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Abstract: There is a large body of literature on solving the SLAM problem for various autonomous
vehicle applications. A substantial part of the solutions is formulated based on using statistical (mainly
Bayesian) filters such as Kalman filter and its extended version. In such solutions, the measurements
are commonly some point features or detections collected by the sensor(s) on board the autonomous
vehicle. With the increasing utilization of scanners with common autonomous cars, and availability
of 3D point clouds in real-time and at fast rates, it is now possible to use more sophisticated features
extracted from the point clouds for filtering. This paper presents the idea of using planar features with
multi-object Bayesian filters for SLAM. With Bayesian filters, the first step is prediction, where the
object states are propagated to the next time based on a stochastic transition model. We first present
how such a transition model can be developed, and then propose a solution for state prediction. In the
simulation studies, using a dataset of measurements acquired from real vehicle sensors, we apply the
proposed model to predict the next planar features and vehicle states. The results show reasonable
accuracy and efficiency for statistical filtering-based SLAM applications.

Keywords: simultaneous localization and mapping; planar features; plane parameters; transition
model; Bayesian filters

1. Introduction

Simultaneous Localization and Mapping (SLAM) is often considered as one of the main challenges
in the field of robotics and autonomous vehicles [1,2]. The aim of SLAM is to build a map of an
unknown environment while simultaneously determining the location of the vehicle within this map.
Neither the map nor the vehicle position are known in advance. However, a kinematic model of the
vehicle motion is assumed to be known a priori, and the unknown environment is populated with
artificial or natural landmarks.

There is a large body of literature on solving the SLAM problem for various autonomous
vehicle applications. Many of the solutions are formulated based on using a Bayesian filter that
recursively propagates the distribution of the vehicle’s dynamic states (and sometimes the map
features). Davison [3] proposed a solution based on using Extended Kalman Filters (EKFs) to track
the location of each map feature which was extracted from the sensor measurements. To improve
the accuracy of this method, Thrun et al. [4] proposed the Sparse Extended Information Filter.
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The idea is to optimize the calculations required by the EKF, via taking advantage of sparse matrices.
Montemerlo et al. [5] proposed a Rao-Blackwellised particle filter-based method called FastSLAM.
In this method, the odometry uncertainties are rectified by adding random offsets to the odometry
data for each particle.

In such solutions, to simultaneously estimate both vehicle and landmark locations, the Bayesian
filter needs to employ two models: an observation model, and a motion model. With regards to the
observations, the vehicle must be equipped with a sensor or set of sensors that produce measurements
related to the surrounding landmark locations. The most common examples are LIDAR [6–8], RGB
camera [9–12], RGB-D camera [13,14] and sonar [15] sensors. The sensory measurements usually have
range limitations, and contain measurement noise. The raw measurements are normally processed
further to extract point features. An on-board sensory system on the vehicle is usually in place to
collect the features in real-time.

With the advancement of sensor technology and decreasing cost of LIDAR scanners, the generation
of an adequate 3D point cloud is now possible. A LIDAR works by sending a laser pulse towards an
object and measuring the time it takes to reflect from the object and return to the sensor. Because of
its high accuracy and ease of use, a LIDAR sensor has become a common choice for SLAM purposes.
Having the generated point cloud, it is possible to extract features that are more complex (and convey
more information) than point features. Employing more information-rich features as observations
in a Bayesian filter within a SLAM algorithm can increase the algorithm efficiency and reduce the
computational cost. For example employing planar features instead of 3D points could considerably
enhance the algorithm efficiency, as the number of planes is significantly smaller than the number of
points in a typical 3D point cloud. However, in order to properly use these features in the Bayesian
framework, an appropriate motion model needs to be devised.

In human-inhabited environments, buildings and large facilities are currently almost ubiquitous
and their geometric profiles comprise a large number of plane shapes. Out of all these shapes, the
major ones naturally create “obstacles” or define “edges” beyond which the vehicles cannot protrude,
and these planes can be extracted and employed as features or landmarks in SLAM applications.
Indeed, due to the geometric simplicity of the plane shapes and their abundance in human-inhabited
environments, planar features have attracted increasing attention from both the computer graphics
and robotics community in recent years [16–18]. As for the smaller plane shapes, they may be from the
profiles of small objects or even moving objects such as vehicles. These small planes can be readily
excluded from the set of landmarks by applying a threshold to the dimension of planes.

This paper presents for the first time the idea of using planar features extracted from a 3D point
cloud, instead of point features, for Bayesian SLAM filters. The major contribution of this study lies in
proposing a novel transition model that predicts the parameters of planar features extracted from a
3D point cloud. With Bayesian filters, the first step is prediction, where the object state densities are
propagated to the next time step based on a stochastic transition model (motion model). We present
how such a transition model can be developed, and propose a solution for state prediction. In the
simulation studies, using a dataset of measurements acquired from real vehicle sensors, we apply
the model to predict the planar features at the next time. The results show reasonable accuracy and
efficiency for statistical filtering-based SLAM applications.

The proposed transition model consists of two sub-models: the plane transition model and the
vehicle transition model. The latter one is associated with localization; namely, it predicts the vehicle
states at time k + 1 using the state information at time k. The former one is associated with mapping,
which predicts the feature parameters at time k + 1 based on the feature information at time k as well
as the predicted vehicle states resulting from the latter model. The accuracy and effectiveness of the
proposed transition model are verified using real-world point cloud measurements from the KITTI
dataset [19]. The graphical and numerical simulation results show that the predicted planar features
resulting from the proposed transition model closely match the measured features (i.e., segmented 3D
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planes) at time k + 1, in terms of the plane dimensions (plane area and vertex distance) and the plane
orientation (normal vector).

The rest of the paper is organized as follows. Section 2 provides relevant theoretical background.
Section 3 introduces the details of the proposed transition model which comprises two sub-models:
the plane transition model and the vehicle transition model. Section 4 explains the detailed procedure
for implementation of the proposed transition model. Section 5 provides verification of the proposed
transition model by means of graphical and numerical simulation results. Section 6 concludes the paper.

2. Background

The proposed transition model is mainly designed to be used with a recently developed Random
Finite Set (RFS) based Bayesian filter—the Labeled Multi-Bernoulli (LMB) filter [20]. In this section,
we provide the theoretical background necessary for understanding this filter, followed by a brief
introduction to the KITTI dataset [19] which was used for simulation studies in this work.

2.1. Labeled Multi-Bernoulli Filter

In this section, we introduce the Labeled Multi-Bernoulli (LMB) filter [20]. We adopt the same
notation used in [20] where the single-object states are denoted by lower-case letters, e.g., x, x and
multi-object states by upper-case letters, e.g., X, X. In order to distinguish between labeled and
unlabeled states and their distributions, the labeled one is shown by bolded letters, e.g., x, X, etc.,
spaces by blackboard bold, e.g., X, L, C, etc., and the class of finite subsets of a space X by F (X).
Following [20], throughout the paper, the standard inner product notation is used and denoted by
〈 f , g〉 ,

∫
f (x)g(x)dx, the generalized Kronecker delta is denoted by

δY(X) ,

{
1, if X = Y
0, otherwise

,

and the inclusion function, a generalization of the indicator function, by

1Y(X) ,

{
1, if X ⊆ Y
0, otherwise

.

The LMB RFS is completely described by its components π = {(r(`), p(`)) : ` ∈ L}.
The LMB RFS density is given by π(X) = ∆(X)w(L(X)) [p]X , where p(x, `) = p(`)(x) and w(L) =

∏
i∈L

(
1− r(i)

)
∏
`∈L

1L(`)r(`)

(1−r(`))
comprising a single component [20]. The LMB multi-target Bayes recursion

propagates multi-target posterior density at each time step according to the Chapman–Kolmogorov
and the Bayes rule.

2.1.1. Prediction

Assume that the prior and birth labeled multi-Bernoulli sets are modeled as follows:

π(X) = ∆(X)w(L(X)) [p]X (1)

πB(X) = ∆(X)wB(L(X)) [pB ]
X (2)

where

w(L) = ∏
i∈L

(
1− r(i)

)
∏
`∈L

1L(`)r(`)

1− r(`)
, (3)

wB(L) = ∏
i∈B

(
1− r(i)

B

)
∏
`∈L

1B(`)r
(`)
B

1− r(`)B

, (4)
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p(x, `) = p(`)(x) (5)

pB(x, `) = p(`)
B

(x). (6)

with state space X and label space L+ = B ∪ L and with the condition B ∩ L = ∅. The predicted
multi-object distribution is then a LMB RFS and given by

π+(X) = ∆(X)w+(L(X)) [p+]X (7)

where

w+(I+) = wS(I+ ∩L)wB(I+ ∩B) (8)

wS(L) =
(

1− r(·)ηS(·)
)L( r(·)ηS(·)

1− r(·)ηS(·)

)L

, (9)

ηS(`) = 〈pS(·, `), p(·, `)〉 (10)

p+(x, `) = 1L(`)p+,S(x, `) + 1B(`)pB(x, `) (11)

p+,S(x, `) =
〈pS(·, `) f (x|·, `), p(·, `)〉

ηS(`)
(12)

where pS(·|`) is the survival probability of an object and f (x|·, `) is the single-object transition model.
Thus, if the multi-target posterior density is an LMB RFS with parameter set π = {(r(`), p(`)) : ` ∈ L}
with state space X and label space L and the birth model is also an LMB RFS with parameter set
πB = {(r(`)B , p(`)B ) : ` ∈ B} with state space X and label space B then the predicted multi-target density
is also an LMB RFS with state space X and label space L+ = B∪L(B∩L = ∅) and it is given by

π+ = {(r(`)+,S, p(`)+,S) : ` ∈ L} ∪ {(r(`)B , p(`)B ) : ` ∈ B} (13)

where

r(`)+,S = ηS(`)r
(`), (14)

p(`)+,S =
〈pS(·, `) f (x|·, `), p(·, `)〉

ηS(`)
, (15)

for more details see— [20]—proposition 2.

2.1.2. Update

If the predicted multi-target density is an LMB RFS with parameter set π+ = {(r(`)+ , p(`)+ ) : ` ∈ L+},
the multi-target posterior is then given by

π(·|Z) = {(r(`), p(`)(·)) : ` ∈ L+} (16)

where

r(`) = ∑
(I+ ,θ)∈F (L+)×ΘI+

w(I+ ,θ)(Z)1I+(`), (17)

p(`)(x) =
1

r(`) ∑
(I+ ,θ)∈F (L+)×ΘI+

w(I+ ,θ)(Z)1I+(`)p(θ)(x, `), (18)
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where ΘI+ denotes the space of mapping θ : I+ → {0, 1, . . . , |Z|} and,

w(I+ ,θ)(Z) ∝ w+(I+)
[
η
(θ)
Z

]I+
(19)

p(θ)(x, `|Z) =
p+(x, `)ψZ(x, `; θ)

η
(θ)
Z (`)

, (20)

η
(θ)
Z (`) = 〈p+(·, `), ψZ(·, `; θ)〉, (21)

ψZ(x, `; θ) = δ0(θ(`))qD (x, `)

+ (1− δ0(θ(`)))
pD(x, `)g(zθ(`)|x, `)

κ(zθ(`))
(22)

where, g(z|x) is the single-sensor measurement likelihood, pD (·, `) denotes probability of detection,
qD (·, `) = 1− pD (·, `) is the probability of a missed detection, and κ(·) intensity function of the Poisson
distributed clutter process.

2.2. KITTI Dataset

The KITTI dataset [19] was recorded in and around Karlsruhe, Germany using a VW wagon
equipped with various types of sensors including a 3D laser scanner, four video cameras and a
GPS/IMU navigation system. The data was collected in both urban and suburban areas (city, rural,
and highway) and information was gathered over several days. In this dataset, many of the scenes are
dominated by large buildings with planar surfaces. The KITTI dataset has been widely used in mobile
robotics and autonomous driving research.

3. Proposed Transition Model

As explained in Section 1, a transition model is required in SLAM filters to predict the states of
the features at the next time step, based on the state information at the current time step. Specifically,
in this study, we are interested in constructing a transition model for predicting the plane parameters
at the next time step, using the current plane parameters estimated by a SLAM filter. Note that the
planes involved in the transition model are expressed in the vehicle coordinate system (fixed to the
vehicle), as the point cloud measurements are acquired by a laser scanner mounted on top of the
experimental vehicle. Thus the plane parameters vary with time, as long as the experimental vehicle
is in motion. On the other hand, if seen from the global coordinate system (fixed to the ground),
the plane parameters are invariant since the planes are all static in this coordinate system.

We emphasize that the vehicle is assumed to move in a static environment. If this is not the case,
we make the practical assumption that planar surfaces on other moving objects are small enough to be
excluded from the set “plane observations” extracted from the 3D point cloud. That set is expected to
include only relatively large planar surfaces such as walls of buildings along the road.

3.1. Plane Transition Model

To facilitate the design of the transition model, the two aforementioned coordinate systems are
established, as shown in Figure 1. The global coordinate system OXYZ is fixed to the ground, and
the vehicle coordinate system oxyz is attached to the vehicle Center of Mass and moves along with
the vehicle. P is a point on a plane segmented from the 3D point cloud obtained from the on-board
laser scanner. rP and r are the position vectors of P in the global and vehicle coordinate systems, and
rV is the position vector of the vehicle centre of mann (i.e., origin o) in the global coordinate system.
The global coordinates of P are invariant since rP is static as seen from the global coordinate system.
However, the local coordinates of P, expressed in the vehicle coordinate system, vary with time due to
the motion of the vehicle. As a result, the plane parameters expressed in the vehicle coordinate system
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also evolve with time, and a transition model is thus needed to predict the change of plane parameters
for the purpose of accurate and effective SLAM.

O

X

Y

Z

r

rP

P

x

z

y

Global

Vehicle

Plane

o
rV

Figure 1. An example of the global and vehicle coordinate systems.

The plane equation, expressed in the vehicle coordinate system, is assumed to take the following
form in this study:

ax + by + cz + d = 0, (23)

where x, y and z are the coordinates of a point on the plane, and a, b, c and d are the plane parameters.
Note that other forms of plane equations are also available in the literature [21], but all forms of plane
equations can eventually lead to Equation (23) after simple algebraic manipulation. We may rewrite
Equation (23) in the following vector form:

βTr = 0, (24)

where β =
[
a b c d

]T and r =
[
x y z 1

]T.
Assuming that the vehicle is only performing a planar motion (which is normally the case in

common flat-road urban driving scenarios), the coordinates of point P in the global coordinate system
rP =

[
X Y Z 1

]T, and the coordinates of point P in the vehicle coordinate system r =
[
x y z 1

]T, are
related according to the following equations describing the kinematics of the vehicle [22,23]:

rP = Rr (25)

and

R =


cos φ − sin φ 0 XV

sin φ cos φ 0 YV

0 0 1 0
0 0 0 1

 , (26)

where φ represents the heading angle of the vehicle (with respect to the X axis), and XV and YV

denote the coordinates of the vehicle centre of mass (origin o) in the global coordinate system (namely
rV =

[
XV YV 0 1

]T). The vehicle states φ, XV and YV are graphically shown in Figure 2.
Equations (25) and (26) can be rewritten as follows, for time k:

rP = Rkrk (27)
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and

Rk =


cos φk − sin φk 0 XV,k
sin φk cos φk 0 YV,k

0 0 1 0
0 0 0 1

 , (28)

where rk =
[
xk yk zk 1

]T. Similarly, we have the following equations for time k + 1:

rP = Rk+1rk+1 (29)

and

Rk+1 =


cos φk+1 − sin φk+1 0 XV,k+1
sin φk+1 cos φk+1 0 YV,k+1

0 0 1 0
0 0 0 1

 , (30)

where rk+1 =
[
xk+1 yk+1 zk+1 1

]T.

O X

Y
x

y

o

rV

Global

Vehicle

XV

YV

Figure 2. Top view of the global and vehicle coordinate systems.

The vector rP is invariant with time, since it is the position vector of P in the global coordinate
system. As a result, one can achieve the following equation by combining Equations (27) and (29):

rk+1 = R−1
k+1Rkrk. (31)

Note that Equation (24) can be rewritten as follows, for time k:

βT
k M−1

k Mkrk = 0, (32)

where Mk represents a 4-by-4 invertible matrix. We might as well let Mk = R−1
k+1Rk and combine

Equations (31) and (32), then we arrive at:

βT
k M−1

k rk+1 = 0. (33)

The plane Equation (24) for time k + 1 can be expressed as follows:

βT
k+1rk+1 = 0. (34)

Combining Equations (33) and (34) leads to the following transition model for plane parameters:

βT
k+1 = βT

k M−1
k , (35)

where M−1
k =

(
R−1

k+1Rk
)−1

= R−1
k Rk+1.
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This plane transition model indicates that the plane parameters at time k + 1 can be calculated
based on the plane parameter information at time k and a vehicle-motion-dependent 4-by-4 matrix
M−1

k . Note that the computation of matrix M−1
k = R−1

k Rk+1 requires the inverse of Rk. It can be easily
proven that the matrix Rk, expressed by Equation (28), has full rank and its inverse R−1

k exists at all
times. Thus, the matrix M−1

k can be computed as long as Rk+1 is available. However, this matrix Rk+1
(as indicated by Equation (30)) requires the vehicle state information at the future time k + 1, which
is not available in real-time SLAM applications. To tackle this issue, in the following section we will
introduce a new vehicle transition model and demonstrate how the vehicle states at time k + 1 can
be predicted.

3.2. Vehicle Transition Model

As mentioned above, the transformation matrix Rk+1 requires the unknown information from the
future time k + 1. In order to obtain matrix Rk+1, in this section a vehicle transition model is introduced
to predict the future vehicle states at time k + 1, using the available information at time k.

In Bayesian filtering, the Constant Turn (CT) model [24–26] which describes the maneuver of the
vehicle motion is commonly used. This model is formulated based on the assumption that the vehicle
maneuvers with a (nearly) constant speed and a (nearly) constant angular rate [24]. Based on the CT
model, an Extended Constant Turn (ECT) model is proposed in this work, which can be mathematically
expressed as follows:

xk+1 = Fkxk + Gu, (36)

with
xk+1 =

[
XV,k+1 ẊV,k+1 YV,k+1 ẎV,k+1 φk+1 φ̇k+1

]T,

xk =
[
XV,k ẊV,k YV,k ẎV,k φk φ̇k

]T,

u =
[
uX uY uφ

]T,

Fk =



1 sin(φ̇kT)
φ̇k

0 cos(φ̇kT)−1
φ̇k

0 0

0 cos(φ̇kT) 0 − sin(φ̇kT) 0 0

0 1−cos(φ̇kT)
φ̇k

1 sin(φ̇kT)
φ̇k

0 0

0 sin(φ̇kT) 0 cos(φ̇kT) 0 0
0 0 0 0 1 T
0 0 0 0 0 1


, and G =



T2

2 0 0
T 0 0
0 T2

2 0
0 T 0
0 0 T2

2
0 0 T


,

where XV,k, YV,k, XV,k+1 and YV,k+1 denote the vehicle longitudinal and lateral displacements
(i.e., the coordinates of the vehicle centre of mass as introduced in Section 3.1) in the global coordinate
system at time k and k + 1, φk and φk+1 represent the vehicle heading angles at time k and k + 1, uX , uY
and uω are the vehicle velocity and yaw rate noise components, and T stands for the sampling period.
By means of this vehicle transition model (36), the required vehicle state information at time k + 1 can
be predicted and in turn the matrices Rk+1 and M−1

k can be calculated.
Note that the plane transition model proposed in Section 3.1 (i.e., Equation (35)), along with the

above ECT vehicle transition model, constitutes a complete state transition model that propagates the
state densities of the planar features to the next time. This state transition model plays a key role in the
prediction step for prospective planar-feature-based SLAM filters.

4. Implementation

In this section, we introduce the Sequential Monte Carlo (SMC) implementation of the proposed
transition model, for the recently developed LMB filter. The LMB filter has been used in many
applications such as target tracking [27,28], SLAM [29], visual tracking [30], and sensor control [31,32].
In the SMC implementation, the LMB posterior for the map features (planes) at each time step are
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represented by a set of particles. These particles are propagated using the proposed transition model
to obtain the LMB posterior at the next time step.

Assuming the following LMB posterior πk at time k:

πk =
{(

r(`)k , p(`)k
)}

`∈L
, (37)

where ` represents the label of a plane, r(`)k denotes the existence probability of the plane `, p(`)k is the
spatial distribution of its parameters, and L stands for the label space. In an SMC implementation, the
spatial distribution is represented by a set of weighted samples [28], namely:

p(`)k =
N(`)

∑
i=1

ω
(`)
i δ
(
a− a(`)i,k

)
δ
(
b− b(`)i,k

)
δ
(
c− c(`)i,k

)
δ
(
d− d(`)i,k

)
, (38)

where N(`) represents the number of particles, ω
(`)
i denotes the weight of the i-th particle, and δ is the

Dirac delta function.

For each particle β
(`)
i,k =

[
a(`)i,k , b(`)i,k , c(`)i,k , d(`)i,k

]T
at time k, we are able to calculate the corresponding

predicted particle β
(`)
i,k+1 =

[
a(`)i,k+1, b(`)i,k+1, c(`)i,k+1, d(`)i,k+1

]T
at time k + 1 based on the transition model

proposed in Section 3. As a result, after the prediction stage, we will end up with a new set of particles
with the same weights, namely: {

ω
(`)
i,k+1, β

(`)
i,k+1

}N(`)

i=1
,

where ω
(`)
i,k+1 = ω

(`)
i,k . Then, based on the new predicted particles at time k + 1, the plane parameter

estimate β̂
(`)
k+1 can be achieved from the distribution particles as the Expected A Posteriori (EAP)

estimate (i.e., weighted average), or the Maximum A Posteriori (MAP) estimate (i.e., considering the
particle with the largest weight as the estimate).

The above implementation procedure is illustrated step by step in Algorithm 1, in the form of a
pseudo-code.

Algorithm 1 Step-by-Step Implementation of the Proposed Transition Model

Require: vehicle states XV,k, YV,k, φk, and particles
{

ω
(`)
i,k , β

(`)
i,k

}N(`)

i=1
representing the distribution of

each plane with label `, for all labels ` ∈ L
1: compute matrix Rk . use Equation (28)
2: generate a noise sample u ∼ N (0, Σ) . Σ ∼ diag(noise variances)
3: generate XV,k+1, YV,k+1 and φk+1 . use Equation (36)
4: compute matrix Rk+1 . use Equation (30)
5: M−1

k ← R−1
k Rk+1

6: for ` ∈ L do
7: for i 6 N(`) do

8: β
(`)
i,k+1

T
← β

(`)
i,k

T
×M−1

k

9: ω
(`)
i,k+1 ← ω

(`)
i,k

10: end for

11: β̂
(`)
k+1 ←

N(`)

∑
i=1

ω
(`)
i,k+1β

(`)
i,k+1 . compute the EAP estimate

12: end for
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5. Simulation Results

In this section, we demonstrate how well the proposed transition model performs, compared with
the actually measured results from the KITTI dataset. Specifically, we generate the predicted planes at
time k + 1 using the plane information at time k, by means of the proposed transition model, and we
segment planes from the point cloud data in the KITTI dataset at time k + 1, by means of the Modified
Selective Statistical Estimator (MSSE) [33]. Then, the predicted planes at time k + 1 are compared with
the segmented planes at time k + 1, and both graphical and numerical results are demonstrated to
show the closeness of the predicted planes and the segmented planes.

The point cloud data from the folder “2011_09_26_drive_0005_sync” in the KITTI dataset are
employed in the simulation studies for plane segmentation. The details for accessing and using the
KITTI dataset are available in [19]. The folder “2011_09_26_drive_0005_sync” includes 154 time steps
(i.e., k ∈ [0, 153]), and the points obtained at k = 11, k = 12, k = 124 and k = 125 are used in the
simulation. The number of points at k = 11, k = 12, k = 124 and k = 125 are 123,334, 123,316, 118,950
and 118,572 respectively.

5.1. Graphical Results

Figures 3 and 4 demonstrate both the predicted planes and the segmented planes at time k = 125
for one Monte Carlo (MC) run. The predicted planes are in orange color, and are generated by
the proposed transition model using the LIDAR measurements and vehicle states at time k = 124.
The segmented planes are in blue color, and are plotted based on the point cloud measurements at
time k = 125. Apart from the planes themselves, the predicted and measured point clouds at time
k = 125 are also plotted in Figure 4, on top of the corresponding planes.

Figure 3 shows that by means of the transition model and the available information at time
k = 124, three planes are predicted to exist at time k = 125. Also, three segmented planes are present in
this figure based on the LIDAR measurements at time k = 125. It is clearly observed in Figures 3 that
each predicted plane is associated with one segmented plane. Namely, these six planes constitute three
pairs of planes, with each pair composed of one predicted plane and one segmented plane. Besides, we
see that for each pair of orange and blue planes, the areas of planes are fairly close and the distances
between each pair of plane vertexes are rather small (‘Each pair of plane vertexes’ is referred to one
vertex on the predicted plane and its closest counterpart on the segmented plane).

Figure 3. Three pairs of predicted and segmented planes at time k = 125.
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(a) Angle 1

(b) Angle 2

(c) Angle 3

(d) Angle 4

Figure 4. Multi-angle comparison of the predicted and segmented planes at time k = 125.

Figure 4 demonstrates the three pairs of planes from different angles. Again, we observe the
closeness of the predicted and segmented planes in terms of plane areas and vertex distances, when
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viewed from different angles. Figure 4c shows a ‘side view’ of the three pairs of planes, from which
we clearly see that the predicted and segmented planes (and their normal vectors) almost coincide.
Similar results are also observed in Figure 4d where a ‘top view’ of the planes is shown.

In addition to k = 125, our simulation studies have included a large range of other time steps.
Figures 5 and 6 provide the results of another time step k = 12. The rest of time steps present similar
results and are not shown in this paper for the purpose of brevity. In the following section, the above
graphical results will be further supplemented and clarified, by means of detailed numerical results.

Figure 5. Three pairs of predicted and segmented planes at time k = 12.

(a) Angle 1

(b) Angle 2

Figure 6. Cont.
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(c) Angle 3

(d) Angle 4

Figure 6. Multi-angle comparison of the predicted and segmented planes at time k = 12.

5.2. Numerical Results

In Figures 3–6, we have graphically demonstrated the comparison results between the predicted
and segmented planes, in terms of three important indicators – plane area, vertex distance and normal
vector. In this section, we provide the results of our numerical simulation for 100 MC runs, in order to
demonstrate ‘how close’ exactly these planes are.

The first two indicators, plane area and vertex distance, are mainly used to quantify the closeness
in terms of plane dimensions (sizes). Table 1 shows the areas of the predicted and segmented planes
for time step k = 125 (averaged from 100 MC runs), and Table 2 gives the distances between each pair
of plane vertexes for time step k = 125 (averaged from 100 MC runs). We see in these tables that the
areas of the predicted and segmented planes are close, and the distances between each pair of vertexes
are small. These numerical results are consistent with the graphical results shown in Section 5.1.

Table 1. Areas of the predicted and segmented planes for time step k = 125.

Plane Pair 1 Plane Pair 2 Plane Pair 3

Predicted Plane 13.7147 m2 219.9937 m2 22.9218 m2

Segmented Plane 11.0470 m2 226.3712 m2 23.2926 m2

Table 2. Distances between each pair of plane vertexes for time step k = 125.

Plane Pair 1 Plane Pair 2 Plane Pair 3

Vertex Pair 1 0.2503 m 0.7089 m 0.0603 m
Vertex Pair 2 0.8519 m 0.8667 m 0.0294 m
Vertex Pair 3 0.1293 m 0.9060 m 0.0837 m
Vertex Pair 4 0.8107 m 1.0730 m 0.0677 m
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The third indicator, normal vector, is employed to evaluate the closeness in terms of plane
orientation. Table 3 shows the angles between each pair of normal vectors for time step k = 125
(averaged from 100 MC runs) (‘Each pair of normal vectors’ is referred to the normal vector on the
predicted plane and its counterpart on the segmented plane). The small magnitudes of these angles
imply that the predicted and segmented planes are very close in terms of orientation. This explains the
coincidence of the predicted and segmented planes seen in Figure 4c,d.

Table 3. Angles between each pair of normal vectors for time step k = 125.

Plane Pair 1 Plane Pair 2 Plane Pair 3

Angle Between Normal Vectors 0.0654 rad/3.7458◦ 0.0129 rad/0.7382◦ 0.0037 rad/0.2115◦

Besides the above three indicators for closeness evaluation, the execution time of the program is
also recorded. The proposed transition model is implemented based on Algorithm 1, and the program
is executed on a laptop equipped with an Intel i7-5600U CPU and an 8G RAM. For time step k = 125,
the execution time is 0.0375 s (averaged from 100 MC runs).

Apart from k = 125, the numerical results for another time step k = 12 are also presented in
Tables 4–6. Similarly, these results show that the predicted planes (obtained using the information at
k = 11) are fairly close to the segmented planes at k = 12, in terms of plane areas, vertex distances
and normal vectors. Besides, the execution time of the program for k = 12 is 0.0369 s (averaged from
100 MC runs). For the purpose of brevity, the numerical results for other time steps are omitted in
this paper.

Table 4. Areas of the predicted and segmented planes for time step k = 12.

Plane Pair 1 Plane Pair 2 Plane Pair 3

Predicted Plane 34.5121 m2 22.7771 m2 91.5893 m2

Segmented Plane 33.7797 m2 23.0555 m2 90.5685 m2

Table 5. Distances between each pair of plane vertexes for time step k = 12.

Plane Pair 1 Plane Pair 2 Plane Pair 3

Vertex Pair 1 0.1311 m 0.8031 m 0.1053 m
Vertex Pair 2 0.1117 m 0.1600 m 0.1119 m
Vertex Pair 3 0.0602 m 0.2778 m 0.5599 m
Vertex Pair 4 0.0924 m 1.0056 m 0.5558 m

Table 6. Angles between each pair of normal vectors for time step k = 12.

Plane Pair 1 Plane Pair 2 Plane Pair 3

Angle Between Normal Vectors 0.0034 rad/0.1936◦ 0.1133 rad/6.4912◦ 0.0070 rad/0.3987◦

6. Conclusions

The majority of the current statistical SLAM solutions are based on using point features such as
the representation of landmarks. The fast advancement of sensory technology makes it possible to
utilize more sophisticated features in SLAM applications to achieve superior results while lowering
computational cost. This paper presented the idea of using planar features for statistical SLAM, and
proposed a stochastic transition model to propagate the plane parameters to the next time. A large
range of simulation studies using real-world measurements have been conducted to evaluate the
proposed transition model. Both graphical and numerical results show that the predicted planes
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generated by the proposed transition model closely match the segmented planes resulting from
real-world point cloud measurements, in terms of three important indicators; plane area, vertex
distance and normal vector. In the next step, we will look into other planar-feature-based stochastic
transition models, and investigate the application of such transition models in statistical SLAM tasks.
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The following abbreviations are used in this manuscript:

SLAM Simultaneous Localization and Mapping
EKF Extended Kalman Filter
RFS Random Finite Set
LMB Labeled Multi-Bernoulli
CT Constant Turn
ECT Extended Constant Turn
SMC Sequential Monte Carlo
EAP Expected A Posteriori
MAP Maximum A Posteriori
MSSE Modified Selective Statistical Estimator
MC Monte Carlo
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