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Abstract: Noise suppression is one of the key issues for the partial discharge (PD) ultra-high frequency
(UHF) method to detect and diagnose the insulation defect of high voltage electrical equipment.
However, most existing denoising algorithms are unable to reduce various noises simultaneously.
Meanwhile, these methods pay little attention to the feature preservation. To solve this problem,
a new denoising method for UHF PD signals is proposed. Firstly, an automatic selection method
of mode number for the variational mode decomposition (VMD) is designed to decompose the
original signal into a series of band limited intrinsic mode functions (BLIMFs). Then, a kurtosis-based
judgement rule is employed to select the effective BLIMFs (eBLIMFs). Next, a singular spectrum
analysis (SSA)-based thresholding technique is presented to suppress the residual white noise in
each eBLIMF, and the final denoised signal is synthesized by these denoised eBLIMFs. To verify the
performance of our method, UHF PD data are collected from the computer simulation, laboratory
experiment and a field test, respectively. Particularly, two new evaluation indices are designed for
the laboratorial and field data, which consider both the noise suppression and feature preservation.
The effectiveness of the proposed approach and its superiority over some traditional methods is
demonstrated through these case studies.

Keywords: UHF PD signals; denoising; adaptive variational mode decomposition; singular spectrum
analysis; threshold shrinkage

1. Introduction

Power systems constitute critical societal infrastructure, and play an increasingly important
role in the development of the national economy and the improvement of the population’s living
standard [1]. Accompanying inevitable technological advances, the probability of failure of electrical
equipment and the resulting damage will also increase greatly. Therefore, timely and accurate
monitoring of the operating status of electrical equipment plays a vital role to ensure its safe and stable
operation, and to prevent large-scale blackouts. In most cases, high-voltage electrical equipment is
accompanied by partial discharge (PD) phenomenon before catastrophic failure [2–4]. Among various
PD detection methods, the ultra-high frequency (UHF) technique has been widely used due to its
superior performance in location [5], type recognition [6] and severity evaluation of PD faults [7].
However, the complicated and unpredictable electromagnetic environment in a substation may cause
the PD signals to be contaminated by noise, leading to an incorrect diagnosis. Hence, a reliable noise
suppression method is a prerequisite for the accurate detection and diagnosis of PD [8].
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Up to now, various methods for PD signal denoising have been reported, most of which are
designed to deal with a particular noise type (e.g., white noise or narrow band noise). To our
best knowledge, most state of the art PD denoising methods are based on signal decomposition
technologies, such as the wavelet transform (WT), empirical mode decomposition (EMD), singular
value decomposition (SVD) and sparse decomposition, etc. For example, the WT-based denoising
methods was studied comprehensively in [9]. Recently, the dual-tree complex WT was introduced for
PD denoising, and it shows superior performance in comparing with traditional WT and SVD [10].
Although the WT-based method has been widely accepted as a promising tool for denoising, the
performance of WT relies heavily on the selection of wavelet basis, decomposition levels and threshold,
especially when the composition of PD signal is complex or the PD component is relatively weak.
An improper selection of these parameters may lead to the loss of some effective components. Different
from WT, EMD and SVD are non-parametric signal analysis tools which can be implemented without
pre-defined basis functions. In [11], a discrete spectral interference suppressing method was developed
based on bivariate EMD, and it showed superior performance over WT in PD denoising. Authors
in [12] also introduced the EMD algorithm into ultrasonic PD signals, and the denoising result was
satisfied. Besides, some improved version of EMD like ensemble EMD (EEMD) [13] or complete
ensemble EMD (CEEMD) [14] also perform well in noise suppression. However, all these EMD-based
methods are essentially a kind of recursive algorithm, which suffers the following deficiencies: (i) the
previous estimation error will be passed to the following results, namely error accumulation; (ii) mode
mixing will exist when dealing with multi-components and strong nonlinear signals; (iii) there are end
effects in this kind of algorithms. Another attractive decomposition method is SVD. An adaptive SVD
method was proposed in [15], and its key innovation was that it can select and remove those singular
values (SVs) relating to white noise automatically. To improve the efficiency of traditional SVD, a
sliding SVD was presented in [16]. It provides a fully automatic data-driven component extraction
scheme and a sliding window-based SVD (just like the Short Time Fourier Transform). Nevertheless,
because the selected SVs are still mixed with small amount of white noise, using SVD alone may result
in unsatisfactory denoising results. In addition, when the original signal contains multiple components,
it will become difficult for SVD to distinguish other components except the white noise. Another new
denoising method based on sparse decomposition was proposed by designing PD-correlated atom and
overcomplete dictionary [17], and superior results could be achieved over traditional WT methods in
noise suppression and waveform distortion.

Recently, a completely non-recursive mode decomposition method, namely the variational mode
decomposition (VMD) was developed [18]. With this method, the original signal can be decomposed
into a set of amplitude modulation-frequency modulation functions (AM-FM), which are band-limited
and frequency-unmixed. Due to its superior performance over traditional methods like WT and
EMD, researchers in various fields such as machinery [19], biomedicine [20], geology [21] and so
on, have begun to apply VMD extensively. However, the original author also pointed out that the
performance of VMD will be affected by the following three parameters: the number of modes K, the
quadratic penalty term a and the time-step of the dual ascent τ [18]. Some guidelines for choosing
these parameters were discussed in [18], for example, τ is suggested to be zero when the noise level
is high. Moreover, a relatively moderate value of a recommended by the author is 2000. Thus, the
determination of K is the key problem when employing VMD.

This paper aims to remove various interferences in UHF PD signal and preserve its key features
at the same time. To achieve this goal, a new denoising method, namely the adaptive variational mode
decomposition and singular spectrum analysis (AVMDSSA), is developed, and the main steps are
outlined as follows:

(i) An automatic VMD algorithm is presented based on a mode-mixing judgement criterion. With the
optimal K, the original PD signal can be decomposed into BLIMFs at high accuracy.

(ii) Considering that BLIMFs containing PD components will exhibit the shape of pulse, a
kurtosis-based method is employed to pick out those valuable BLIMFs (i.e., eBLIMFs).
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(iii) For each selected eBLIMF, the dominant singular values (DSVs) are retained at first. Then, they
will be used to reconstruct PD signal by diagonal averaging. Next, the rescaling thresholding
technique [9] is applied to further remove the residual white noise in each eBLIMF. Finally, the
denoised UHF PD signal is obtained by adding up all these denoised eBLIMFs.

The rest of this paper is organized as follows: Section 2 reviews the mathematical background.
The proposed method is detailed in Section 3. Simulative case, laboratorial case and field case are
respectively analyzed in Sections 4–6. Main contributions and some open questions of our paper is
discussed in Section 7. Finally, the conclusion is drawn in Section 8.

2. Mathematical Background

2.1. Variational Mode Decomposition

In VMD, the principle modes of a signal are redefined as a set of AM-FM functions, which can be
expressed as:

uk(t) = Ak(t) cos(φk(t)) (1)

where Ak(t) and the derivative of φk(t) are non-negative. The VMD algorithm mainly includes the
following two steps:

(i) Construction of the variational problem
The purpose of this step is to obtain K mode functions (i.e., uk(t) in Equation (1)) that minimize

the summation of the bandwidths of all modes, under the constraint that the sum of all modes is
equal to the original signal. This problem can be formulated as the following constrained variational
problem:

min
{uk},{wk}

{
K

∑
k=1

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jwkt

∥∥∥∥2

2

}
, s.t.

K

∑
k=1

uk = f (2)

where uk is the kth BLIMF, and wk is the center frequency of uk. Notation ‖‖2
2 denotes the squared L2

norm, ∂t is derivative operator, and δ(t) is the Dirac function.
(ii) Solving the above variational problem
To solve the Equation (2), the constrained variational problem should be transformed into

unconstrained first. This can be achieved by introducing the Lagrangian multiplier λ and quadratic
penalty term α. The new unconstrained problem can be formulated as:

L({uk}, {wk}, λ) : = α
K
∑

k=1

∥∥∥∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jwkt

∥∥∥2

2
+ ‖ f (t)−

K
∑

k=1
uk(t)‖

2

2

+

〈
λ(t) , f (t)−

K
∑

k=1
uk(t)

〉 (3)

Through a series of mathematical derivations based on the Alternate Direction Method of
Multipliers (ADMM) and Parseval/Plancherel Fourier isometry, the above problem can be solved in
the spectral domain as follows:

ûn+1
k (w) =

f̂ (w)− ∑
i 6=k

ûi(w) + λ̂(w)
2

1 + 2α(w− wk)
2 (4)

wn+1
k =

∞∫
0

w|ûk(w)|2dw

∞∫
0
|ûk(w)|2dw

(5)

Based on the above, the complete process of the VMD method is summarized as follows:
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Step 1: Initialize the parameters of the first loop
{

u1
k
}

,
{

w1
k
}

, λ1, k = 1, 2, . . . , K, and K is the
predefined number of decomposed modes. In addition, set the cycle index n = 0;

Step 2: Let n = n + 1, then begin the outer loop;
Step 3: Execute the first inner loop according to Equation (4) to update the K BLIMFs in the spectral

domain
{

ûn+1
k (w)

}
;

Step 4: Execute the second inner loop according to Equation (5) to update the center frequencies of

all BLIMFs in the spectral domain
{

wn+1
k

}
.

Step 5: Update the Lagrangian multiplier by the following expression:

λ̂n+1(w) = λ̂n(w) + τ

(
f̂ (w)−∑

k
ûn+1

k (w)

)
(6)

Step 6: Repeat the algorithm from Step 2 to Step 5 until the following condition is satisfied:

∑
k

∥∥∥ûn+1
k − ûn

k

∥∥∥2

2
/‖ûn

k ‖
2
2 < ε (7)

2.2. Singular Spectrum Analysis

For a discrete finite-duration signal X = {xn, n = 1...N}, SSA is usually applied to decompose X
into a set of physically interpretable components. These components may contain different features of
the X, thus SSA is considered to be a power tool for signal denoising or classification [22]. The main
process of SSA can be summarized as follows:

Step 1: Embedding
In this step, the original signal X will be mapped into a trajectory matrix. Many matrix forms

can be adopted to build a trajectory matrix, such as Toeplitz matrix, cycle matrix, or Hankel matrix.
Among them, the Hankel matrix is most widely used due to its zero-phase shift property [23]. It is
made up of M column vectors of length L, as shown in Equation (8).

A =


x1 x2 · · · xM
x2 x3 · · · xM+1
...

...
...

...
xL xL+1 · · · xN

 (8)

where M = N − L + 1. One of the important features of Hankel matrix is that it has equal diagonal
elements. In addition, it should be noted that the parameter L will have great impact on the results of
SSA, thus it should be carefully selected for specific application.

Step 2: Decomposition
By using SVD, the Hankel matrix will be decomposed into a sum of sub-space matrices, which

are orthogonal with each other. This process can be formulated as:

AL×M = UL×L∑L×MVM×M =
R

∑
i=1

Ai, Ai = σiuivT
i (9)

where ∑ = diag(σ1, . . . , σi, . . . σR), R = min(L, M) is the rank of the Hankel matrix, and σi is the ith
SV in descending order. In addition ui and vi are the column vectors of orthogonal matrices U and
V, respectively.

Step 3: Grouping
This step aims at dividing the matrices {A1, A2, . . . , AR} into r disjoint groups Im (m = 1, . . . , r)

according to the characteristics of the sub-components within the raw signal. Therefore, summation
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of the matrices in Im can be denoted as AIm = ∑i∈Im Ai. Adding all AIm together will reconstruct the
original Hankel matrix A.

Step 4: Diagonal averaging
A common way to recover the signal X is called the diagonal averaging method, which uses the

average of the diagonal elements of reconstructed Hankel matrix as the element of X.

3. Proposed Denoising Method

3.1. Adaptive VMD

As discussed before, the performance of VMD is heavily dependent on the choice of its parameters,
especially for the number of modes K. Some related studies have discussed the parameter selection
problem of VMD, which mainly focus on optimizing by heuristic optimization algorithms. For example,
a searching method for quadratic penalty term α and mode number K is presented in [24] based on
the artificial fish swarm (AFS) algorithm. Besides, the particle swarm optimization (PSO) algorithm
has also been applied to VMD in [8]. Although these methods can obtain appropriate parameters to
some extent, they may need to go through many iterations before convergence. Moreover, one may
have to set initial parameters of heuristic optimization algorithms manually, making the VMD method
more complicated.

In this paper, the quadratic penalty term a and time-step of the dual ascent τ are respectively
set to 2000 and 0, and we focus on the optimization method of the mode number K. The basic idea
behind this adaptive VMD (AVMD) method is simple and straight: increase the value of K (starting
from 2) step by step and obtain the BLIMFs by VMD during each step. When there is no mode mixing
happened in all BLIMFs for a certain K, then this value is considered as optimal. Based on this concept,
the schematic diagram of the proposed method is demonstrated in Figure 1.
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As can be seen from Figure 1, the key of this method is to determine whether there is mode mixing
occurred in decomposed BLIMFs. For this purpose, the first important task is to find out the local
maximum points (LMPs) of BLIMF spectrum, which are considered to belong to the potential effective
components. This can be achieved by the following two steps:

(i) Preliminary screening
To begin with, the frequency spectrum is divided into several consecutive segments, and each

segment has the same length L1 (the last segment may not). Then, the maximal point in each segment
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will be picked out to form a new sequence segmax =
{

seg_1max, . . . , seg_nmax, . . . , seg_Ñmax

}
, where

seg_nmax denotes the maximal point of the nth segment, and Ñmax is the number of segments.
(ii) Peaks confirmation
After the previous process, it is easy to find that the LMPs of the frequency spectrum must be

the points within segmax. Therefore, the LMPs can be obtained easily by searching the peak points of
segmax, remarked as pks.

Due to the influences of potential multiple components or interfering noise, the number of pks is
likely to be more than one. Consequently, the remaining problem is to determine whether other points
in pks except for the maximum are active components. Denote the maximal point of pks as max_temp,
then the proposed rules for mode-mixing determination is given as follows: for any point in pks except
for max_temp, if the distance between max_temp and this point is larger than a pre-set value, and in the
meanwhile, the amplitude of this point is higher than a pre-set value, then the corresponding frequency
component at this point is considered as active. If the point satisfying the above conditions exists, it
will imply that there are at least two active components in the current BLIMF (including max_temp).
Obviously, this means mode-mixing has occurred. The pseudocode of this judgment algorithm is
detailed in Algorithm 1.

Algorithm 1: Pseudo-code of the proposed mode-mixing judgement method
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Algorithm 1: Pseudo-code of the proposed mode-mixing 
judgement method

Input:                        : frequency spectrum of the kth BLIMF; L1: length 
of the frequency window; g: threshold for amplitude criterion   
Function mix_judgement(Fk , L1, g)
[segmax, index]=segment_max(Fk, L1);
/* search for local maximum points in every frequency window */
ξ =0;            /* 0 means not mixed, 1 means mixed */
[pks, pks_index]=findpeaks(segmax);
/* search for the peak points of segmax */
If  length(pks)>1
    [max_temp, max_index]=max(pks);         /* find the largest peak point */
    for i=1:length(pks)
        if  i~=max_index
            temp=abs(index(pks_index(i))-index(pks_index(max_index)));
            if  temp>L1 && pks(i)>max_temp*g
                ξ =1;          /* mode-mixing occurs if the above conditions are met */
                break;
            end
        end
    end
else
     ξ =0;
end
Output: ξ 

, 1,...,kF k K=

Follow the workflow in Figure 1 and the decision rule in Algorithm 1, the optimal mode number
K can be obtained in just a few steps.

3.2. Effective BLIMF Selection

Based on the AVMD algorithm presented in the previous section, the PD signal is decomposed
into K BLIMFs, and each BLIMF contains only one active component. However, not all these active
components are PD components. In fact, the generating mechanism of PD electromagnetic signal
and its propagation path determine that it exhibits characteristics of damped oscillation and steep
rising edge in the time domain, while narrowband periodic noise or white noise does not show such
characteristic. Therefore, in this paper, BLIMF with following features is defined as effective BLIMF
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(abbreviate as eBLIMF): (i) with central frequency in UHF band (i.e., higher than 0.3GHz); (ii) exhibits
damped oscillation in time domain; (iii) has steep rising edge. Based on the above analysis, the kurtosis
operator which is sensitive to abrupt change is selected as the indicator, and the decision rule is
formulated as:

eBLIMF = uk s.t. kurtosis(uk) > ε1 and f0(uk) > 0.3GHz (10)

where ε1 is a pre-set threshold. f 0( ) is the central frequency operator, and kurtosis( ) is the kurtosis
operator, which is calculated as:

kurtosis(X) = E(x− µ)4/σ4 =
1
n

n

∑
i=1

(xi − x)4/

(
1
n

n

∑
i=1

(xi − x)2

)2

(11)

where X is a discrete signal defined in Section 2.2, and x denotes its mean value.

3.3. SSA-based Shrinkage method

In this section, a denoising algorithm based on SSA and shrinkage method is designed. For each
eBLIMF, the Hankel matrix is constructed and be decomposed into several sub-space matrices Ai by
SVD. Since there is only one dominant component in each eBLIMF, the grouping step described in
Section 2.2 becomes easy. Assume the SVs are sorted in descending order, and the ratio of each SV to
the sum of all SVs are denoted as {q1, q2, . . . , qR} (R is the rank of Hankel matrix), a common way to
choose DSVs is to compute the cumulative sum of q until its value reached a proper threshold ε2. This
process can be expressed as:

N1

∑
i=1

qi > ε2 (12)

Therefore, the first N1 SVs are decided as DSVs. For each DSV, its corresponding sub-space
matrices Ai is computed by Equation (9), then the reconstructed signal X̂i based on Ai can be obtained
by the diagonal averaging method. In order to further suppress the white noise in X̂i, the shrinkage
technology typically used in WT-based denoising is employed [9]. Specifically, the multiplicative
threshold rescaling scheme with sqtwolog rule is adopted, which is expressed as:

ζi =
MAD

∣∣X̂i
∣∣

0.6745

√
2 log(ni), i ∈ RDSVs (13)

where ni is the length of X̂i, RDSVs is the set of DSVs, ζi is the threshold of X̂i. Afterwards, the hard
threshold function is applied to denoise the recovered signal X̂i, given by:

x̂ij =

{
x̂ij, x̂ij > ζi, j = 1, 2, . . . , ni
0, otherwise

(14)

where x̂ij is the jth element of X̂i. At last, for all DSVs, the denoised x̂ij are added to form the
denoised eBLIMF:

In Equation (15), ˆ̂Xj is the jth element of the denoised eBLIMF, and N1 has been explained in
Equation (12). The whole procedure of SSA-based shrinkage method is illustrated in Algorithm 2.

ˆ̂Xj =
N1

∑
i=1

x̂ij (15)
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Algorithm 2: Pseudo-code of thr proposed SSA-based Shrinkage denoising method
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3.4. Implementation Procedure of Proposed AVMDSSA Method

Based on the above descriptions, the schematic diagram of AVMDSSA method is demonstrated
in Figure 2, and the overall process is summarized as follows:

(i) Optimization of the number of modes K by gradually increasing its value and judging whether
there is mode-mixing happened in each BLIMF at every step.

(ii) Decompose the UHF PD signal into a set of BLIMFs by VMD with the optimal K parameter, then
a kurtosis-based selection method is employed to pick out the eBLIMFs.

(iii) For each eBLIMF, the SSA-based Shrinkage denoising method is applied to suppress the white
noise, and summation of all denoised eBLIMFs will recover the denoised UHF PD signal.
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4. Simulative Case Study

4.1. Synthetic UHF PD Signal

To verify the ability of the proposed method to deal with complex signal, a synthetic UHF
PD signal with multiple PD components and various noises is simulated. Here, we use the Single
Exponential Decay Oscillating (SEDO) pulse and Double Exponential Decay Oscillating (DEDO) pulse
to simulate the PD signal. Their respective mathematical expressions are as follows [6]:

S1 = Be−t/τ1 sin(2π fct) (16)

S2 = B(e−t/τ1 − e−t/τ2) sin(2π fct) (17)

where B is the amplitude, τ1 and τ2 are attenuation coefficients, fc is the center frequency. The synthetic
UHF PD signal combines one SEDO pulse, two DEDO pulses and white noise. In addition, two
periodic narrowband noises (PNN) are added, which is formulated as:

Snarrowband = B sin(2π fct) (18)

Detailed parameters of this simulative signal are listed in Table 1, and its Signal to Noise Ratio
(SNR) is −5.576 dB. Figure 3 shows the time-domain waveforms and frequency spectra of the pure
and noisy PD signal, respectively. One can see from Figure 3c that the original components are almost
unrecognizable from the noisy signal. Here, the proposed denoising method is applied to suppress the
complex noise, and some relevant parameters are shown in Table 2.

Table 1. Parameters of the synthetic UHF PD signal.

Items Type Amplitude:
B, mV

Attenuation
Coefficients: τ1, τ2, ns

Center Frequency:
f c, GHz

Sampling Rate:
fs, GHz

Pulse1 DEDO 5 1.2, 2.5 5 20
Pulse2 SEDO 5 1.5, – 0.6 20
Pulse3 DEDO 6 1.2, 2.5 3 20
PNN1 PNN 0.2 –, – 1.2 20
PNN2 PNN 0.1 –, – 4 20
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Table 2. Parameters of AVMDSSA.

Parameters L1 L2 ε1 ε2 g

Description

Length of each
segment used

in adaptive
VMD

The embedding
dimension for
Hankel matrix
construction

Kurtosis
threshold for

eBLIMF
selection

Threshold for
dominant

singular values

Used for
mode-mixing

judgement

Value 80 100 10 0.95 0.1

4.2. Denoising Results

Starting with K = 2, the process for denoising of the PD signal shown in Figure 3c is depicted
in Figure 4. It is observed from Figure 4b,d that the local maximums (dashed green line with square
markers) and their peak points (red asterisks) can reflect well the active components in frequency
spectrum. According to Algorithm 1 and the parameters listed in Table 2, Point A and Point B in
Figure 4b are judged as belonging to two different components, respectively (criterion 1: 301−145 > 80
and criterion 2: 126.9 > 233.2 × 0.1 are satisfied simultaneously). Similarly, Point C and Point D in
Figure 4d are decided to represent diverse components. The above results show that when K = 2, the
mode-mixing occurs in the decomposed BLIMFs. In fact, when K = 2, the mode number of the VMD
algorithm is much smaller than the number of the real components in original signal (i.e., 5), leading
to the so-called undersegmentation phenomenon [18]. Therefore, according to the proposed algorithm,
K should be increased.

Sensors 2019, 19 FOR PEER REVIEW  10 

 

Table 2. Parameters of AVMDSSA. 

Parameters      

Description 

Length of 
each segment 

used in 
adaptive 

VMD 

The embedding 
dimension for 
Hankel matrix 
construction 

Kurtosis 
threshold for 

eBLIMF 
selection 

Threshold for 
dominant 
singular 
values  

Used for 
mode-mixing 

judgement 

Value 80 100 10 0.95 0.1 

4.2. Denoising Results 

Starting with K = 2, the process for denoising of the PD signal shown in Figure 3c is depicted in 
Figure 4. It is observed from Figure 4b,d that the local maximums (dashed green line with square 
markers) and their peak points (red asterisks) can reflect well the active components in frequency 
spectrum. According to Algorithm 1 and the parameters listed in Table 2, Point A and Point B in 
Figure 4b are judged as belonging to two different components, respectively (criterion 1: 301−145 > 
80 and criterion 2: 126.9 > 233.2 × 0.1 are satisfied simultaneously). Similarly, Point C and Point D in 
Figure 4d are decided to represent diverse components. The above results show that when K = 2, the 
mode-mixing occurs in the decomposed BLIMFs. In fact, when K = 2, the mode number of the VMD 
algorithm is much smaller than the number of the real components in original signal (i.e., 5), leading 
to the so-called undersegmentation phenomenon [18]. Therefore, according to the proposed algorithm, 
K should be increased.  

 
Figure 4. Optimization process when k = 2: (a) Time-domain waveforms of BLIMFs; (b) Local maximums 
of 1st BLIMF and its peak points; (c) Spectra of BLIMFs; (d) Local maximums of 2nd BLIMF and its peak 
points. 

For each K value, the mode-mixing judgement of BLIMF is carried out. Considering the limited 
space of our paper, we omit the graphic illustration of every optimization process, and provide only 
the judgement results in Table 3. As can be seen, when K increases to 8, there is no mode-mixing 
happened in all BLIMFs, indicating that the noisy signal has been decomposed completely. This can 
be seen from Figure 5, which shows the optimizing procedure when K = 8. Comparing Figure 5d with 
Figure 3d intuitively, one can see that all the active components in original signal are separated well. 
In addition, by using the decision rule in Algorithm 1, only one dominant component is identified in 
every BLIMF, that is, there is no mode-mixing in all decomposed modes. Other subgraphs of Figure 
5 demonstrate these decision processes.  
  

1L 2L 1ε 2ε g

A

B

C

D

(a) (b)

(c) (d)

Figure 4. Optimization process when k = 2: (a) Time-domain waveforms of BLIMFs; (b) Local
maximums of 1st BLIMF and its peak points; (c) Spectra of BLIMFs; (d) Local maximums of 2nd
BLIMF and its peak points.

For each K value, the mode-mixing judgement of BLIMF is carried out. Considering the limited
space of our paper, we omit the graphic illustration of every optimization process, and provide only
the judgement results in Table 3. As can be seen, when K increases to 8, there is no mode-mixing
happened in all BLIMFs, indicating that the noisy signal has been decomposed completely. This can be
seen from Figure 5, which shows the optimizing procedure when K = 8. Comparing Figure 5d with
Figure 3d intuitively, one can see that all the active components in original signal are separated well.
In addition, by using the decision rule in Algorithm 1, only one dominant component is identified in
every BLIMF, that is, there is no mode-mixing in all decomposed modes. Other subgraphs of Figure 5
demonstrate these decision processes.
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Table 3. Mode-mixing judgement results of BLIMFs for each K value. ‘1′ means mode-mixing happened,
while ‘0′ means no mode-mixing happened.

K Value 1st
BLIMF

2nd
BLIMF

3rd
BLIMF

4th
BLIMF

5th
BLIMF

6th
BLIMF

7th
BLIMF

8th
BLIMF

2 1 1 — — — — — —
3 1 1 1 — — — — —
4 1 1 1 0 — — — —
5 1 1 1 0 0 — — —
6 0 0 1 1 0 0 — —
7 0 0 1 1 0 0 0 —
8 0 0 0 0 0 0 0 0
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Figure 5. Optimization process when k = 8: (a) Time-domain waveforms of BLIMFs; (b,c) Local
maximums of 1st and 5th BLIMFs and their peak points; (d) Spectra of BLIMFs; (e–j) Local maximums
of 2nd, 6th, 3rd, 7th, 4th, 8th BLIMFs and their peak points.

The second step of AVMDSSA is to pick out the eBLIMFs. To obtain an appropriate kurtosis
threshold, we simulate six different types of signals, and each type contains one hundred randomly
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generated signals. Details of these signal are given below: (1) WGN: the white gaussian noise (WGN)
with power of 0 dBw; (2) Pulse1+WGN/ Pulse2+WGN/ Pulse3+WGN: PD signal Pulse1, Pulse2,
Pulse3 added by WGN, respectively, and SNR = 0 dB; (3) PNN1/PNN2: the noise signal PNN1, PNN2
with arbitrary amplitude between 0.1 mV and 0.2 mV. The kurtosis results of all these signals are given
in Figure 6. As can be readily seen, sequences containing PD signals have kurtosis values greater than
those without PD signals. Particularly, kurtosis values of sequences containing PD signals are all larger
than 10. Therefore, we choose this value as the threshold. It should be noted that when extremely
severe noise is mixed in PD signal, the kurtosis value will decrease, thus this threshold should be
reduced accordingly. However, considering that the SNR of BLIMF after VMD is not likely too low, the
threshold 10 is suitable.
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After obtaining the eBLIMFs, the SSA-based Shrinkage method is applied, and final results are
depicted in Figure 7. Comparing with Figure 3, one can easily observe that the various noises in the
noisy PD signal have been well suppressed. Moreover, those effective PD components in original
signal have been completely reserved. This example shows the capability of the proposed method in
not only the noise reduction, but also the feature preservation.
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4.3. Noise Robustness

Before discussing the robustness of the proposed method, two common evaluation indices are
introduced to evaluate the denoising performance, which are the normalized correlation coefficient
(NCC) and SNR. Detailed calculating formulas of these indices can be found in [10,25]. In this
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subsection, noisy UHF PD signals with different SNR levels are generated by adding WGN to the pure
signal shown in Figure 3a. One hundred signals are simulated in each SNR level, and the values of
SNR are as follows: −10 dB, −8 dB, −6 dB, −4 dB, −2 dB, 0 dB, 2 dB, 4 dB, 6 dB, 8 dB, 10 dB, 12 dB,
14 dB, 16 dB. Denoising results of these signals by AVMDSSA are depicted in Figure 8.
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Figure 8. Evaluation of robustness of AVMDSSA: (a) SNR values after denoising; (b) NCC values
after denoising. The bold solid line in each plot represents the mean value of corresponding index,
and the semi-transparent regions are the value space of each index between its positive and negative
standard error.

As can be seen from Figure 8a, the SNR value has been greatly improved after denoising.
Even when the SNR of raw signal drops to−10 dB, it can still be raised to about 7.46 dB after denoising.
In addition, with the increasement of SNR of the raw signals, the SNR results of the denoised signals
also improve drastically, and gradually converge to their mean value. Similar denoising performance
can also be found in Figure 8b by another index NCC. Therefore, we can conclude that the AVMDSSA
method can achieve satisfactory denoising performance under different noise level. In the meanwhile,
we should admit that the denoising performance will fluctuate to some extent at low SNR scenario,
but still within the acceptable range.

4.4. Comparison with Traditional Denoising Methods

In this part, four other denoising algorithms are employed to compare with the proposed method,
which are as follows. Method 1: Adaptive Singular Value Decomposition (ASVD) [15]; Method
2: Wavelet Shrinkage [9]; Method 3: Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (CEEMDAN) and Wavelet Threshold [26]; Method 4: Optimized VMD and Wavelet
Transform [8]; Method 5: AVMDSSA. Denoising results of the signal shown in Figure 3c are given in
Figure 9.
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of (i).

Figure 9c,d show that the ASVD algorithm in [15] is unable to remove the narrowband noise of
UHF PD signal. This is mainly because the grouping scheme of singular components in this method is
energy-oriented, and the periodic narrowband noise is exactly energy-rich. Thus, ASVD is failed to
denoise this kind of noise. From Figure 9e,h, one can easily see that both of Method 2 and Method 3
loss the 5 GHz component (i.e., Pulse 1). Meanwhile, both methods introduce strong low frequency
interferences. In addition, there are many small oscillations in Figure 9g which called the Pseudo-Gibbs
phenomenon, resulting in severe high-frequency interferences in its spectrum. In contrast, Method
4 shows better performance in preserving PD components. However, slight noise is still existed in
its spectrum. Comparing these results with Figure 7, there is no doubt that the presented method
AVMDSSA shows superior performance not only in noise suppression, but also in feature preservation.

To quantitatively evaluate the performance of the above algorithms, noisy UHF PD signals in five
different SNR levels are simulated by adding WGN and PNN to the pure signal shown in Figure 3a.
To obtain a more credible result, one hundred signals are generated for each SNR level, and the average
results of SNR and NCC after denoising are depicted in Figure 10. One can readily observe that the
AVMDSSA algorithm exhibits better denoising performance over other methods in either SNR or NCC,
even in an extremely noisy circumstance.
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5. Laboratorial Case Study

5.1. Laboratorial PD Measurement Setup

To obtain the measured UHF PD data under different insulation defects, PD experiments were
carried out in the high voltage laboratory of the China Electric Power Research Institute. Experimental
setup and necessary descriptions of its accessories are given in Figure 11. Additionally, Figure 12 shows
the physical drawings of all artificial defect models. During the test, the PD signals were coupled by
the built-in UHF sensor firstly, then they were sampled and stored by a high-speed digital storage
oscilloscope (LeCroy WaveRunner 204Xi-A, 10GS/s, 2GHz).
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Figure 12. Artificial defect models used in our tests: (a) Floating discharge model; (b) Protrusion
discharge model; (c) Particle discharge model; (d) Air-gap discharge model.

In our experiments, all defects were tested, and we denote the UHF PD signals from the floating
discharge model, protrusion discharge model, particle discharge model and air-gap discharge model
as Type1, Type 2, Type 3 and Type 4, respectively. Typical waveforms of these discharge signals are
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shown in Figure 13. As can be seen, these PD signals are polluted by different noise. Furthermore,
one can observe that there are multiple PD components in Figure 13b,h, making the denoising process
more difficult.

Sensors 2019, 19 FOR PEER REVIEW  16 

 

shown in Figure 13. As can be seen, these PD signals are polluted by different noise. Furthermore, 
one can observe that there are multiple PD components in Figure 13b,h, making the denoising process 
more difficult.  

 
Figure 13. Measured UHF PD signals by laboratorial setup: (a) Typical waveform of Type 1; (b) 
Spectrum of (a); (c) Typical waveform of Type 2; (d) Spectrum of (c); (e) Typical waveform of Type 3; 
(f) Spectrum of (e); (g) Typical waveform of Type 4; (h) Spectrum of (g). Possible PD components in 
each spectrum are marked with black dash-dotted ellipse.  

5.2. New Evaluation Indices for Practical Situation 

Considering that the pure PD signal is not available in practice, it is impossible to calculate the 
evaluation index such as SNR or NCC. In addition, existing indicators only focus on the degree of 
noise reduction, while ignoring the preservation of the signal features after denoising. To give a more 
comprehensive evaluation of the denoising algorithm under practical conditions, two new indices 
are designed in this paper: 

(i) Index 1: The ratio of the Shannon entropy of the signal before and after denoising 
As we all know, the measured PD signals in practice are usually mixed with randomly 

distributed, uncertain noise. This uncertainty will decrease as the noise is suppressed, and the more 
thoroughly the noise is removed, the less the uncertainty will be. Therefore, the Shannon entropy, a 
measure of uncertainty, is employed to quantify this kind of uncertainty. The designed Index 1 can 
be calculated by the following formula: 

( ( _ ) )
1

( ( _ ) )
entropy nor denoised sig

Index
entropy nor noisy sig

=
 

(19) 

where denoised_sig and noisy_sig denote the UHF PD signal after and before denoising, respectively. 
nor( ) and entropy( ) are the operators of normalization and Shannon entropy. Obviously, lower Index 
1 implies better denoising performance 

(ii) Index 2: The ratio of the summation of eBLIMFs’ maximum frequency values before and after 
denoising 

Another key issue of denoising is the feature preservation. The basic idea behind this index is 
that the more the features are retained after denoising, the less the spectrum amplitude of effective 
components will decrease. Therefore, we adopt the criterion in Section 3.2 to decide the eBLIMFs of 
noisy_sig and denoised_sig, expressed as eBLIMFs1 and eBLIMFs2 respectively. Then, the maximum 

Am
pl

itu
de

/V

Am
pl

itu
de

Am
pl

itu
de

/V

Am
pl

itu
de

Am
pl

itu
de

/V

Am
pl

itu
de

Am
pl

itu
de

/V

Am
pl

itu
de

Figure 13. Measured UHF PD signals by laboratorial setup: (a) Typical waveform of Type 1;
(b) Spectrum of (a); (c) Typical waveform of Type 2; (d) Spectrum of (c); (e) Typical waveform of Type 3;
(f) Spectrum of (e); (g) Typical waveform of Type 4; (h) Spectrum of (g). Possible PD components in
each spectrum are marked with black dash-dotted ellipse.

5.2. New Evaluation Indices for Practical Situation

Considering that the pure PD signal is not available in practice, it is impossible to calculate the
evaluation index such as SNR or NCC. In addition, existing indicators only focus on the degree of
noise reduction, while ignoring the preservation of the signal features after denoising. To give a more
comprehensive evaluation of the denoising algorithm under practical conditions, two new indices are
designed in this paper:

(i) Index 1: The ratio of the Shannon entropy of the signal before and after denoising
As we all know, the measured PD signals in practice are usually mixed with randomly distributed,

uncertain noise. This uncertainty will decrease as the noise is suppressed, and the more thoroughly
the noise is removed, the less the uncertainty will be. Therefore, the Shannon entropy, a measure of
uncertainty, is employed to quantify this kind of uncertainty. The designed Index 1 can be calculated
by the following formula:

Index1 =
entropy(|nor(denoised_sig)|)

entropy(|nor(noisy_sig)|) (19)

where denoised_sig and noisy_sig denote the UHF PD signal after and before denoising, respectively.
nor( ) and entropy( ) are the operators of normalization and Shannon entropy. Obviously, lower Index 1
implies better denoising performance

(ii) Index 2: The ratio of the summation of eBLIMFs’ maximum frequency values before and
after denoising

Another key issue of denoising is the feature preservation. The basic idea behind this index is
that the more the features are retained after denoising, the less the spectrum amplitude of effective
components will decrease. Therefore, we adopt the criterion in Section 3.2 to decide the eBLIMFs of
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noisy_sig and denoised_sig, expressed as eBLIMFs1 and eBLIMFs2 respectively. Then, the maximum
frequency values of each eBLIMF in eBLIMFs1 are added to form the MF1. Following the same way,
we can calculate the other parameter MF2. Then, the Index 2 is obtained by the ratio of MF2 to MF1.
This process can be formulated as follows:

Index2 =
∑i∈eBLIMF2

max(| f f t(eBLIMFi)|)
∑j∈eBLIMF1

max
(∣∣ f f t

(
eBLIMFj

)∣∣) (20)

where fft( ) is the Fast Fourier Transform (FFT) operator. And clearly, a larger Index 2 means the
superior performance of the denoising algorithm in feature preservation.

5.3. Denoising Results and Comparisons

Figure 14 gives the denoising results of the UHF PD signals shown in Figure 13 by using the
proposed AVMDSSA algorithm. Comparing with Figure 13, one can see that the low-frequency
noise and communication carrier noise in each raw signal are suppressed completely, especially for
Type 1 and Type 4, in which multiple PD components are existed. More importantly, all possible PD
components marked in Figure 13 are well retained in denoised signals.
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One may have noticed that one possible PD component in Figure 13h is lost in Figure 14h. In 
fact, it is easy to observe from the decomposed BLIMFs shown in Figure 15 (only plot the 4th, 5th and 
6th BLIMF for example) that the missed component (i.e., the 4th BLIMF) is one kind of narrowband 
noise, rather a PD component. On the contrary, the time-domain waveform of the frequency 
component in Figure 15f shows obvious characteristics of PD (according to the decision criteria of 
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Figure 14. Denoised UHF PD signals by AVMDSSA: (a) Denoised signal of Type 1; (b) Spectrum of
(a); (c) Denoised signal of Type 2; (d) Spectrum of (c); (e) Denoised signal of Type 3; (f) Spectrum of
(e); (g) Denoised signal of Type 4; (h) Spectrum of (g). Detected PD components in each spectrum are
marked with black dash-dotted ellipse, and the lost components in (h) is marked by green solid ellipse.

One may have noticed that one possible PD component in Figure 13h is lost in Figure 14h. In fact,
it is easy to observe from the decomposed BLIMFs shown in Figure 15 (only plot the 4th, 5th and 6th
BLIMF for example) that the missed component (i.e., the 4th BLIMF) is one kind of narrowband noise,
rather a PD component. On the contrary, the time-domain waveform of the frequency component in
Figure 15f shows obvious characteristics of PD (according to the decision criteria of eBLIMF discussed
in Section 3.2), thus it can be identified as a real PD component. The above results demonstrate
the effectiveness of our method in noise suppression and feature preservation for different kinds of
measured UHF PD data.
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Figure 15. Some decomposed BLIMFs of Type 4 signal: (a) The 4th BLIMF; (b) Spectrum of (a); (c) The
5th BLIMF; (d) Spectrum of (c); (e) The 6th BLIMF; (f) Spectrum of (e).

To compare the AVMDSSA with traditional methods quantitatively, the evaluation indices are
computed by Equations (19) and (20). For each PD type, one hundred signals are used as the input,
and the average results of the two indices are listed in Table 4. It can be observed that Method 1 has
the worst denoising results, indicating that the ASVD method may not be suitable for processing
complex UHF PD signals. In contrast, the AVMDSSA method shows the best results in either Index1 or
Index2, showing that it has superior performance over traditional methods in both noise suppression
and feature retention. In addition, it should be noted that although Method 1 has the largest Index2
among all methods, it does not mean that it has the best feature retention capability. In fact, the main
reason for this is that it fails to remove the noise very well, causing a relatively smaller decrease of the
amplitude than other methods.

Table 4. Average results of Index1 and Index2 for different situations.

Method
Method 1 Method 2 Method 3 Method 4 Method 5

Index1 Index2 Index1 Index2 Index1 Index2 Index1 Index2 Index1 Index2

Type1 0.7713 0.9113 0.6740 0.5620 0.6850 0.5106 0.6801 0.6901 0.4490 0.7490
Type2 0.8200 0.8600 0.6250 0.6204 0.3380 0.7380 0.1075 0.7575 0.0889 0.8189
Type3 0.7653 0.8200 0.5336 0.6336 0.3132 0.7532 0.0715 0.7315 0.0804 0.8014
Type4 0.9153 0.9198 0.4106 0.5106 0.5518 0.6118 0.0763 0.6815 0.0728 0.7828

6. Field Case Study

In this section, the field UHF PD data from a 220 kV current transformer are analyzed.
The suspected PD signal radiates outward through the resin sprue on the basin insulator, and then be
coupled by the UHF sensor and sent to the oscilloscope (25 GS/s, 6GHz) for sampling and storage.
The picture of the field test is given in Figure 16, and the typical time-domain waveform and its
spectrum are depicted in Figure 17. As can be seen, although the metal shell of GIS can shield most
of the external interferences, the captured signal still has a complex composition, which makes the
denoising work more challenging.
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and BLIMF3 are judged as eBLIMFs. At last, the SSA-based Shrinkage scheme is used to further 
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By using the proposed method, the mode number of VMD is optimized first, and the optimal
value of K is 8 in this example. Figure 18 shows the decomposed BLIMFs of the above signal by
applying the optimal VMD. A comparison between Figures 17b and 18b shows that there are no
active frequency components mixing or missing, which means the decomposition is complete. Next,
the eBLIMFs will be decided according to Equation (10) by calculating their central frequencies and
kurtosis values. Results of this step are listed in Table 5, in which can we see that only BLIMF2 and
BLIMF3 are judged as eBLIMFs. At last, the SSA-based Shrinkage scheme is used to further remove
the white noise in each eBLIMF. The final denoising result is shown in Figure 19.

Again, we use the newly designed indices to evaluate the performance of AVMDSSA under
this field situation. The average computation results of fifty measured signals are as follow: Index1:
0.4860; Index2: 0.9723. This result demonstrates that the AVMDSSA method can effectively reduce
the uncertainty of the measured data. And what’s more, there is almost no loss of the characteristic
components after the denoising process, which is critical to the subsequent processing and diagnosis.
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smaller than the actual number of active components in the raw signal), there will be multiple local 
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active component if K is equal to the number of actual components, as can be seen from Figure 5. The 
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Figure 18. BLIMFs decomposed by VMD using the optimal K: (a) Time-domain waveforms; (b) Spectra.

Table 5. Central frequencies and kurtosis values of the BLIMFs of the above UHF PD signal.

Indicators BLIMF1 BLIMF2 BLIMF3 BLIMF4 BLIMF5 BLIMF6 BLIMF7 BLIMF8

Central
frequency

(GHz)
0.236 0.879 1.075 2.433 3.621 5.117 6.250 10.41

Kurtosis 22.36 38.69 37.95 5.94 3.14 2.93 3.19 2.72
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Figure 19. Final denoising result by AVMDSSA: (a) Time-domain waveform; (b) Spectrum.

7. Discussion

In this paper, a novel denoising method namely AVMDSSA is developed. To comprehensively
evaluate the performance of AVMDSSA, three case studies are conducted, and we discuss the results
as follows:

(i) Simulative case
In the simulative case study, complex UHF PD signals with heavy noise are simulated. One can

easily see from Figure 4b,d that if the decomposition by VMD is incomplete (i.e., the value of K is
smaller than the actual number of active components in the raw signal), there will be multiple local
maximum points in the BLIMF. On the contrary, every decomposed BLIMF should contain only one
active component if K is equal to the number of actual components, as can be seen from Figure 5.
The optimization process by the proposed AVMD algorithm is given in Table 3. After the selection of
eBLIMFs and an SSA-based shrinkage algorithm, the final denoising result is obtained. Comparing
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Figure 7 with Figure 9, one can readily observe the superiority of AVMDSSA over other methods.
In addition, the results of the noise robustness tests (depicted in Figure 8) and quantitative comparison
(depicted in Figure 10) are all demonstrate the effectiveness of our method.

(ii) Laboratorial case
To examine the performance of AVMDSSA by real UHF PD signal, four kinds of laboratorial

PD data are collected. In addition, we define two new evaluation indices for denoising method from
the perspective of noise suppression and feature retention, respectively. The effectiveness of the
proposed AVMDSSA method is readily shown in Figure 14, even for the signal that contains multiple
PD components. By using the newly defined indices for each method, we can conclude from Table 4
that AVMDSSA shows the best performance (lowest Index1, highest Index2).

(iii) Field Case
The UHF PD signals from a real high-voltage current transformer are also employed in this paper,

and the denoising results shown in Figure 19 are satisfactory, suggesting that our method has the
application potential in practical scenarios.

The above discussions prove the effectiveness of the presented method. Moreover, it is worth
mentioning that all the denoising results of AVMDSSA are obtained by using the same parameters
listed in Table 2, which indicates the robustness of this method.

Compared with our previous denoising study in reference [8], contributions in this work are
summarized as follows: (i) the parameter optimization method adopted in this paper has more explicit
physical meaning and faster searching speed; (ii) the SSA-based shrinkage method developed in this
work shows better denoising performance compared with the Wavelet Shrinkage method used in [8];
(iii) more comprehensive assessment of the denoising method is given in this study, including the
noise robustness test, newly designed evaluation indices, and the field test. All these advancements
show that the current method achieves much improvement compared to our previous work.

Despite all the advantages, we should admit that the efficiency of AVMDSSA needs to be improved.
For example, the average time consumption of AVMDSSA for a signal with length of 5000 is 3.6 s
(hardware: Intel Core i5 CPU, 16 GB RAM; software: MATLAB 2018b), while this value can rise to
more than 10 s when dealing with a signal with length of 10000. Such high computational cost mainly
comes from the SVD algorithm used in SSA. To a certain extent, this restricts the real-time application
of our method in embedded hardware. However, for offline applications that are not very sensitive to
computational complexity, the proposed method still shows great advantages.

To suppress the electromagnetic interference in PD signals more thoroughly, improvements in
hardware design are also important. For example, a reliable metal shell for the UHF sensor will prevent
the external noise from coupling into the detection system to a large extent. Besides, considering that
the optical fiber is a kind of ideal transmission medium due to its advantages such as high sensitivity,
immunity to electromagnetic interference and stability in harsh environments, it can be used in the
data transmission module of the PD detection system. In summary, only when the noise suppression
measures are taken into account in both of hardware and software design, can the PD detection system
play a more stable and reliable role in practice.

8. Conclusions

A key challenge for PD detection and diagnosis is how to suppress the complicated interfering
noise. In this paper, a novel denoising method for UHF PD signal is proposed. First, the mode number
of VMD is automatically decided by a mode-mixing judgement algorithm. Next, those decomposed
BLIMFs which contain PD components are selected based on their central frequency and kurtosis
values, namely eBLIMFs. Finally, the residual white noise in each eBLIMF is further reduced by
SSA-based Shrinkage method, and the denoised PD signal is obtained by adding all these denoised
eBLIMFs together. The proposed AVMDSSA method is applied to three cases, and the following
conclusions are obtained:
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(i) The mode-mixing decision rule proposed in this paper works very well in all cases, enabling the
AVMDSSA method to quickly determine the appropriate K value.

(ii) In the simulative case, a complex synthetic UHF PD which contains three PD pulses and two
kinds of noises is employed to examine our method. The results show that the proposed method
can reduce all kinds of noises to a large extent, and in the meanwhile, all PD components are well
retained. In addition, the results of robustness testing and comparison demonstrate its reliability
and superiority.

(iii) For the measured data, two new evaluation indices are presented by considering both of the
capabilities of noise suppression and feature preservation. By using these newly designed indices,
the effectiveness of AVMDSSA in laboratory experiments and field tests are identified.

Our future work will focus on improving the efficiency of the denoising method, making it more
valuable in practical application.
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