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Abstract: Through real-time acquisition of the visual characteristics of wear debris in lube oil,
an on-line visual ferrograph (OLVF) achieves online monitoring of equipment wear in practice.
However, since a large number of bubbles can exist in lube oil and appear as a dynamically
changing interference shadow in OLVF ferrograms, traditional algorithms may easily misidentify the
interference shadow as wear debris, resulting in a large error in the extracted wear debris characteristic.
Based on this possibility, a jam-proof uniform discrete curvelet transformation (UDCT)-based method
for the binarization of wear debris images was proposed. Through multiscale analysis of the
OLVF ferrograms using UDCT and nonlinear transformation of UDCT coefficients, low-frequency
suppression and high-frequency denoising of wear debris images were conducted. Then, the Otsu
algorithm was used to achieve binarization of wear debris images under strong interference influence.

Keywords: ferrography; uniform discrete curvelet transformation; binarization

1. Introduction

The wear debris in lube oil are closely related to the wear state of the machines. The size and form
of the debris can reflect the wear level and reveal the content and temperature rise of the particular
material. Therefore, oil debris analysis has become an essential condition monitoring technique that is
utilized to diagnose wear and serve as an early warning system. To realize online wear monitoring,
many particle detection methods have developed rapidly [1]. The electromagnetic wear detection
sensor and image wear detection sensor are commonly used in online debris monitoring. When metal
particles pass through the detection coil, they change the inductance of the coil or the magnetic flux
through the coil such that the electromagnetic debris sensor can detect the inductive voltage of the coil,
which can be measured in real time to allow for abrasive particle monitoring [2–5]. For the image wear
detection sensor, detection is mainly based on transmission imaging [6] and reflection imaging [7] with
a high detection accuracy of up to 5 microns.

Online visual ferrography (OLVF) is an important image wear detection sensor. Separating
ferromagnetic wear debris from lube oil using a high-gradient magnetic field, obtaining ferrograms
using an image sensor, and extracting wear debris information, such as size, shape, and concentration,
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by ferrogram, online visual ferrography (OLVF) achieves online equipment wear monitoring.
Compared with online monitoring technology based on inductive sensors, ultrasonic transducers and
electrostatic sensors [8], OLVF can directly obtain visual information of the wear debris, reflecting
wear conditions and realizing the monitoring of wear debris with a large size range, which has been
applied in the evaluation of the anti-wear properties of lube oils, in automotive engine bench tests,
and in gear wear monitoring [9–11].

Wear debris image processing, as an important prerequisite for equipment wear monitoring, and
has been widely studied in recent years. Wu et al. [12] studied the preprocessing method of wear debris
images, conducted comparative analysis of the grayscale processing effects of wear debris images
through different-colored spaces, discussed the application effects of the background subtraction
method and automatic threshold value method in the segmentation of the wear debris image, and
proposed a suitable quantitative description method for wear debris images. Roylance et al. [13]
studied the binarization, denoising and edge tracking of wear debris images, and extracted the
features of wear debris, such as size, shape, and edge details. Zhan et al. [14] studied preprocessing
techniques for wear debris images, such as image smoothing, image filtering, and image binarization,
and processed the actual images using the blank convolution method, which effectively reduced
noise and simplified the data processing process. Hu et al. [15] improved image quality using two
filtering methods, for the convenience of subsequent object segmentation and extraction. In addition,
Stachowiak et al. [16] studied the application of wavelet analysis in the automatic debris classification
system, which could achieve a more reliable diagnosis of mechanical health. Wang et al. [17], while
using the combined watershed and improved ant colony algorithm to segment the particle images,
demonstrated the possibility of accurate image segmentation, including large abnormal particles and
a sedimentary chain. Afterwards, a nonreference evaluation method for the edge detection of wear
particles in ferrographic images was proposed by Wang et al. [18]; the wear particles obtained by
this method are similar to those observed by the human eye, meaning that the evaluation results are
simultaneously objective and reasonable. Wu et al. [19] studied a method to detect dynamic particles,
obtaining three-dimensional abrasive grain characteristics that provide a viable and reliable indication
of wear debris characteristics for machine condition monitoring. Yuan et al. [20] classify the debris
through the abrasive grain boundary signal obtained by a new radial concave deviation (RCD) method.

The above methods are mostly proposed for off-line ferrograms, which are not applicable for
the processing of OLVF ferrograms. In a complete wear monitoring process, the acquired number of
OLVF ferrograms is very large. To facilitate OLVF ferrogram storage, OLVF ferrogram resolution is
low, leading to difficulty in the extraction of wear debris characteristics. Meanwhile, to adapt to the
online monitoring environment of the industrial site, the OLVF’s optical imaging system is simple
and compact in structure such that the optical magnification (approximately 2 times) is considerably
smaller than that of the ferroscopy microscope. Under this condition, the detailed information of the
debris is limited, which leads to difficulty in extracting the particles’ features. In addition, a large
number of bubbles will be generated under the action of valves, oil pumps, and gears during the lube
oil cycle. As shown in Figure 1, when OLVF is used to perform online sampling analysis of the gearbox,
the bubble flows through the probe, appearing as a dynamically changing interference shadow. It is
difficult to eliminate the interference shadow from the OLVF ferrogram using the traditional Otsu
binarization method. The interference shadow is misidentified as wear debris, resulting in large errors
in the extracted wear debris characteristics.
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Figure 1. Effect of interference shadows on the binarization of on-line visual ferrograph (OLVF) 
ferrograms (shadow is encircled in red): (a) OLVF ferrogram; (b) results obtained by Otsu method. 
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Figure 1. Effect of interference shadows on the binarization of on-line visual ferrograph (OLVF)
ferrograms (shadow is encircled in red): (a) OLVF ferrogram; (b) results obtained by Otsu method.

In recent years, the curvelet transform has been of wide interest to domestic and foreign
researchers because of its approximate optimal expression of line singularity features in images.
The curvelet transform has been successfully applied to image denoising and fusion and has achieved
good results [21]. The curvelet transform introduces directional parameters; therefore, it has better
directivity than the two-dimensional wavelet transform. At the same time, the curvelet transform
combines the advantages of the ridgelet transform in expressing linear features and the advantages
of two-dimensional wavelets in expressing point features and is thus more suitable for multiscale
analysis of images with high edge information. On this basis, the Fast Discrete Curvelet Transform
(FDCT) was proposed by Candes et al. [22]. FDCT completely abandons the Ridgelet transform and
directly gives the concrete expression of the Curvelet transform in the frequency domain. The image
multiscale decomposition process by FDCT is as follows: the image is subjected to a fast Fourier
transform; then, the frequency domain coefficients are resampled in different directions at different
scales; finally, the fast Fourier transform is performed after the new coefficients are windowed, and
the progeny coefficients of different scales in different directions can be obtained. Nguyen et al. [23]
proposed Uniform Discrete Curvelet Transform (UDCT), the main idea of which was derived from
FDCT and the filter bank-based Contourlet transform. Its implementation is mainly based on the FFT
algorithm, but its curvelet function is designed in a multiscale filter bank structure. Compared with
the Contourlet transform [24], UDCT has better frequency response, lower coefficient redundancy,
and lower computational complexity, making it more suitable for engineering applications [25].
Feng et al. [26] used UDCT to analyze OLVF spectra at multi-scale. The nonlinear transformation is
used to UDCT coefficients and achieve denoising of abrasive images, binary abrasive images under
interference conditions were obtained, and has achieved good results.

2. Methods

2.1. Uniform Discrete Curvelet Transform

2.1.1. UDCTs Window Function

UDCT defines 2N + 1 smooth curvelet window functions ul(ω), l = 0, 1, · · ·, N to divide the
frequency domain, where ω represents (ω1, ω2). These window functions meet the following criteria:

• All window functions are considered to have a 2π period in both the ω1 and ω2 directions, and
the domain of ul(ω) is [−π, π]2.

• As shown in Figure 2a, u0(ω) is a square low-pass filter window with the support
domain [−π/2, π/2]2. Further, the support fields of the remaining 2N window functions
are wedge-shaped.
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• ul(ω) is a smooth compact support function, and the central region function value is 1.

• u0(ω) +
2N
∑

l=1
[ul(ω) + ul(ω)] = 1.

To construct ul(ω), a one-dimensional projection function β(t) was defined first, which smoothly
transitioned from 0 to 1 in the range of [−1, 1]; parameters ηa and ηb were introduced to control
the transition band width of u0(ω) and ul(ω), respectively. u0(ω) is obtained by multiplying two
one-dimensional functions, and ul(ω) is constructed by multiplying a square window function and
2N angular functions.

β(t) must meet the following requirements:
β(t) = 1 t ≥ 1
β(t) = 0 t ≤ −1
β2(t) + β2(−t) = 1 − 1 < t < 1

(1)

As shown in Figure 2b, β(t) that satisfies the condition can be constructed as

β2(t) = − 5
32

t7 +
21
32

t5 − 35
32

t3 +
35
32

t +
1
2

t ∈ [−1, 1] (2)
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Figure 2. Structure of the Uniform Discrete Curvelet Transform (UDCT) window function: (a) Regions
of essential support of ul(ω) (N = 3); (b) One-dimensional smooth projection function; (c) Low-pass
window function and the bandpass window function; (d) Angle window function.

Then, based on β(t), w̃0(t) and w̃1(t) are defined as

w̃1(t) = β

(
π − |t|

πηa

)
(3)

w̃0(t) = w̃1(2t(1 + ηa)) (4)

where the support domain of w̃0(t) is [−π/2, π/2]. w̃0(t) and w̃1(t) are plotted in Figure 2d.
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Thus, the expressions for the low-pass window function w0(ω) and the bandpass window
function w1(ω) are defined as

w0(ω) = w̃0(ω1)w̃0(ω2) (5)

w1(ω) = (1− w2
0(ω))

1/2
w̃1(ω1)w̃1(ω2) (6)

Similarly, the angle window functions can be constructed as

v1(t) = β(
2/N − 1− t

2ηb/N
)β(

t + 1
2ηb/N

) (7)

vl(t) = v1(t)(t− 2(l − 1)/N) (8)

The square low-pass filter window u0(ω) is constructed to a periodic w0(ω). Additionally, the
2N wedge-shaped curved window function ul(ω) can be obtained by periodic vl(ω) and w1(ω).

2.1.2. UDCT Frequency Domain Filter Bank

Suppose N = k·2n, k > 0, n ≥ 0. A UDCT frequency domain filter bank was constructed by
ul(ω). 2N + 1 filters are defined as

F0(ω) = 2u0(ω)

Fl(ω) = 2
n+3

2 ul(ω)

Gl(ω) = Fl(ω)

, l = 1, · · ·, 2N (9)

where F0(ω) is a low-pass filter, Fl(ω) is a directional filter, and Gl(ω) is a reconstruction filter that
has the same form as the directional filter. The corresponding sampling matrix of the filter bank is

D0 = diag{2, 2}, l = 0
D1 = diag

{
2, 2n+1}, l = 1, · · ·, N

D2 = diag
{

2n+1, 2}, l = N + 1, · · ·, 2N
(10)

The specific structure of the UDCT filter bank is shown in Figure 3. 2D signal x(n) is first filtered
by Fl(ω), and the subband coefficients are obtained by downsampling. At the synthesis side, the
subband coefficients are first upsampled, then convolved with Gl(ω). Finally, the reconstructed output
signal is obtained by y(n) = Real(∑2N

i=0 xl(ω)). To avoid frequency aliasing during down sampling,
the window function parameters ηa and ηb should meet

0 < ηa ≤ (
√

17− 3)/4
0 < ηb ≤ 0.5
2(1 + ηa)(1 + 2ηb) ≤ k

(11)
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2.2. Multiscale Decomposition of OLVF Ferrograms Based on UDCT

Multiscale and multidirectional decomposition of the OLVF ferrogram was performed using
UDCT. Compared with image wavelet decomposition, UDCT not only has vertical, horizontal
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and diagonal information but also has richer directional information. The OLVF ferrogram was
decomposed by UDCT into a low-frequency part and a mid-high-frequency part. UDCT energy is
mainly concentrated on the low-frequency coefficient that reflects the overview of the ferrogram.
The mid-high-frequency coefficients mainly reflect the multidirectional edge feature information
of the wear debris in the ferrogram. After gray processing of the ferrogram, shown in Figure 1,
a six-layer UDCT was performed. Only the coefficient of the UDCT single-layer was retained, while
the coefficients of the remaining layers were set to zero. The image was reconstructed to obtain a gray
contour map of the reconstructed ferrogram, as shown in Figure 4. Obviously, the interference shadow
is a low-frequency signal whose energy is mainly concentrated in low-frequency UDCT coefficients.
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As shown in Figure 5, by removing the low-frequency coefficients, interference shadow in the
ferrogram with small wear debris can be effectively removed. However, when there are large-sized
debris in the ferrogram (Figure 6a), the gray value of the area covered by large debris changes only
slightly, and the energy of the large debris after UDCT decomposition is mainly decomposed to
low-frequency coefficients. This may be confused with low-frequency interference shadows. At this
point, holes may be generated in the middle of large debris due to energy loss after removing the
low-frequency coefficients, and erroneous binarization results are obtained (Figure 6b). When the
size of the wear debris is small in the ferrogram, the wear debris image contains little low-frequency
information. At this point, the interference shadow can be effectively removed by removing the
low-frequency coefficient reconstructed ferrogram after UDCT decomposing without affecting the
image characteristics of wear debris. However, when the size of the wear debris in the ferrogram is
large, the wear debris image contains considerable low-frequency information. Consequently, the
interference shadow cannot be eliminated by removing the low-frequency coefficient reconstructed
ferrogram after UDCT decomposition due to a great loss of image characteristics of wear debris.
Therefore low-frequency coefficient should be suppressed and transformed to a certain extent in order
to achieve good interference shadow removal.
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2.3. Nonlinear Enhancement of OLVF Ferrogram Based on UDCT

A nonlinear function was used to process the low-frequency coefficients of the UDCT transform
to eliminate the interference shadow information. The nonlinear function [27] is defined as follows:

f (x) =
sigm[c(x− b)]− sigm[−c(x + b)]
sigm[c(1− b)]− sigm[−c(1 + b)]

(12)

whereby sigm(x) = 1/[1 + exp(−x)]; 0 < b < 1, b is the input fragmentation threshold and c is the
control coefficient of the enhanced data rate.

2.3.1. High-Frequency Denoising

High-frequency sub-band coefficients reflect the details and edge features of OLVF ferrograms
and contain noise. The coefficients for UDCT were adjusted to achieve denoise processing of the OLVF
ferrogram. The piecewise nonlinear adjustment function is

y =

{
s· f (x), x ≥ T
0, x < T

(13)
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where s is an adjustable coefficient; x = |C(i, j)|/Max; the noise evaluation parameter
σ = median(|C(i, j)|/0.6745); the threshold T = λ·σ; the coefficient λ = 3 ∼ 4; the adjusted
high frequency progeny coefficient is CHnew(i, j) = Max·y.

2.3.2. Low-Frequency Suppression

The interference shadows are found in the low frequencies, and the processing of low-frequency
coefficients is the key. To suppress interference shadows, low-frequency progeny coefficients
need to be suppressed. A piecewise nonlinear function was used to process the low-frequency
progeny coefficients.

y =

{
s1· f (x, c1), x ≥ b
s2· f (x, c2), x < b

(14)

where s1 and s2 are adjustable coefficients; x = |C(i, j)|/Max; b = (
M
∑

i=1

N
∑

j=1
|C(i, j)|)/(M·N·Max); C(i, j)

are the coefficients obtained by UDCT; Max is the largest absolute value for C(i, j); and M and N are
the matrix dimension. To ensure continuity of the piecewise function, s2 = s1 × f (b, c1)/ f (b, c2). Then,
the adjusted low frequency progeny coefficient is CLnew(i, j) = Max·y.

The steps of the UDCT-based OLVF spectrum anti-interference binarization algorithm are
as follows:

1. The background subtraction method is used to subtract the OLVF spectrum from the background
spectrum, and grayscaled to obtain an OLVF spectrum that eliminates background interference;

2. The method of uniform discrete curvelet transform is performed on the OLVF spectrum to obtain
a series of high-frequency and low-frequency progeny coefficients;

3. The nonlinear transformation of low-frequency progeny coefficients is segmented, and the
low-frequency interference shadow energy is suppressed; then, the high-frequency progeny
index is subjected to threshold denoising, with the remaining progeny coefficients unchanged;

4. The progeny coefficients are integrated to perform the inverse discrete curvelet inverse transform
to obtain the OLVF spectrum after suppressing the interference shadow;

5. A binarization process is used on the processed spectral slice OLVF with automatic threshold
iterative method.

The specific algorithm flow is shown in Figure 7.
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3. Comparison with Other Methods

As shown in Figure 8, the proposed method was compared with three commonly used binarization
methods: the Otsu method, the Kittler method, and the Niblack method. The calculation parameters of
the proposed method are c1 = 5, s1 = 0.45, and c2 = 1. As shown in Figure 1, the OLVF ferrogram has
dark gray cloud-like interference shadows. The Otsu method can identify most of the wear debris in
the ferrogram but also misidentifies the interference shadow at the bottom as wear debris. The Kittler
method has good ability to identify low-contrast image objects. As a result, the part with dark gray
shadows in the ferrogram is almost completely misidentified as wear debris. The Niblack method
caused an intumescent effect on the ferrogram. The morphology of the wear debris binarized by the
Niblack method is different from the actual one. The local interference shadows at the bottom of the
ferrogram are misidentified as wear debris. Figure 8d shows the results obtained by the proposed
method. The dark gray interference shadow is effectively removed, the edge of the wear debris image
is clear, and the shape of the wear debris is similar to the actual shape.
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4. Application in Wear Monitoring of Gearbox

A gear wear experiment was conducted in a back-to-back setup, shown in Figure 9. The OLVF
was used to monitor gear wear in real time. The test was carried out for 51.87 h. A total of 1557 OLVF
ferrograms were obtained during the test.
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Figure 9. Back-to-back gear test rig: (a) schematic; (b) photograph.

Figure 10 shows representative OLVF ferrograms with bubble interference. Figure 11 shows
typical OLVF ferrograms after 25 h. The OLVF ferrograms were segmented by the proposed method
and the Otsu method, respectively. And the index of particle coverage area (IPCA) [26] was calculated
by binarized OLVF ferrograms, and the variation of the IPCA curve was obtained, as shown in
Figures 12 and 13. During the first five hours of the experiment, a large amount of bubbles was present
in the lube oil due to the gear agitation. At this time, using the Otsu method to extract the IPCA
values will produce large errors. There are many glitch impulses on the IPCA curve, as shown in
Figure 13. Figure 14 is an image obtained by subtracting IPCA curves of the two methods. During the
first five hours of the experiment, there have a great difference with the IPCA values extracted by this
method and Otsu method. After about 30 h of experimentation, there is basically no difference in the
experimental results of the two methods. Comparatively, the proposed method can better suppress the
bubble interference existing in the OLVF ferrograms and reduce the IPCA glitch impulses generated
by the bubbles, as shown in Figure 12. The bubbles in the lube oil are gradually reduced after 5 h, and
both methods can obtain a good IPCA curve.

Obviously, IPCA has more glitch impulses before 5 h. The reason for this is because at the
beginning of the experiment, bubbles are easily generated due to gear agitation because of the viscous
lube oil. As the experiment progressed, the temperature of the lube oil increased and the viscosity
decreased, and the generated bubbles were reduced, so that the interference of the bubbles on the
OLVF spectrum was reduced.
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5. Conclusions

Multiscale analysis of OLVF ferrograms was performed using UDCT. Bubbles appear as a low
frequency interference shadow in OLVF ferrograms. The proposed anti-interference segmentation
method for the OLVF ferrograms was used to suppress the low-frequency coefficients of UDCT to
eliminate interference shadow in the ferrograms. A wear debris image with a clear edge can be obtained.
Additionally, the method is used in online gear wear monitoring. Additionally, the initial stage IPCA
glitch impulses caused by bubbles can be effectively suppressed or eliminated. The proposed method
can meet the requirements of OLVF online sampling analysis, which provides more accurate data for
the subsequent extraction of wear debris characteristics.
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