; represents the offset variable; then, this vector 1)) (x;) is used as the input
vector for the second SAE mapped to activation vector #(2)()(x;); in a similar way, this vector is finally
expressed as the final depth characteristic of the input sample. The average hidden layer activation
value of this neuron for all training samples can be expressed as p; = 5 Zl 1 ( )), in this condition,
we can set a small sparse parameter (e.g., p = 0.01), by making p; = p, the mean activation of each
neuron will be close to p, so as to achieve the purpose of sparse constraints and it can be formulated as

S R 52 1—
Y KL(p||p;) = Zplog§+(1—p)logl_ f) 5)
j=1 j=1 Oj Oj

Here, s, represents the number of neurons in the implicit layer, and the index j represents the jth
hidden layer neurons. KL(p||0;) is a Kullback-Leibler divergence that measures the similarity between
two different distributions p and p;.

The overall cost function of SSAE is defined as

1 n 1 *1 S| S1—1 Sy .
= Gl =) +As 212;2 W)’ ) +B LKL, (6)
1= 1 ] j=

where the first term is defined as a mean square error cost function to learn an identity function so
that output y; equals to input x;. The second one is a quadratic regularized function to penalize the
parameters W and reduce the risk of the model being over-fitted. The third term is a sparse constraint.

The training of SSAE is the process of optimizing its cost function. It is generally conducted using
step-by-step greedy strategy. It consists of two parts: (1) model pre-training (progressive training for
each SAE); (2) model fine-tuning (fine-tuning of the pre-trained model). In the first stage, the training
samples are used to train the first layer of SAE separately. After this training is completed, the second
layer SAE is trained by using the hidden layer output activation vector of the first layer SAE, and
then the output activation vector of the second layer SAE is used to the training of the third layer
of SAE (if there are more hidden layers, the training processes in the same way). After the first part
of the training is completed, a number of trained SAE is stacked into a multi-layer SSAE, the initial
parameters of SSAE are feed by the weight parameters of SAE, and the last hidden layer of neurons
connects to the classifier to form a complete classification network. The gradient descent algorithm is
used to pass the error of the Softmax classifier to the entire network, and the whole network is then
fine-tuned [37,45].
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2.4. Within-Class Neighborhood Preserved C-SVC Classification

In this paper, the two-class soft margin support vector classifier is considered to classify the
candidate regions (each candidate region is divided into a target area or a non-target area). Standard
C-SVM suffers from the noisy data that heavily affect the hyperplane, since they obtain larger non-zero
coefficients after training [46]. In addition, the feature learned by SSAE is biased for the negative
samples, that are the mixture of the complex background. To alleviate these limitations, we propose
to incorporate local geometric structure to constrain the maximum margin-based C-SVC, and the
classifier is built as follows.

Suppose there are N SSAE learned samples x;(i = 1,- - -, N) and they belong to class Cx(k = 1,2),
and the size of each class is Ni. There is a linear or nonlinear mapping ¢ to transform x into an arbitrary
reproducing kernel Hilbert space #, i.e., ¢ : RP +— H, then, according to the Mercer theorem, a kernel
function K(x;, x;) = d(x;)Tp(x ;) could be designed to avoid curse of dimensionality. Exploiting the
manifold in the form of a graph can be seen as a method of incorporating local proximity information
of the images into the dimensionality reduction framework, that can enhance the clustering quality
in the low-dimensional space. Assume the mapped data are centered in H, i.e., YN ; ¢(x;) = 0, and
total scatter matrix of samples in feature space is Sf =4 YN, ¢(xi)p(x;)T, the eigen-decomposition
is S;Pv = Av; v € span{p(x1), p(x2), -+, ¢p(xn)}. Let v = TN, u;¢(x;), we obtain ANy = Ku due to
K is symmetric and has a set of eigenvectors spanning the whole space. In case that the mapped
data are not centered in H, we replace K by (I — ee’ )K(I — ee”) to implement centralization, where
e = N~1/211. In this way, a sample ¢(x;) obtains its projection as

¢(Xi)kpca = wl{pch(xir ’)r (7)

where Wy, = [p1, 42, -+, iN—1] with arrangement of y; according to the descending order of
eigenvalues. This KPCA preprocessing does not lose any information due to the representation
theorem and the orthogonal decomposition technique [47].

Let G be a graph built on samples X? = [¢(x1), - ,$(xn)] and A be a symmetric matrix that
encodes the weighted adjacency information among images, that is,

DI

1 e <_”¢<2>4’(3> ) € Nllx) or

i = e 8)
P(x;) € Nk(xi);
0, other,

where D; = }; Aj; normalizes each weight and U’i(t) (or (7].(t)) is the distance of ¢(x;) (or ¢(x;)) and its
t-th within-class neighbor, in our experiments, t = 7. This settlement is more controllable than the
traditional selection (e.g., the variance or predefined fixed value). By introducing the kernel function,
this weight is rewritten as

Al = L exp Ki 1 Ky — 2K )
l.. —_ - 7
") \/ (Kii + Ko = 2Ky ) (Kjj + Ky 10 — 2K

if p(x;) € Nk(p(xj)) or ¢(x;) € Nk(¢p(x;)) and Afj = 0 otherwise, where i(*) (or j(!)) denotes the

subscript of the t-th within-class neighbor of ¢(x;) (or ¢(x;)). Df_’ =Y A?;- is a normalizer. Based on
this, we want to model the local intrinsic geometry structures and define a within-class neighborhood
preserving scatter matrix in KPCA feature space as
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2 Ni
Sg(); = Z Xé X, kpca — ZA1]¢ X])kpca)(¢(xi)kpca - X;A$¢(xj)kpca)T
j=
: O\T ¢ T
Z kpca Ak ) (Ik - Ak ) (Kk) Wkpca

= WkpcuK(I - A¢)T(I - A(P)Kkapca

where K is N x N kernel matrix whose first N; columns and first N; rows based block are taken from
K and the rest parts are zero. Iy is a Ny x Nj diagonal matrix. (I — Af)T(Ik - AZ’) preserves locality
of nearby points with same class label in the embedding space if they are close in original space during
the unfolding process of nonlinear structures.

In this context, minimizing a objective wTS{w means to find a w that keeps the local geometry of
within-class data as much as possible, so we integrate it to the C-SVM and define the primal problem as

1
131117’1 <2w w+C 2 Lo(x;) + ZTII\IWTSww> (10)

where hinge loss L.(x;) = max (O, 1-— yi(wT(p(xi)kpcu + b)), C > 0, and 7 > 0 stands for a trade-off
parameter to balance the penalties of within-class neighborhood preserving and maximum margin of
the decision hyperplane in C-SVM. If 5 = 0, the model will degrade to C-SVM where the within-class
neighborhood preserved regularization does not work anymore.

Problem (10) is equivalent to the following formulation

(1 g N
W wW+C) Lc(X; 11
rggl <2w W+ l; C(x1)> , 11)
where w = S!/?w, x; = S_l/ZW,zme(xi, .yand S = I+ 57/2NS%. Thus it can be solved in standard
C-SVM framework. We can simplify these computations via SVD (Singular Value Decomposition)
technique to obtain S*1/2 because S is a real symmetric matrix [48]. Assume the optimal result of
problem (10) is (a*, w*, b*), the decision hyperplane becomes

N
g(x) = sgn <Z“?yi (K(xi,:)TWkpcuS_lwlzme(X,:)) + b*> . (12)

i=1
2.5. MIMO Within-Class Neighborhood Preserved e-SVR Bounding Box Regression

Once the samples are classified as positive class using within-class neighborhood preserved
C-SVC, they can be regarded as myocardium. However, their positions will not be completely
overlapped with the true myocardium, due to the error of supervoxel merging and the classifier
performance. To alleviate this side effect, we adopt bounding box regression technique to refine the
proposal box.

Suppose (x, y,w, h) indicate the horizontal and vertical center coordinates of a detection box and
its width and height, respectively, x, and x,, are the center coordinates x of a detected box (called anchor)
and a refined box (called proposal), respectively (the same applies to y, w and }), then a bounding
box regression vector z € R* could be presented by parameterizing the transformation between the
anchor and the proposal (that is, the bounding box that seems to enclose a true myocardium), i.e.,
z1 = (Xp — Xa)/Wa, 22 = (Yp — Ya)/ha, 23 = Wp/Wa, 24 = hp/hy. When z is learned from the samples
and the ground truth, the anchor can be transformed into a refined proposal box. In this paper,
we regard it as a multiple input multiple output (MIMO) regression problem and propose a MIMO
within-class neighborhood preserved e-support vector regression (SVR) to solve it. Different from the
linear regression in RCNN [8] and Faster RCNN [9,10], the multidimensional regression will help
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to exploit the dependencies in the channel and will make each estimate less vulnerable to the added
noise. Treating all the channel paths together will allow to accurately estimate each of them when only
scarce data is available.

The traditional solution of MIMO problem is splitting multi-dimensional output into multiple
single-dimensional outputs, which means constructing an independent regression model for each
output dimension. Although this kind of method has simple implementation, it is computationally
expensive and incapable of containing useful information among outputs. Another solution is
multivariate statistical regression. However, this kind of method is sensitive to the changes of data so
that it cannot be applied broadly. In present machine learning techniques, artificial neural network
is the most common method to establish MIMO model. However, when facing small-scale sample
problem, this method easily falls into local minimum and leads to over-fitting [49,50].

Suppose the elements in {x;,z;}Y; denote SSAE learned samples and their corresponding
multiple output, our MIMO &-SVR approach defines the problem

o1& N
min 72||t]||2—|—CZLr(u,«) , (13)
Tb \2 i1

where T = [t!,- - ,t}],b = [by,--- ,by)T, e; = z; — TT¢(xi)kpca —b,u; = eiTel-, the loss function is
Ly(u;) = (u; — €)> when u; > e and 0 otherwise. We follow the nonlinear mapping in the previous
subsection as ¢ (X;)kpca = S_l/zw,{me(xi, Jand S =1+ U/ZNSZ,.

By adopting the cost function L,(-), MIMO e-SVR is capable of finding the dependencies between
outputs, and can take advantage of the information of all outputs to get a robust solution. As problem (13)
cannot be solved straightforwardly, an iterative method was proposed to obtain a desired solution.
By introducing a first-order Taylor expansion of cost function L, (-), the objective of problem (13) will
be approximated by the following objective

13 .
in( =Y |[¢]?+C
rggl(zgll I*+

]

N
2 aiul2 + const |, (14)

i=1

where a; =2y(1—¢/ ui‘) when ui.‘ > ¢ or 0 otherwise, const is constant term which does not depend on
T and b, and the superscript k denotes k-th iteration. According to the Representer Theorem, the best
solution of minimization of problem (14) in feature space can be expressed as t/ = Y, ¢(x;) kpea B/, then
the linear search algorithm can be readily expressed in terms of p/. In fact, our model can be solved
using the standard approach [49,50], just need to replace the mapping by our ¢(X;)xpca-

Once p/ has been computed, for a new SSAE-learned vector x; with (x,, 4, wa, ha), we can estimate
the j-th output as

8 (x;) = (2 (K%, ) WipeaS T W], K (x,) ) /31> , (15)
i=1

so the position of the corresponding refined proposal is (x; + wa21, Ya + ha22,w,23, ha24). It is noted

that this nonlinear regression technique is not conducted on all of the supervoxel regions, but just

regions near to the ground truth by using intersection-over-union to measure their overlapping

(e.g., larger than 0.6). Thus, this step can be regarded as the closing step of refinement.

2.6. Refinement

There is a sample imbalance problem in our detection model. Specifically, for each image in the
training set, the intersection-over-union (IoU) index can be computed between the labeled location
of the target and generated location by the model: ToU = gggggg, where GTB and DB denote the
ground truth of the target and detection result respectively. When IoU approaches to 1, the detection

result overlaps the ground truth in more parts and vice versa. Generally, when constructing a training



Sensors 2019, 19, 1766 13 of 24

set, a region is regarded as positive sample if its JoU exceeds a threshold (e.g., 0.5), and negative if
IoU is less than another threshold (e.g., 0.3). But the number of negative samples in the training set
is practically much larger than the positive samples because the parts occupied by the target on an
image are often much smaller than those of the non-target. This imbalance has a remarkable impact on
the training of the model and results in a false positive problem where many negative samples are
misclassified as positive samples.

We employ the hard negative mining [24] strategy to solve this problem. After the deep model
and the classifier are trained, the training set is sent to the model, and the classifier gives the probability
that each region belongs to the positive sample. Then we pick out the samples with high scores and
misclassified into positive samples and called them as “hard to share negative samples”. From them
we chooses those samples that are not only misclassified but also less than 0.1 in IoU as difficult
negative samples, then feed them into the pre-trained model and conduct iterative fine-tuning. By this
way, the training samples are balanced to improve the model’s performance.

Furthermore, for each candidate region, the proposed C-SVM classifier will output its probability
of each class. There are usually many candidates around the true myocardium region, so the final
detected area should be inferred from these regions. In our experiments, we employ the non-maximum
suppression (NMS) algorithm [51] to eliminate redundant (cross-repeated) candidates and find the
best myocardium position. Since the overlap between the candidates is sometimes relatively large, it is
necessary to remove these regions with higher IoU scores (e.g., larger than 0.3) between the overlapped
area. Usually, only a small number of the most likely areas are remained after this processing.

3. Datasets and Evaluation Metrics

3.1. Cardiac MRI Dataset and Preprocessing

The heart MRI data used in our experiments are from the publicly available Cardiac Atlas Project
(CAP) data set, a collaborative database created by multiple organizations [52]. The data set contains
83 patients with short axis cardiac MRI images, where the MRI scanners used to collect these images
include Siemens (Avanto 1.5T, Espree 1.5T and Symphony 1.5T), Philips (Achieva 1.5T, 3.0T and
Intera 1.5T), and GE (Signa 1.5T). Because of the different characters of acquisition equipments, the
parameters of the heart MRI images in different patients are varying. The formation of the images
were in presence of remarkable offset or distortion. The parameters of the typical short-axis cardiac
MRI images are: thickness 6 mm, gap 4 mm or thickness 8 mm, gap 2 mm. The size of these images
is between 192 x 156 and 512 x 512, and the resolution of each voxel is between 0.7 x 0.7 x 6 and
2.0 x 2.0 x 10 (in mm). The number of slices per patient image sequence is 8 ~ 17, and each slice
corresponds to approximately 18 ~ 35 images (one cardiac cycle).

In spite of these varying changes across subjects and acquisition equipments, we took myocardium
as a preprocessing of the subsequent steps such as registration or segmentation, so we did not adjust
these images into a common image space with same spatial resolution. We only rearranged their
orientation as RAI automatically and employed the N4 regularization algorithm [53] to correct the
deviation field of each heart MRI image.

The myocardium region in each image was manually labeled by two well-trained students. Since
this labeling was a non-trivial and challenging problem due to the projective nature of the data, fuzzy
organ boundaries, and large anatomical variability, their results were carefully cross-checked and
further checked by a radiologist to made a final result as gold standard for evaluation. For each subject,
this processing took about 2 h.

3.2. Evaluation Metrics

Considering the limited size of the data set, we randomly divided 83 cardiac image sequences
into three folds of approximately equal size (28, 28, and 27 subjects) for training, validation, and
test. The three-fold cross-validation was taken as the evaluation prototype, that is, our experiments
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were conducted three rounds, in each round we trained our model in the training set, adjusted the
hyper-parameters in the validation set, and applied the model in the remaining test set for measuring
its performance.

We employed true positive rate (or Tpr, sensitivity, Se, recall), positive predictive value (or Ppv,
precision), F1, and area under the receiver operating characteristic curve (AUC) to measure the
performance of the proposed method. Tpr (resp. specificity) is a measure of effectiveness in
identifying regions with positive (resp. negative) classifications. Specifically, the chosen metrics
are defined as Tpr = tp/(tp + fn) and Ppv = tp/(tp + fp), where tp, tn, fp and fn indicate the true
positive (correctly identified regions), true negative (correctly identified background regions), false
positive (incorrectly identified regions), and false negative (incorrectly identified background regions),
respectively, and all the pixels are equally treated towards their bounding box without considering
the tissue they depict. F1 is a harmonic mean of the precision and recall measures and can be used
to measure the degree of similarity of the two sets. The expression is expressed by the following
equation F1 = 2Tpr x Ppv/(Tpr + Ppv). The value of F1 is between [0-1] and the larger the value of
F1, the more similar the two sets. DR = 2(|AN B|)/(|A U B|), where A is the ground truth region, B
indicates the detected region, and |A N B| and |A U B| denote the number of pixels in the intersected
region and in the union region, respectively. All of accuracy and AUC and DR measure the overall
detection performance.

Statistical analysis is performed as appropriate in order to evaluate the relative performance of
different detection methods. Due to the relatively small number of images, p < 0.05 is considered to
be statistically significant. All the experiments were carried out in MATLAB2016a with deep learning
toolbox and parallel computing toolbox on a PC with an Intel Core i7-3770K CPU, 3.70GHz, GTX1070
GPU, and 16GB RAM. Since the negative samples are remarkably more than the positive ones, total
feeding all samples into the SSAE network will make the model biased. To alleviate this, a batch
training strategy was adopted.

4. Experimental Results and Discussion

The proposed detection method was evaluated from two aspects: effectiveness of the parts
in the model, and the comparison with close related state-of-the-art detection methods. Also an
experimental investigation was carried out in the next section on the parameter setting, i.e., the number
of supervoxels, the size of proposed region, the structure of the SSAE network and the C and § in our
SVM classifier and regressor.

4.1. Parameters Setting

4.1.1. Number of Supervoxels and Training Image Set Building

There are two parameters (the number of initial supervoxels M and the final number of merged
supervoxels K) in the candidate region generation module. Since we intend to make the true blood
pool of left ventricle locate in the merged supervoxels, we employed the Dice ratio (DR) index to
measure the similarity between the true object and the supervoxel in the region of this object under
different M and K. The search range of the initial supervoxel is {300,500,700,900} and that of the
merged supervoxel is {50, 100, 150, 200}. Figure 4 presents the DR values corresponding to different
parameters and it is shown that when the initial number is greater than 500 and merged number is
greater than 100, the DR values are acceptable. The maximum DR reaches for M = 500 and K = 100,
so we choose them as the parameters in the following experiments.
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Figure 4. Mean Dice ratio on the training set using four different M and N values.

Once the merged number was settled, the positive samples were constructed as the bounding
regions of the merged supervoxel that located in the real region of the left ventricle target on each
training image; while the negative samples were those rest regions.

4.1.2. Size of Proposed Region and SSAE Training

The region proposals were scaled to a fixed size (i.e., T x T) and sent to SSAE network for feature
learning. The value of T was determined through cross-validation to make the number of neurons in
the SSAE input layer, specifically, the number of neuron in each encoding layer was hoped much less
than that of the input neurons for achieving the sparse encoding, so we tested multiple values of T in
four kinds of three-hidden layer SSAEs with different numbers in each layer, i.e., {576, 400, 300, 200}
for T = 24; {1296, 750,450,250} for T = 36; {2304, 1150, 600,300} for T = 48; and {3600, 1600, 750, 350 }
for T = 60.

The models of four different SSAE structures were trained to adjust the optimal performance of
each model in different SSAE super-parameters, including weight penalty factor A, sparse penalty
coefficient B, and coefficient factor p. The values of the three super-parameters were settled as
A € {1071,1072,1073}, B € {1,0.6,0.3,0.1}, and p € {0.01,0.05,0.1,0.2}. Figure 5 presents the
detection accuracy (F1) versus training time of the test model under four different T values on the
verification set. It can be seen from the figure that the overall trend is the higher the value of 7, the
higher the detection accuracy of the model, along with the longer the training time. When 7 reaches
60, the model obtains best test accuracy, so T is set to 60. The values of three super-parameters are set
toA =10"2,8=10.3,and p = 0.2.
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Figure 5. Detection accuracy (F1) on the verification set with model training time on the verification
set using four different T values.
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4.1.3. Parameters of Within-class Neighborhood Preserved C-SVC and e-SVR

Considering choosing the kernels and the parameters for the SVM-based methods is still an open
problem, we adopted grid searching strategy to settle these parameters. The typical kernel used in
our experiments is the Gaussian kernel, i.e., exp (—(u—v)T(u —v)/20?) orexp (—r(u —v)T(u —v)),
where ¢ controls the width of kernel while r is suitable for numerical searching. r should be larger than
0 in the sense of similarity. We selected r from {2’3, 2-1 91 23 25}. For all C-SVM based methods, the
common parameter is the slack variable C, we selected it from {2_3, 2-1 21 23 25} ; for the additional
trade-off parameter 7, we determined it from {272,271,21,23}. To speed up the searching, the ranges
were also restricted with respect to the data prior information. Figure 6 presents the average detection
accuracies corresponding to different parameters. Overall speaking, smaller parameters are helpful for
obtaining better accuracies, so we settle C = 0.5, r = 2, and # = 2 in all experiments.
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Figure 6. Detection accuracy (F1) on the verification set using different r, C, and # values.

Similarly, for parameters of within-class neighborhood preserved e-SVR, we still adopted grid
searching strategy to settle the parameters r in Gaussian kernel, the slack variable C, and the additional
trade-off parameter 7 from the above ranges, and the parameter ¢ that sets the width of insensitivity
zone of the regressors cost function was chosen from {0.01,0.5,1.0,1.5,2.0}. According to the best F1
accuracy, we settle C = 0.5, = 2,7 = 2, and ¢ = 1.5 in all experiments.

4.2. Validation of the Parts in Our Model

There are four main components in our model: structural similarity-enhanced supervoxel
over-segmentation; deep SSAE feature learning; within-class neighborhood preserving-induced
C-SVC and MIMO &-SVR. To verify their roles in our model, we replaced each component into a
state-of-the-art model and built five compared methods: (1) our model with SLIC that replaces our
supervoxel over-segmentation; (2) our model with intensity feature that replaces SSAE learned feature;
(3) our model with Softmax classifier that replaces the proposed classifier; (4) our model with C-SVM
that replaces the proposed classifier; (5) our model with linear regression [8,9] that replaces the
proposed regressor.

In order to objectively measure the performance of these five variations, the false positive rate and
true positive rate of the detection results derived by different versions were calculated, by sweeping a
threshold from 0 to 1 over the final classification output. The averaged results over them are plotted
as receiver operating characteristics (ROC) curves in Figure 7. It is seen that our method with these
components achieves the best performance. Also, when the within-class neighborhood preserved
C-SVC is replaced by the standard C-SVM, the performance are better than those by the Softmax
classifier. Furthermore, the over-segmentation and feature extraction methods are also essential for
improving the overall accuracy. If the supervoxels were generated with SLIC, or only the intensity
feature was adopted, the ROC curves increase much slower than others.

Table 1 shows the performances of different versions in detecting the myocardium. It shows
that the proposed method achieves competitive results: the mean F1, Tpr, Ppv, and AUC are 0.924,
0.936, 0.916, and 0.891, respectively, remarkably higher than the proposed method with other modules.
Statistical analysis shows that the performance of the proposed method is significantly higher with the
SLIC, intensity, Softmax, and linear regression versions (in the level p < 0.05).
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Figure 7. Receiver operating characteristics (ROC) curves of the proposed method with different modules.

Table 1. Performances (average + standard deviation) of variations of our method.

Metric Proposed Method Proposed Method Proposed Method Proposed Method Proposed Method Proposed Method
with All Terms with SLIC with Intensity Feature with Softmax with C-SVM with Linear Regression
F1 0.924 + 0.034 0.852 4 0.036 0.861 + 0.038 0.878 + 0.042 0.904 + 0.035 0.898 + 0.044
Tpr 0.936 + 0.037 0.867 4 0.048 0.884 + 0.042 0.894 + 0.040 0.915 + 0.036 0.890 + 0.038
Ppv 0.916 4 0.028 0.838 4 0.032 0.847 + 0.037 0.866 + 0.042 0.894 + 0.039 0.885 + 0.046
Area under ROC (AUC) 0.891 + 0.031 0.824 + 0.026 0.838 =+ 0.032 0.851 + 0.024 0.857 =+ 0.030 0.862 =+ 0.033

Figure 8 shows the detection results of different versions on three randomly selected cardiac MRI
images in the test set, where red rectangles denote ground-truth and yellow ones denote results by
compared methods. The larger overlapping means the corresponding method is better. As can be seen
from the figure, our overall detection model is more robust, and the detection model based on C-SVM
also achieves competitive results, which also demonstrates the strong ability of SSAE to learn the deep
feature for classification, it can effectively distinguish different category of samples, thereby reducing
the requirements of the follow-up classifiers.

Figure 8. Detection results of our model with different parts, where red rectangles denote ground-truth

and yellow ones denote results by compared methods. Each row from left to right: Our model; our
model with SLIC; our model with intensity; our model with Softmax; our model with C-SVM; our
model with linear regression, respectively.
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4.3. Comparison with Related Methods

In this subsection, we carried out a comparative study between the proposed method and the
state-of-the-art ones for the detection of myocardium over the cardiac datasets. Since the detection is
based on the framework of region proposal and classification, such comparative study will help further
explain its characteristic reported in the last section. To this end, five representative detection methods
were selected: enhanced cascade detector (BCD) [6], RCNN [8], Faster RCNN [9], YOLOv3 [10,21], and
a single-shot refinement neural network (RefineDet) [23].

BCD [6] is a well-known detection algorithm that was originally used in face detection and it trains
the cascade AdaBoost to classify the regions that are generated by sliding windows and represented
by Haar-like features. We took it as a representative of traditional detection methods.

RCNN [8] is a typical region proposal based convolutional neural network for object detection.
This method firstly applies selective search method to generate around 2000 category-independent
region proposals, then the features of each region proposal are extracted by a pre-trained convolutional
model, finally the top-level features are classified by linear SVM. Faster RCNN [9] brings major
improvements to traditional CNN by designing a region proposal network that extracts candidate
areas instead of wasting time on selective search, which significantly accelerates the detection. On the
other side, YOLOv3 [21] is an improved version of the state-of-the-art, real-time YOLOv2 [10] that
applies a single neural network to the full image. The network divides the image into regions and
predicts bounding boxes and probabilities for each region. These bounding boxes are weighted by the
predicted probabilities. We take it as a representative of region proposal independent neural network
detection method. RefineDet [23] is a recent single-shot based detector that consists of the anchor
refinement module and object detection module to achieve better accuracy than two-stage methods
and maintains comparable efficiency of one-stage methods. We took the RefineDet320+ and VGG-16
net as the training model.

The average results over the compared methods are plotted as receiver operating characteristics
(ROC) curves in Figure 9. It can be seen that our method consistently outperforms its competitors
RCNN and Faster RCNN and it is also competitive to recent advancements YOLOv3 and RefineDet.
Overall it achieves the best performance, while BCD is the worst among these methods. Furthermore,
Faster RCNN performs similar to our method and outperforms RCNN.
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Figure 9. Receiver operating characteristics (ROC) curves of the compared methods.
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The average accuracies of the detection based on the six methods are shown in Table 2. It can be
seen from the table that the accuracy of the proposed algorithm is superior to that of the other five
algorithms, the worst performance is BCD and Faster RCNN obtains the best accuracy among the
convolutional neural network based methods.

Table 2. Performances (average + standard deviation) of six compared methods.

Metric Proposed Method BCD RCNN Faster RCNN YOLOvV3 RefineDet
F1 0.924 4 0.034 0.801 = 0.092 0.870 4 0.061 0.896 =+ 0.058 0.878 + 0.065 0.914 + 0.046
Tpr 0.936 4 0.037 0.805 =+ 0.097 0.877 4 0.062 0.908 =+ 0.056 0.892 + 0.062 0.918 + 0.041
Ppov 0.916 £ 0.028 0.798 £ 0.103 0.863 4 0.069 0.874 + 0.062 0.862 + 0.060 0.898 + 0.045
Area under ROC (AUC) 0.891 = 0.031 0.798 4 0.026 0.858 4 0.037 0.872 4 0.025 0.870 + 0.032 0.875 + 0.036

Figure 10 shows the detection results of three randomly selected images in the testing set. In each
row, red rectangles denote ground-truth and yellow ones denote results by compared methods.
The values on the top of the bounding box is the maximal probability outputs by each method.
The results show that our method can detect various myocardium with high quality, in most cases,
the overlap between the detection of the final results and the target real area is higher, which is benefited
from the combined candidate region generation, classification and regression algorithm. Faster RCNN
and RefineDet also performs well in these images, except some small difference in overlapping.
YOLOv3 also locates the accurate object in most images, but was disturbed by complicated surrounding
tissues. In comparison, BCD is the worst detector and most resulting locations are low quality.

Figure 10. Examples of detection results, where red rectangles denote ground-truth and yellow ones
denote results by compared methods. Each row from left to right: Our model; BCD; RCNN; Faster
RCNN; YOLOV3, and RefineDet, respectively.

4.4. Discussion

4.4.1. Detection Performance

With regard to myocardium detection performance, the F1 and AUC measures indicate our
method achieves a higher performance than previous studies using hand-crafted features such as the
HOG or intensity in BCD method. They also tell that it is necessary to design a specific detection
model towards a specific medical object. As we know, RCNN, Faster RCNN, YOLOv3, and RefineDet
are state-of-the-arts in object detection, however, they are designed for general multiple objects
detection and their advantages aren’t thoroughly embodied for myocardium detection in our task.
The F1, Tpr, Ppv, AUC measures of our method are higher 1.0%, 1.8%, 1.8%, 1.6% than the best of
these methods (RefineDet). Statistical analysis show that these four metrics of our method significantly
outperforms Faster RCNN (in the level p < 0.05). The AUC and Ppv of our model significantly
outperforms Fast YOLOv3 and RefineDet (in the level p < 0.05).
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Our results indicate the strong classifiers such as C-SVM are helpful for achieving higher performance
than Softmax. In our proposed C-SVM classifier detection model, SSAE and C-SVM training were carried
out independently, that is, we first conducted SSAE unsupervised training, and then used the learned
features to train the proposed C-SVM classifier. According to Softmax classifier, SSAE and Softmax
training can be combined to form a whole part, that is, we first conducted SSAE unsupervised
pre-training, and then connected SSAE and Softmax. The classification error of Softmax can be
propagated back to SSAE, and the detection effect based on Softmax classifier is logically consistent.
However, as pointed by RCNN [8], Softmax does not outperform SVM for classifying objects. Our
experimental results also support this conclusion. Nevertheless, it is necessary to use the loss function
of SVM to design error back propagation approach to the SSAE network in our next work.

With regard to region detection, although the myocardium is an ellipsoid-like tissue, the
two-dimensional image of the myocardium varies in size and shape due to variations in motion
and acquisition. For this reason, using only a single fixed-sized window is insufficient to detect
myocardium regions with various shapes. Although a fixed-sized window has been used in RCNN,
the detected myocardium is resized by a fixed-sized bounding box, regardless of its shape. On the
other hand, our approach similarly feeds a fixed-sized window to SSAE network; however, inside
SSAE, varying bounding boxes are possibly more suitable for the shape of myocardium by scanning
the input image with multiple supervoxels with different scales and aspect ratios. To make use of
SSAE, we set a slightly larger window to include multiple myocardium and background in the four
corners. This was not optimal because SSAE learns the region of myocardium and background at the
same time, and it is better to exclude various backgrounds in an input image to learn positive regions.
This will be further investigated in our future work.

Furthermore, the structure prior information hidden in medical images is useful for accurate
myocardium detection. For example, we proposed the structure similarity induced supervoxel instead
of simple intensity similarity based supervoxel; we also proposed to incorporate the within-class
neighborhood preserved scatter matrix to standard C-SVM classifier, which remarkably improves the
overall performance of our model. As we can find from the first experiment that evaluated the major
parts of our model, the consideration of structure prior information enhanced the distinctiveness of
myocardium object from the complex background.

The detection model provides a good detection effect for most of the heart MRI images in the CAP
data set, but there are still some failures in our experiments. Figure 11 presents some error detection.
For the sake of comparison, two images of each column in the figure come from the same patient’s
heart MRI image sequence, which shows that the place where false detection occurred. The errors
mainly appear at the head and tail of the heart image sequence. At these places, the sizes of the left
ventricle tissue are very small, the shapes are not obvious, and the right ventricle occurred with more
adhesion to left ventricle. When the left ventricle with the normal form (as shown in the first line),
the accuracy of outer frame is almost the same as that of the real bounding box.

Figure 11. Examples of failure detection results by our method, where red rectangles denote

ground-truth and yellow ones denote our results.

4.4.2. Processing Speed

The four parts, i.e., the supervoxel-based region proposal, the SSAE feature learning, and the
within-class neighborhood preserved C-SVM, and &-SVR, in our model took different time in training.
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Compared with thirteen minutes to train the SVM model and one minute to generate region proposals,
the SSAE took much longer time and it took about three hours. Because our approach feeds relatively
large-size images to SSAE, it requires the number of mini-batches to be reduced to one because of the
size of the GPU memory, leading to a slow learning rate for stable learning. Therefore, it is necessary
to increase the number of iterations to train the network sufficiently. Fortunately, our SSAE is not
a deeper structure that contributes to the long training time, like the VGG-16 in some CNN based
models. Once the training is finished, our model averagely took less than one minute to extract the
myocardium from a cardiac image with the trained model. This performance seems to be comparable
in medical applications. This high-throughput approach may have some advantages in practical usage
in hospitals and laboratories to assist pathologists in their daily tasks.

4.4.3. Limitations of the Work

There are several limitations that need to be addressed. Firstly, this work, like most neural
network-based cardiac MR image analysis studies [4,29,30], suffers from the restriction of available
ground truth data to a limited number of cardiovascular disease diagnoses, such as pulmonary
hypertension, congenital heart disease, coronary heart disease, and dysplasia. Therefore, results of
this study can only show performance on limited set of patients. The number ot layers in SSAE
learning was also restricted. Besides, currently available data largely consists of short-axis image
where boundaries between the blood pool and myocardium are more or less clearly visible. More
challenging image such as long-axis image with large spatial interval sampling are not part of the
current sets and should be researched on in future work.

More importantly, this study focused on the relation of left ventricle and its myocardium, and
didn’t consider the relation of other cardiac structures (such as right ventricle and its myocardium, left
atrium, right atrium). In fact, these structures have strong anatomical prior that can guide the accurate
localization of myocardium and left ventricle. Future studies may gain insight from the recent advance
on the CNN-based relation modeling among detected objects [18], the CNN-based iterative localization
refinement [19], and explore the multiple objects detection by extending the proposed framework.

5. Conclusions

In cardiac MR image analysis, left ventricle and myocardium detection is often used as a
prerequisite step, which plays a key role in the successive steps such as image registration and
segmentation. This paper has presented a new efficient detection approach to myocardium structures
in cardiac MR images through an enhanced region proposal-based model. The model first proposed a
structural similarity-enhanced supervoxel over-segmentation and hierarchical clustering approach
to extract candidate regions; then, the deep features were learned by SSAE network; furthermore,
the learned features are classified by a within-class neighborhood preserved C-SVC, and during
the refinement, the bounding boxes are adjusted by a multiple-intput multiple-output within-class
neighborhood preserved e-SVR regression and hard negative sample mining technique. Different
parts in our model were also tested and prediction accuracies validated the advantage of proposed
integration. Furthermore, comparative experiments demonstrated that the proposed model achieved a
better detection accuracy on the publicly available dataset. The model does not require a large amount
of training data and learns from coarsely annotated volumetric images (bounding-box masks). It can
be potentially extended to similar object detection in other medical MR images.
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