
sensors

Article

Simulating Dynamic Driving Behavior in Simulation
Test for Unmanned Vehicles via Multi-Sensor Data

Danchen Zhao 1 , Yaochen Li 2 and Yuehu Liu 1,*
1 Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University, No. 28 Xianning West Road,

Xi’an 710049, Shaanxi, China; danchenzhao@foxmail.com
2 School of Software Engineering, Xi’an Jiaotong University, No. 28 Xianning West Road,

Xi’an 710049, Shaanxi, China; yaochenli@mail.xjtu.edu.cn
* Correspondence: liuyh@mail.xjtu.edu.cn; Tel.: +86-029-8266-8802 (ext. 8009)

Received: 25 February 2019; Accepted: 3 April 2019; Published: 8 April 2019
����������
�������

Abstract: Driving behavior is the main basis for evaluating the performance of an unmanned vehicle.
In simulation tests of unmanned vehicles, in order for simulation results to be approximated to the
actual results as much as possible, model of driving behaviors must be able to exhibit actual motion
of unmanned vehicles. We propose an automatic approach of simulating dynamic driving behaviors
of vehicles in traffic scene represented by image sequences. The spatial topological attributes and
appearance attributes of virtual vehicles are computed separately according to the constraint of
geometric consistency of sparse 3D space organized by image sequence. To achieve this goal, we need
to solve three main problems: Registration of vehicle in a 3D space of road environment, vehicle’s
image observed from corresponding viewpoint in the road scene, and consistency of the vehicle and
the road environment. After the proposed method was embedded in a scene browser, a typical traffic
scene including the intersections was chosen for a virtual vehicle to execute the driving tasks of lane
change, overtaking, slowing down and stop, right turn, and U-turn. The experimental results show
that different driving behaviors of vehicles in typical traffic scene can be exhibited smoothly and
realistically. Our method can also be used for generating simulation data of traffic scenes that are
difficult to collect.

Keywords: simulation test; dynamic driving behavior; traffic scene augmentation; corridor model

1. Introduction

Evaluation of the intelligence level and comprehensive performance of unmanned vehicles turns
to ontology and phenomenology. According to Turing [1], a system could be said to be intelligent
enough for special kind of tasks if, and only if, it could finish all the possible tasks of its kind. Therefore,
we can begin to achieve safe and reliable artificial intelligence (AI) systems if, and only if, the tests
have clear definitions of tasks and efficient methods to generate abundant data for tests. As a result,
appropriate AI testing methods should be task-driven and data-centric [2].

Driving behavior is the main basis for evaluating the performance of unmanned vehicles. Testing
the driving behaviors of unmanned vehicles is an important means of giving scientific and just
evaluation of the research quality of key technologies such as environment perception, control, and
decision [3]. Unmanned vehicles should be tested in a typical traffic environment including static,
dynamic, and uncertain factors such as urban roads, highway, and rural roads.

The most authoritative way to test and verify unmanned vehicles is by testing on the real road.
For this purpose, competitions are held all over the world, such as DARPA-Urban Challenge in the
US and the Future Challenge in China. However, this kind of test method is faced with difficulties
such as limitation of test site, unrepeatable test condition, time-consuming, and high-cost procedure.
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Additionally, the actual testing environment may not be accessible, or may only be accessible at certain
times while the simulated environment is always available [4]. Therefore, there is a growing trend in
unmanned vehicle research to use a simulated environment and several simulation and test platform
(STP) are established. But most of them use virtual data instead of real data collected from actual
world which will reduce the reliability of the simulation result. The comparison of three test methods
based on different data types is shown in Table 1.

Table 1. Comparison of test methods based on three kinds of data types.

Field Test 3D CG Simulation Real Multi-Sensor Data

Time and labor cost High Low Low
Security Low High High

Repeatable test scene No Yes Yes
Repeatable test result No Yes Yes
Environment reality Real Simulation Real

Modifiable environment Hard Easy Easy

Typical Scene
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Figure 1. Simulation of driving behaviors with image sequences collected from real road environment. 

However, there are quite a few challenges for us to achieve this goal. One is the modeling of 

virtual vehicles. For “traditional” computer graphics, recent advances in material modeling and 

global illumination have facilitated the synthesis of realistic and detailed imagery. But it needs 

painstaking work for the actual visual world, which is very complicated. Each object to be rendered 

requires lots of work to give surface properties and detailed geometry. Though we can use many 

image-based approaches to build the model, the data is not acquired straightforward and the 

methods are not suitable for our relatively large and moving vehicles. Another one is the spatial 

topology relationship between the virtual vehicles and the road environment. The scene for testing 

the unmanned vehicles is an image sequence containing spatial topology information. Virtual 

vehicles have spatial topology attributes, i.e., virtual vehicles should be consistent with reference 

scene in both appearance and spatial topology relationship. 

Encouragingly, we have proposed a simple and effective approach which can exhibit typical 

dynamic driving behaviors smoothly and realistically. 
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Faced with these limitations, we try to explore ways to realistically simulate and exhibit typical
driving behaviors of vehicles with real data of traffic environment in simulation test of unmanned
vehicles, as shown in Figure 1. We use the real multi-sensor data captured from the real traffic
environment and augment the traffic scene with vehicles in different driving behaviors.
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Figure 1. Simulation of driving behaviors with image sequences collected from real road environment.

However, there are quite a few challenges for us to achieve this goal. One is the modeling of
virtual vehicles. For “traditional” computer graphics, recent advances in material modeling and global
illumination have facilitated the synthesis of realistic and detailed imagery. But it needs painstaking
work for the actual visual world, which is very complicated. Each object to be rendered requires lots
of work to give surface properties and detailed geometry. Though we can use many image-based
approaches to build the model, the data is not acquired straightforward and the methods are not
suitable for our relatively large and moving vehicles. Another one is the spatial topology relationship
between the virtual vehicles and the road environment. The scene for testing the unmanned vehicles is
an image sequence containing spatial topology information. Virtual vehicles have spatial topology
attributes, i.e., virtual vehicles should be consistent with reference scene in both appearance and spatial
topology relationship.

Encouragingly, we have proposed a simple and effective approach which can exhibit typical
dynamic driving behaviors smoothly and realistically.
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2. Overview

As part of our work on parallel testing of vehicle intelligence [2], we propose an automatic
approach of simulating dynamic driving behaviors of vehicles. The spatial topological attributes
and appearance attributes of virtual vehicles are computed separately according to the constraint of
geometric consistency of sparse 3D space organized by image sequences.

There are three critical elements for us to solve our task:
Typical Traffic Scene: Unmanned vehicles should be tested in a typical traffic environment including

static, dynamic, and uncertain factors such as urban roads, highways, and rural roads. We analyze
test tasks and scoring criteria of DARPA-Urban Challenge and the Future Challenge. Then, a typical
traffic scene including the intersections is chosen for virtual vehicles to execute the driving tasks of
lane change, overtaking, slowing down and stop, right turn, and U-Turn.

3D Road Environment Representation: Road scene simulation and modeling based on vehicle sensors
are currently an important research topic in the field of intelligent transportation systems [5–8]. Most
current image compositing approaches treat 3D road environment representation as a 2D problem,
such as Photoshop. As described by Lalonde et al. [9], we agree with their point of view that any image
manipulation must be done in the 3D space of the scene, not in the 2D space of the image. But it is a
pity that Lalonde et al. did not precisely define and describe that 3D space of scene. We believe that the
three-dimensional road environment is a data field containing image data, spatial topology data, and
motion data. Generated novel scene video visualizes these data. As shown in Figure 2, the reference
road scene is represented by a sparse ordered image sequence containing data of real filming location
of viewpoints. Recent advances in camera calibration, 3D registration, and scene reconstruction have
allowed the synthesis of not only images and videos, but also the data of spatial topology. In this paper,
we use the GPS coordinates of both viewpoint and virtual vehicles to compute the transformation
parameters and open-source software OSM2World to transform a map description exported from
OpenStreetMap into a mesh model of road surface. To restrict the motion range of virtual vehicle to
the road area and simplify coordinate transformation, we defined a “corridor model” and applied
triangle collision detection based on Irrlicht engine [10–12].
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Figure 2. Representation of reference road scene using sparse ordered image sequence containing data
of real filming location of viewpoints.

Geometric consistency of vehicle model and road environment: Humans can easily recognize a
synthesized object when observing an image. What are the criteria for us? One can judge whether
the object should be placed at this location, whether the object should be looked like a side view or a
front view, and whether the size of object is fit, too big, or too small. Then, it is easy to understand
that the main manifestation of the geometric consistency is that the vehicle should have appropriate
position, pose, and size in visualization. In order to solve this problem, we firstly specify the model for
virtual vehicle and road environment. The road environment is organized by image sequences. For
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each image, extrinsic and intrinsic parameters of camera at the corresponding viewpoint are known.
For the virtual vehicle, we combine 3D model with multi-viewpoints corresponding to different
vehicle images.

3. Related Works

Typical traffic scene: Work of designing and building typical traffic scene for unmanned vehicle
tests are being done by researchers. Based road traffic accident data from the years 2000–2010 and
from several aspects such as human, vehicle, road environment, and accident form, Zhou et al. [13]
selected the greatest impacts of traffic safety to make up the typical dynamic traffic event. In their
research, one type of dynamic events in city road scene was selected as a case, which is the conflict
between the main vehicle and pedestrians in front of parking bus when pedestrians crossing street on
the main road in city. In June, researchers at the University of Michigan announced that they are in
the process doing building a fake city center. According to a press release, the fake city center locates
on a 13-hectare plot at the school’s North Campus just outside Ann Arbor. The faux downtown, to
be known as the mobility transformation facility (MTF), will have a four-lane highway, stoplights,
intersections, roundabouts, road signs, a railroad crossing, and construction barrels. The facility’s
designers are also putting up building facades meant to simulate the challenge of transmitting wireless
signals inside urban canyons [14].

Prior scene maker: A survey about internet visual media processing [15] showed a number of
recent papers demonstrated the work on visual content maker. Lalonde et al. [9] presented the photo
clip art system for inserting objects into an image. Users can insert object by specifying a class and
a position for the inserted object, which is selected from a clip art database by matching various
criteria including camera orientation and lighting conditions. However, their research works on
static images rather than continuous dynamic scenario video. Besides, only specific images can be
synthesized. For certain objects, not all the possible appearances are available. Eitz et al. [16] proposed
a PhotoSketcher system with the goal of synthesizing a new image only given user drawn sketches.
The synthesized image is blended from several images, each found using a sketch. However, users
must put additionally scribbles on each retrieved image to segment the desired object. The above
methods are limited to the synthesis of a single image. To achieve synthesis for image sequence (e.g.,
scene video as mentioned before), the main additional challenge is to maintain consistency of the
same vehicle across successive frames, since candidates for all frames usually cannot be found in
the database. Chen et al. [17] proposed the PoseShop system, intended for synthesis of personalized
images and multi-frame comic strips. It first builds a large human pose database by collecting and
automatically segmenting online human images. Personalized images or comic strips are produced
by inputting a 3D human skeleton. Head and clothes swapping techniques are used to overcome the
challenges of consistency. However, the PoseShop system did not work very well on dealing with
the accurate spatial topology relationship between the background scene and synthesized objects so
that geometric consistency criteria can’t be matched. Flagg et al. [18] presented a system for capture,
analysis, synthesis, and control of video-based crowds. They introduced crowd tubes samples and
constraint violations with a conflict graph to avoid collisions. Abdi et al. [19] augmented the traffic
signs to provide visual feedbacks to drivers for an enhanced driving experience. They used a virtual 3D
model, with a known size, to define a reference coordinate system. They projected the 3D object sign
using the corresponding sparse dictionary. Their augmentation is for enhancing driving experience
and lacks of reality. The above researches suggest that efforts in this direction are very timely.

The rest of the paper is organized as follows: The geometric consistency of 3D vehicle model and
road environment is presented in Section 4. In Section 5, the construction of road scene corridor model
and traffic scene augmentation is introduced. Experiments and comparisons are shown in Section 6.
Finally, we close this paper with conclusion and future works.
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4. Geometric Consistency of 3D Vehicle Model and Road Environment

Vehicle images that match geometric consistency criteria can be obtained by three steps. First,
the virtual vehicle should be registered to the 3D road space. Second, the vehicle pose (i.e., vehicle
image) corresponding to different viewpoints is obtained. Finally, we compute the scale factor to give
the vehicle image an appropriate size.

4.1. Registering 3D Vehicle Model to Road Scene

The position of virtual vehicle and image sequence are not always coincident. So, first of all, we
should register the virtual vehicle to a proper position. That is to say, while the real vehicles are at
varying distances from the user, the virtual vehicles are all projected to the same distance.

Techniques of augmented reality [20] contribute to this task. By techniques of 3D registration, we
can obtain the position of virtual vehicle in the image of road scene. First, we should compute the
location of virtual vehicle in road scene. That is, to compute the virtual vehicle’s coordinates in virtual
3D space formed by image sequences.

In the real road environment, the road plane is denoted by x-y plane. Each captured image
combines with a viewpoint’s coordinate P1 = (x1, y1, z1). The coordinate of the virtual vehicle’s center
is P2 = (x2, y2, z2). According to the assumption of x-y plane, z1 is the vertical height of viewpoint to
the road plane while z2 is the vertical height of virtual vehicle’s center to the road plane. Pv = (x, y, z) is
the coordinate of virtual vehicle’s center in the coordinates of virtual 3D road space. Since the z axes of
three coordinates are in parallel with each other, we can get that z=z2-z1. Then, we will compute the x
and y coordinates of Pv.

We assume that the coordinate origins of real road environment, virtual road scene, and vehicle
model are Ow, Os, and Ov respectively. As shown in Figure 3, the angle between ys and yw is θ.
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After the 3D coordinate of virtual vehicle’s center is obtained, we can use it to get the center’s
coordinate in each image. If the coordinate of virtual vehicle’s center in the image is (u, v), and the
projection matrix for 3D to 2D coordinates is P, then we have

 u
v
1

 = P3×4


x
y
z
1

 (3)

where P3×4 = A3×3T3×4. A3×3 is the intrinsic parameters while T3×4 is the extrinsic parameters of the
camera. The intrinsic and extrinsic parameters of the camera can be obtained by trilinear method [21].

4.2. Vehicle Image in Road Scene

Obtaining the image of virtual vehicle in the road scene consists of two parts, the view image and
the scale transformation. The view image shows the virtual vehicle’s pose in real time when the vehicle
is moving in the road scene. Through the scale transformation, the view image can be synthesized
with appropriate size.

4.2.1. The View Image of 3D Vehicle Model

In the 3D vehicle model combined with multi-viewpoints, the distance between the viewpoint and
the center of virtual vehicle varies with different viewpoints. For ease of management, we normalize
all the viewpoints onto a spherical surface. The center of sphere coincides with the center of virtual
vehicle. The spherical radius is R. Figure 4 shows the normalized viewpoint sphere. Each viewpoint
lies on the sphere equidistant from the center is denoted by two variables, that is PN = (γ1, γ2).

Sensors 2019, 19, x FOR PEER REVIEW 6 of 15 

 

4.2. Vehicle Image in Road Scene 

Obtaining the image of virtual vehicle in the road scene consists of two parts, the view image 

and the scale transformation. The view image shows the virtual vehicle’s pose in real time when the 

vehicle is moving in the road scene. Through the scale transformation, the view image can be 

synthesized with appropriate size. 

4.2.1. The View Image of 3D Vehicle Model 

In the 3D vehicle model combined with multi-viewpoints, the distance between the viewpoint 

and the center of virtual vehicle varies with different viewpoints. For ease of management, we 

normalize all the viewpoints onto a spherical surface. The center of sphere coincides with the center 

of virtual vehicle. The spherical radius is R. Figure 4 shows the normalized viewpoint sphere. Each 

viewpoint lies on the sphere equidistant from the center is denoted by two variables, that is PN = (γ1, 

γ2). 

Z

X

Y

Virtual Vehicle

Horizontal
Plane

O

Viewpoint

Corresponding
Vehicle Image

x

y

z

γ1

γ2

PN

P’N

R

O

viewpoint

 

Figure 4. 3D vehicle model combined with multi-viewpoints. 

When γ1 and γ2 are known, the view image corresponding to the viewpoint can be retrieved. 

That is to say, all the view images of virtual vehicle can be indexed by two variables. As described 

above, the coordinates of viewpoint and virtual vehicle are P1 = (x1, y1, z1) and P2 = (x2, y2, z2) in real 

road environment respectively. If the unit vector of the y axis of vehicle model in real traffic 

environment is (vi, vj), we can obtain 

1 2

1

2 1

arctan arctan i

j

vy y

x x v


−
= −

−
 (4) 

1 2

2
2 2

1 2 1 2

arctan
( ) ( )

z z

x x y y


−
=

− + −
. (5) 

4.2.2. Scale Transformation 

After the view image of virtual vehicle is retrieved, we transform its scale to make it fit the scene 

with appropriate size. The normalized views have the same scale. Based on the model in Figure 4, if 

PN is definite, the sight line of viewpoint Ps in virtual road space coincides with that of the viewpoint 

lies on normalized spherical surface (i.e., OPN). Based on principle of pin-hole imaging, the sight lines 

are coincided as that is shown in Figure 5. 

For the viewpoint lying on normalized spherical surface (i.e., PN), the focal length of camera is 

f1, and the size of vehicle image is h1. The distance from PN to the center of vehicle is r1. For the 

viewpoint (i.e., Ps) in virtual road space, the focal length of camera is f2, and the size of vehicle image 

is h2. The distance from Ps to the center of vehicle is r2. Then we can easily get 

Figure 4. 3D vehicle model combined with multi-viewpoints.

When γ1 and γ2 are known, the view image corresponding to the viewpoint can be retrieved.
That is to say, all the view images of virtual vehicle can be indexed by two variables. As described
above, the coordinates of viewpoint and virtual vehicle are P1 = (x1, y1, z1) and P2 = (x2, y2, z2) in
real road environment respectively. If the unit vector of the y axis of vehicle model in real traffic
environment is (vi, vj), we can obtain

γ1 = arctan
y1 − y2

x2 − x1
− arctan

vi
vj

(4)

γ2 = arctan
z1 − z2√

(x1 − x2)
2 + (y1 − y2)

2
. (5)
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4.2.2. Scale Transformation

After the view image of virtual vehicle is retrieved, we transform its scale to make it fit the scene
with appropriate size. The normalized views have the same scale. Based on the model in Figure 4, if
PN is definite, the sight line of viewpoint Ps in virtual road space coincides with that of the viewpoint
lies on normalized spherical surface (i.e., OPN). Based on principle of pin-hole imaging, the sight lines
are coincided as that is shown in Figure 5.
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Figure 5. View space of vehicle model computation with scale factor using pin-hole model. (a) Pin-hole
model at the viewpoint of PN which lies on normalized spherical surface; (b) pin-hole model at the
viewpoint of Ps which is in the 3D space of road scene; (c) overlapping the optical axis in (a) and (b),
the scaling relation is clear.

For the viewpoint lying on normalized spherical surface (i.e., PN), the focal length of camera is f 1,
and the size of vehicle image is h1. The distance from PN to the center of vehicle is r1. For the viewpoint
(i.e., Ps) in virtual road space, the focal length of camera is f 2, and the size of vehicle image is h2. The
distance from Ps to the center of vehicle is r2. Then we can easily get

h2 =
r1 f2

r2 f1
h1, (6)

where r =
√

x2 + y2 + z2.
So the scale factor is r1 f 2/(r2 f 1).

5. Visual Simulation of Driving Behaviors

In the traffic scene, both static traffic elements that can influence scene semantics such as traffic
signs and the subject of traffic flow (vehicle) need explicit geometric description of the road surface to
support their structures and motion. On the basis of obtained trail of viewpoint locations corresponding
to image sequences, GIS data of the road can be obtained by GIS (geographic information system)
or open-source map such as OpenStreetMap [22]. In GIS data, different layers are used to represent
the geographical characteristics. A road is represented by a polyline formed by a set of points of
geographical locations. In addition, road attributes can be described by parameters such as name, road
type, width, and number of lanes.

In practical work, in order to improve efficiency of modeling, we use open-source software
OSM2World to transform map description exported from OpenStreetMap into mesh model of road
surface, shown in Figure 6.
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Figure 6. Three kinds of road model built from geographic information system (GIS) data. (a) Roads
with details such as lanes and intersections; (b) roads in a region (data captured from suburb of Xi’an,
China); (c) model with information besides of road (data captured from Xi’an Jiaotong University,
Xi’an, China).

The method in Section 4 and Reference [7] is a pervasive vehicle synthesis method for augmented
traffic scene. However, without constraint of road space structure, the synthetic vehicle may appear at
illogical location in the road scene, shown in Figure 7. Thus, we propose a logical model named as
“corridor model” to restrict the motion range of virtual vehicles.
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5.1. Corridor Model Construction

The 3D road space above the road surface is essential for the motion of traffic elements such as
vehicles and pedestrians. Leaving out trees, architectures, nature features, and other traffic elements,
the real road surface area can be regarded as a ribbon. Boundary control points define the left boundary
wall and the right boundary wall. The road ribbon together with left and right boundary walls makes
up a 3D space extends infinitely forward. We define this logical model of road geometric space as
“corridor model”, which is shown in Figure 8.
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The corridor model is defined as

C = (Lbottom, Lleft, Lright), (7)

where Lbottom is the road plane, Lleft is the left boundary wall, and Lright is the right boundary wall.
The road geometric space based on corridor model (shown in Figure 9) can be implemented by

the following steps.

• After the road section is assigned, OSMParser analyses the GIS data to obtain sequence of road
center points, lane width, and lane number.

• Sequences of the left boundary and right boundary (LeftVertices[] and RightVertices[]) are figured
out through calRoadArea using the data obtained from last step.

• Index of triangle meshes Indices[] is set based on the rendering rules of triangle mesh in computer
graphics. Indices[i] records coordinates of three vertexes.

• Sequences of boundary points are connected to adjoint triangle meshes which form the
road surface.

• Moving road boundary points through the Y axis, we obtain other two sequences of boundary
points. The boundary walls in corridor model can be rendered using these two sequences.
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5.2. Boundary Restraint

The 3D road geometric space is used to restrict the motion range of traffic elements to be in the
operating area. Irrlicht engine provides three methods of collision detection respectively based on
ellipsoidal bounding box, triangle, and octree. We choose triangle collision detection to achieve our
goal. The scene manager builds a triangle picker to judge whether the ray intersects with the plane of
triangle mesh. Then, the triangle picker binds to the scene node waiting for collision detection. For
example, when the vehicle moving in the road geometric space collides with the boundary, collision
response animator controls the vehicle to response to the collision, so that the vehicle keeps moving on
the road surface. Figure 10 shows the results of collision detection of the boundary wall and road.

5.3. Registration and Augmentation of Road Scene Data

The perception data of road environment is the data captured by the vehicle sensors, including
road scene videos, location information captured by GPS, and pose information from inertial
navigation, etc. When existed road scene videos are used for augmentation, no new real-time data is
available from the road scene. Thus, we transform the coordinate system of existed perception data
to the coordinate system of virtual road space to avoid frequent coordinate transformation between
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the real world and virtual world. The virtual world uses ENU coordinate system. The transformation
relationship can be expressed as

CENU = RSTCe, (8)

where Ce is the coordinates in real world, CENU is the coordinates in ENU coordinate system, R is the
rotation matrix, S is the scaling matrix, and T is the translation matrix.
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boundary wall; (b) the black area shows the collision with road surface.

After the transformation and registration, virtual camera is one-to-one correspondence to real
camera. In the virtual road scene, virtual camera moves through the path of the real camera. Each
recorded viewpoint has corresponding road scene image. Then, the virtual vehicle is synthesized to
the road scene image, shown in Figure 11.
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6. Experiments

6.1. Dataset of Vehicle Image

Since the acquisition of vehicle image in all viewpoints is unavailable, we discretely capture the
image of unmanned vehicle at different viewpoints, as shown in Figure 12. We chose a large square
plane without occlusion. The camera moved through a circle centered at the center point of vehicle.
The distance between the camera and center of vehicle is 8 m. The height of camera above the ground
is 1.8 m, which is the same as the height of camera capturing real road scene videos. We captured
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one image every other 1◦, and obtained a set of 359 images in all. Each image is 2048 × 1536 pixels.
Subsequently, we removed the background and rendered shadows manually to obtain a new set of
vehicle images in different viewpoints. The new set of vehicle images is indexed by γ1 and γ2. The
index is organized in the form of hash table to achieve quick load of vehicle images.
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Figure 12. Collection solution of real vehicle images.

However, the images we captured are not enough. When the virtual vehicle moves to different
angles, the vehicle image switches abruptly. To solve this problem, we need more vehicle images in
other viewpoints. For the vehicle images that have not been captured, we generate them by view
interpolation [23] and the result is shown in Figure 13.
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Figure 13. Vehicle image interpolation. (a) Image captured at 22◦; (b) image captured at 24◦; (c) image
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6.2. Miniature Controllable Environment

We design a miniature scene to verify the reasonability and accuracy of our approach. This is
because the advantages of using miniature scene are more controllable than large scene. Besides, most
of the current research does not deal with comparisons between real-world images and synthesized
scenes. The miniature scene can provide us quantitative data to evaluate the approaches. The
coordinates, orientation, and size computed by real location data would be compared with those that
are obtained directly from the real image. If these two types of data can match well, then the approach
is effective.

As shown in Figure 14, a piece of graph paper in the size of A0 and printed with a chessboard
pattern for calibration was laid on a plane to record real locations. The mesh area in the graph paper is
75 cm × 105 cm. Then, the camera was calibrated. It should be noted that the auto-focusing function
of the camera should be shut down to keep the intrinsic parameters of camera in constant. The camera
was kept still while a car model with model-to-real scale of 1:18 moving step by step. So, the motion
area of the miniature environment is equal to the real road area of 13.5 m × 18.9 m. The chessboard on
the back of car model is used to obtain the orientation of car model from the original image.
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of the current research does not deal with comparisons between real-world images and synthesized 

scenes. The miniature scene can provide us quantitative data to evaluate the approaches. The 

coordinates, orientation, and size computed by real location data would be compared with those that 

are obtained directly from the real image. If these two types of data can match well, then the approach 

is effective. 

As shown in Figure 14, a piece of graph paper in the size of A0 and printed with a chessboard 

pattern for calibration was laid on a plane to record real locations. The mesh area in the graph paper 

is 75 cm × 105 cm. Then, the camera was calibrated. It should be noted that the auto-focusing function 

of the camera should be shut down to keep the intrinsic parameters of camera in constant. The camera 

was kept still while a car model with model-to-real scale of 1:18 moving step by step. So, the motion 

area of the miniature environment is equal to the real road area of 13.5 m × 18.9 m. The chessboard 

on the back of car model is used to obtain the orientation of car model from the original image. 
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Figure 14. Miniacture controllable experiment environment.

An image, the new location coordinate and orientation of the car model were recorded after the
car model had been moved to a new place. Thus, we collect 60 groups of images and location data.
The location data is used by our approach to compute relevant parameters. Figures 15 and 16 show
the comparison results of our algorithm and original data.
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Figure 16. Comparison results of our simulation approach and original image data. The first column
shows the trail of vehicle model. The first part of the tail marked with blue dots represent images
numbered 2, 4, 6, 8, and 10 from the image sequence, while the second part represent images numbered
13, 19, 27, 38, and 47. In each group of images, the first row shows the original image and the second
row shows our simulation results.
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6.3. Dynamic Simulation in Scene Browser

For the purpose of further verification of our method, we embed the algorithm in a scene browser
and choose a typical traffic scene including the intersections for virtual vehicle to execute the driving
tasks of lane change, overtaking, slowing down and stop, right turn, and U-turn.

Our experiments were undertaken on a computer with an Intel i5 processor @3.33 GHz and with
16 GB Memory). The experimental data was mostly taken from the TSD-max dataset [24], which was
constructed by the Institute of Artificial Intelligence and Robotics at Xi’an Jiaotong University in China.
The dataset is composed of road images captured from urban roads, rural roads, highways, etc.

The traffic image sequences are formed by frames of videos captured from real road environment.
The fame rate of the video is 24 fps. When we collect the videos of real road environment, we get the
GPS data at the same time. However, GPS data only record the ground and lacks the height information.
The height of viewpoint is manually measured. In our experiment, the height of viewpoint is 1.8 m.
The height of virtual vehicle’s center related to the type of vehicle. Thus, GPS data and height data
provide the coordinates of virtual vehicle’s center and that of viewpoint corresponding to each image.
Applying the algorithm and method mentioned in Sections 4 and 5, we synthesized and augmented
the real road scene video, as shown in Figure 17. The computing time is less than 2 ms. The rendering
time is about 17 ms. The all process time is about 28 ms. Since the video frame rate is 24 fps, the
all process time can meet the real-time requirement. The motion of augmented vehicle is smooth
and realistic.Sensors 2019, 19, x FOR PEER REVIEW 13 of 15 
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7. Conclusions and Future Work

In this paper, we propose a simple and effective approach of simulating dynamic driving behaviors
in the traffic scene organized by image sequences collected from real road environment. In order to
obtain the geometric consistency of 3D vehicle model and road environment, we use GPS data to
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accomplish the registration, obtaining vehicle pose and scale transformation. A logical model named
as “corridor model” is defined to restrict the motion range of virtual vehicles. The experimental
results verify good performance of our method on simulation of dynamic driving behaviors in typical
traffic scenes.

For further work, we will build a more complete simulation system with the function of editing
traffic scene freely and easy to use. For example, light and weather condition impacts the performance
of visual task for unmanned vehicles. Some detectors based on machine learning, such as CNN-based
detectors, highly rely on data augmentation techniques to stimulate performance; training detectors
with both day and night images are necessary so as to make them more general. In future, we will
generate image data in different light and weather condition via generative adversarial networks for
varied scenes.
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